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The late start of the mean velocity overlap log law
at y+ = O(103) – a generic feature of turbulent
wall layers in ducts
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One of the key observations in the Princeton Superpipe was the late start of the logarithmic
mean velocity overlap layer at a wall distance of the order of 103 inner units. Between y+ ≈
150, the start of the overlap layer in zero pressure gradient turbulent boundary layers, and
y+ ≈ 500, the Superpipe profile is modelled equally well by a power law or a log law with
a larger slope than in the overlap layer. This paper demonstrates, that the asymptotic mean
velocity profile in turbulent plane channel flow exhibits analogous characteristics, namely
a rather sudden decrease of logarithmic slope (increase of κ) at a y+ of approximately 600,
which marks the start of the actual overlap layer. The demonstration results from the first
construction of the complete mean velocity inner and outer asymptotic expansions up to
order O(Re−1

τ ) from direct numerical simulations (DNS) at moderate Reynolds numbers.
The O(Re−1

τ ) contribution to the indicator function Ξ+ = y+(dU+/dy+) is found to be
important and to prevent the direct determination of κ from currently available channel
DNS. A preliminary, leading-order analysis of a Couette flow DNS, on the other hand,
yields an increase of logarithmic slope (decrease of κ) at a y+

break ≈ 400. The correlation
between the sign of the slope change and the flow symmetry motivates the hypothesis that
the breakpoint between the possibly universal short inner logarithmic region and the actual
overlap log-law corresponds to the penetration depth of large-scale turbulent structures
originating from the opposite wall.

Key words: boundary layer structure

1. Aim of the study and some comments on the asymptotic analysis
of mean velocity profiles

For over 100 years, enormous efforts have been made to better understand the physics
of turbulent wall-bounded flows and numerous approaches have been pursued. One of
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them consists of subdividing the turbulent boundary layer according to the dominant
balance in the governing equations and to consider reduced models in the different layers.
The papers of Wei et al. (2005) and Klewicki (2013) are examples for this approach.
Another angle on the problem has been provided by symmetry-based turbulence theory,
presented for instance in Oberlack (2001). Still another approach is what may be called
the ‘building block approach’, where ensembles of relatively simple basic flow structures
are arranged in the wall layer such as to reproduce specific measured or computed flow
statistics. A prominent example of this approach is the so-called ‘attached eddy model’
recently reviewed by Marusic & Monty (2019). While these approaches are all different,
they generally have the common aim of modelling and/or explaining the asymptotic, high
Reynolds number structure of turbulence statistics, in particular of the mean velocity
profile, in the following abbreviated MVP, but are developed, calibrated and tested on finite
Reynolds number data. Hence, the question of whether a model correctly reproduces the
infinite Reynolds number limit is a difficult one, which has fuelled numerous controversies.

The present study aims to provide some answers to the above question by unifying the
modelling of high Reynolds number MVPs in terms of asymptotic expansions for the
three ‘canonical’ turbulent parallel flows: pipe, plane channel and plane Couette flows, i.e.
flows which are in the mean homogeneous in both the streamwise and azimuthal/spanwise
directions. All three flows are characterized by a single ‘outer’ or global length scale L̆,
the pipe radius or channel half-width and a constant wall shear stress τ̆w, where ·̆ identifies
dimensional quantities throughout the paper. In the following, the classical two-layer
description is adopted with the standard ‘inner’ or viscous length scale �̆ ≡ (ν̆/ŭτ ),
where ŭτ ≡ (τ̆w/ρ̆)1/2, ρ̆ and ν̆ are the friction velocity, density and dynamic viscosity,
respectively. The relevant Reynolds number is the ‘friction Reynolds number’ Reτ ≡ L̆/�̆.

To date, only the Princeton Superpipe MVPs (Zagarola & Smits 1997, 1998; McKeon
2003; McKeon et al. 2004), reviewed in § 2.1, were acquired at high enough Reynolds
numbers to reveal the detailed structure of the region, which links the wall layer to the
core. The characteristic feature of this region for friction Reynolds numbers Reτ beyond
approximately 30 000 – a distinct reduction of (logarithmic) slope at a wall distance
well beyond the start of the log law in zero pressure gradient turbulent boundary layers
(abbreviated ZPG TBLs) – is reviewed in § 2.1. In § 2.2, the hypothesis is advanced that
this feature is related to turbulent structures, which originate from the opposite wall. The
outline of the more technical continuation of the paper is postponed to § 2.3.

Since the interpretation of channel and Couette flow experiments is complicated by the
finite spanwise extent of facilities (see e.g. Vinuesa, Schlatter & Nagib 2018), attention
is turned to direct numerical simulations (DNS). However, the Reynolds numbers for the
available DNS are relatively low, such that the contamination of the overlap MVP by both
its inner and outer parts remains a problem. The ‘Reynolds number handicap’ of DNS
is overcome by a methodology to formally extrapolate finite Reynolds number profiles of
the MVP or any other turbulence statistics to infinite Reynolds number. This is achieved
by constructing at least two terms of the large Reynolds number composite asymptotic
expansion from high quality profiles at different Reynolds numbers. Identifying the
multi-term composite expansion with the DNS profile, one arrives at a good representation
of the infinite Reynolds limit by subtracting all the higher-order terms of the composite
expansion from the DNS.

However, before getting into the technical details of constructing such expansions from
DNS, it is useful to review some basic principles of matched asymptotic expansions (MAE,
see for instance the excellent monograph by Kevorkian & Cole 1981) and their application
to wall turbulence, reviewed, for instance, by Panton (2005).
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Late start of mean velocity overlap in turbulent duct flows

Within the framework of MAE, the non-dimensional mean velocity U+ ≡ Ŭ/ŭτ at large
Reτ is modelled by inner and outer asymptotic expansions U+

in( y+) = ∑
φn(Reτ )fn( y+)

and U+
out(Y) = ∑

Φn(Reτ )Fn(Y), where y+ ≡ y̆/�̆ and Y ≡ y̆/L̆ = y+/Reτ are the
inner-scaled and outer-scaled non-dimensional wall-normal coordinates, while φn(Reτ )

and Φn(Reτ ) are suitable gauge functions. These inner and outer expansions for U+ have
to be matched in an ‘overlap’ layer, where ( y+Y) is of order unity.

This overlap layer is, however, not a third layer on the same footing as inner and outer
layers, but the ‘intersection’ or the common part of the inner and outer expansions. As its
name suggests, it only contains terms that are common to both inner and outer expansions
and their number depends therefore on how many terms are retained in the two expansions
to be matched. This precise definition allows to construct the additive composite profile,
which is the sum of inner and outer expansions minus the common part, as the latter is
counted twice in the sum.

An important corollary to this statement is that the common part contains no new
physics, unless it is introduced by an additional reasoning. The classical example in the
present context is the postulate of asymptotic independence of inner and outer scales
by Millikan (1938) (see also the early formulation by von Kármán 1930), from which it
follows that, in the overlap layer, y+(dU+/dy+) = Y(dU+/dY) can only be a constant κ−1.
This physical argument yields directly the functional form of the leading-order common
part, the log law

U+
cp,0 = κ−1 ln( y+) + B = κ−1 ln(Reτ ) + κ−1 ln(Y) + B. (1.1)

A first remark concerns the log law in outer variables, which contains both order O(1)

terms and a ln(Reτ ). Therefore, it must be regarded as of ‘block order’ unity, where the
block order, introduced by Crighton & Leppington (1973), regroups all the terms of order
Ren

τ lnm(Reτ ) with different m values into a single block order Ren
τ . This is also seen in the

‘law of the wake’ of Coles (1956), U+
out,0 = κ−1 ln(Reτ ) + κ−1 ln(Y) + B + 2πκ−1f (Y),

which is one way of writing the leading term of the outer expansion.
The reported value of κ in (1.1) has varied considerably between different flows and over

time, from the 0.38 originally estimated by von Kármán (1930) to the ‘popular’ value of
0.41 (see for instance (Pope 2000), § 7.3.3) to 0.436 in the Superpipe (Zagarola & Smits
1998) and the CICLoPE pipe (Fiorini 2017; Nagib et al. 2017, 2019) (see also the extensive
discussion in Marusic et al. 2010).

The diversity of κ values should, however, not come as a surprise, since the Millikan
argument does in no way preclude the dependence of κ and B in (1.1) on control
parameters, such as for instance the pressure gradient parameter β ≡ −L̆(∂ p̆/∂ x̆)(τ̆w)−1

(β = 0, 1 and 2 for Couette, channel and pipe flow, respectively) and geometry (see e.g.
Nagib & Chauhan 2008). Furthermore, its value in different flows is still difficult to pin
down because the κ values extracted from high Reynolds number experiments come with
a significant uncertainty (see e.g. Bailey et al. 2014), while the Reτ of high quality DNS
are still too low to produce clean log laws.

Possibly because of this uncertainty, κ has retained an aura of fundamental constant,
the Kármán ‘constant’, and prompted considerable attention to higher-order terms in the
overlap region by, among others, Yajnik (1970), Afzal & Yajnik (1973), Jiménez & Moser
(2007) and most recently by Luchini (2017, see appendix B for a critical appraisal).

The main points on asymptotic matching and common parts may be summarized as
follows:
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(i) The logarithm in the leading-order overlap profile for U+ ((1.1)) is a consequence
of the postulated asymptotic independence of inner and outer scales and hence of
physical origin.

(ii) It follows directly from Coles’ law of the wake (1956), that the κ values determined
from the leading-order overlap profile and the leading-order centreline velocity
U+

cl,0(Reτ ) = κ−1 ln(Reτ ) + C must be identical!
(iii) Higher-order terms in the common part depend entirely on which terms are included

in the inner and outer expansions, as they must be contained in both the limits
y+ � 1 of the inner and Y � 1 of the outer expansion.

(iv) While composite asymptotic expansions with a given finite number of terms are
constructed to approach the exact solution in the limit of infinitely large Reτ , they
often ‘work’ surprisingly well at lower Reτ . However, as the inner–outer scale
separation diminishes, the underlying overlap profile (equation (1.1) in the present
context) becomes progressively ‘buried’ by the superposed inner and outer profiles.
In other words, it can no longer be readily identified in the composite profile and
needs to be educed by a proper asymptotic analysis.

2. Reconciling the MVP characteristics in the Princeton Superpipe
with plane channel and Couette profiles

2.1. The principal characteristics of the mean velocity overlap profile
in the Superpipe

Until the Princeton Superpipe experiment of Zagarola & Smits (1997, 1998), the ‘standard
model’ of the MVP in wall-bounded turbulent flows consisted of inner and outer profiles,
monotonically connected by the logarithmic overlap profile extending from y+ ≈ 150 to
Y ≈ 0.2, except for a small overshoot centred around y+ ≈ 30 (see Nagib & Chauhan
(2008) and appendix A). It goes without saying that the extent of the overlap region
depends on how much deviation from the pure log law is tolerated.

The challenge to this ‘standard model’ by the Princeton Superpipe experiment has been
twofold:

(i) The originally reported κ of 0.436, as well as the revised value of 0.421, obtained
by McKeon et al. (2004) with smaller Pitot probes and a different correction
scheme have attracted a great deal of scepticism. Based on the extensive collection
of centreline velocities U+

cl minus the fit κ−1 ln(Reτ ) + C in figure 1 for the two
different κ values and corresponding C values, the pipe overlap κ can be placed in
the bracket [0.42, 0.44]. With the present data, it is not possible to pinpoint it more
precisely (see e.g. Bailey et al. 2014). It is, however, clear that the Superpipe κ and
the preliminary values from the CICLoPE facility (Fiorini 2017; Nagib et al. 2017,
2019) are different from the κ in ZPG TBLs, which has converged to approximately
0.384 (see for instance Monkewitz, Chauhan & Nagib 2007; Marusic et al. 2010).
However, in light of the comments on the Millikan matching argument in § 1, these
differences should not come as a surprise as they do not violate any basic principles.

(ii) More importantly, the overlap log law was found to start only beyond y+ � 500,
much further from the wall than in the ZPG TBL, where a clean log law is
observed for y+ � 150 (see for instance Monkewitz et al. 2007; Marusic et al. 2010).
Surprisingly, this feature of the Superpipe profiles has gone largely uncommented
and certainly unexplained. Originally, both Zagarola & Smits (1998) and McKeon
et al. (2004) have fitted U+ in the interval 150 � y+ � 500 with power laws, but
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Figure 1. Pipe centreline velocities minus κ−1 ln(Reτ ) + C versus Reτ for (a) κ = 0.42, C = 6.84 and
(b) κ = 0.436, C = 7.65. •, Superpipe data corrected according to McKeon; ◦, same data without roughness
correction; ◦ (green), Superpipe data of Zagarola & Smits (1997) with same roughness correction; ×, Superpipe
NSTAP data of Hultmark et al. (2012); �, Perry & Abell (1977); �, Zanoun et al. (2007); � , Monty (2005);
��� (blue), CICLoPE data of Fiorini (2017); ��� (blue), new CICLoPE data of Nagib et al. (2019);
� � � (yellow), figure 6 of Furuichi et al. (2018); � (red), the three DNS of El Khoury et al. (2013) (Reτ = 999),
Wu & Moin (2008) (Reτ = 1142) and Chin, Monty & Ooi (2014) (Reτ = 2003). · − · (red), ±0.5 % of reference
Û+

cl ; - - -, ±103/Reτ ; · · · , slope corresponding to κ = 0.40.

McKeon (2003) noted that a logarithm with slope 1/0.385 also ‘fits quite well’.
Consistent with this observation, the hypothesis (2.1) and the analysis of § 3.3, both
the near-wall and the overlap region will be modelled by logarithmic laws with log
slopes of (1/κM) and (1/κ), respectively, and a rather sharp transition between the
two at a y+

break of approximately 500 (note that the ‘M’ in κM indicates that it is the
κ used to generate the inner Musker profile of appendix A).

(iii) Based on velocity measurements with the miniature ‘NSTAP’ hot-wires in the
Princeton Superpipe, Marusic et al. (2013) have put the breakpoint y+

break, i.e.
the start of the logarithmic overlap region, at y+

break ≈ 3Re1/2
τ . On the other hand,

Monkewitz (2017) found that, based on the original Pitot measurements, the slope
change correlated better with a fixed y+

break ≈ 500. At the Reτ considered, these two
scalings for the start of the overlap log law are numerically similar and within the
uncertainty of the breakpoint location. However, the scaling on the intermediate
variable y+Re−1/2

τ poses a problem: if the inner profile for y+ < y+
break is a function

of y+ alone, as observed, the additive log-law constant B can no longer be constant,
but increases with ln(Reτ ). Furthermore, the comparison of the two scalings over
the full Superpipe Reynolds number range by Monkewitz (2019) clearly favours a
constant y+

break, which is therefore adopted in the following.

The main Superpipe findings, detailed above, are illustrated in figure 2 by model profile
adapted from Monkewitz (2017) to fit the partial velocity profiles obtained by Fiorini
(2017) in the CICLoPE pipe with traditional 1 and 1.1 mm hot-wires and his centreline
Pitot data. Note that, in this figure, and in the rest of the paper, profile fits are identified by
hats ·̂, while experimental or DNS profiles have no hat.
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Figure 2. Pipe mean velocity profiles minus leading-order overlap or common part Û+
cp,0 =

(1/0.44) ln( y+) + 6.34. �� (lime green), �� (sky blue), � � (violet), hot-wire data of Fiorini (2017)
for Reτ = 14.3, 22.2, 31.0 × 103. — (lime green), — (sky blue), — (violet), corresponding model profiles,
composed of the inner Musker profile Û+

M( y+; 0.384, 4.05) ((A1)), the original ‘hump’ ĤNC( y+; 0.351, 1, 30)

((A7)), a change of log slope at y+
break = 103 to the common part Û+

cp,0, and an outer part adapted from

Monkewitz (2017). - - - (magenta), Musker profile with hump minus Û+
cp,0. — (grey), additional model profiles

for Reτ = 2, 5, 100, 300, 1000 × 103. • (grey), centreline Pitot data of Fiorini (2017), with • (lime green),
• (sky blue), • (violet), data for Reτ = 14.8, 23.2, 31.4 × 103, close to the Reτ of the hot-wire profiles.
− · −, centreline velocity fit Û+

cl,0 − Û+
cp,0 = 1.85.

These hot-wire data are consistent with an increase of κ by � 0.05 around a breakpoint
y+

break � 103, which becomes apparent in the MVP beyond a Reτ of approximately 30 000.
The main profile parameters fitting the data of Fiorini (2017) are seen to be close to the
ones of Zagarola & Smits (1997, 1998), but one will have to wait for an upgraded CICLoPE
instrumentation to narrow down the uncertainty of κM , y+

break and κ (see Nagib et al. 2017,
2019). For the prospect of using DNS, see § 4.2.

The Superpipe results described above were met with scepticism, to say the least, and
the interrogations were numerous: the question of corrections for wall roughness was
brought up by Perry, Hafez & Chong (2001) and finally resolved by Allen, Shockling
& Smits (2005). The diverse Pitot probe corrections were questioned and prompted a vast
investigation by an international collaboration (Bailey et al. 2013). Finally, the effect of
Pitot tube positioning errors was considered by Vinuesa, Duncan & Nagib (2016). In the
end, the Superpipe results have withstood all these additional investigations, and so one
has to ask whether the MVP in other ducted parallel flows, in particular plane channel
and Couette flow, will also exhibit the Superpipe features of figure 2 if pushed to higher
Reynolds numbers. This author cannot conceive of any reason for this not to be the case,
and so the Superpipe mean velocity structure is expected to also emerge at higher Reτ in
plane channel and Couette flows. Before demonstrating that this is the case, it is helpful to
think of a coherent explanation for the difference between the logarithmic regions in ZPG
TBLs and ducted parallel flows. Such a possible explanation is proposed in § 2.2.

2.2. Hypothesis on the effect of the opposite wall
The following explanation is proposed for both the late start of the overlap log law and the
flow dependence of the overlap κ in simple ducted parallel flows, illustrated in figure 2 for
pipe flow:
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(a) (b)

Figure 3. Cartoons illustrating the hypothesis 2.1. Red and blue shaded areas: wall layers not affected by the
opposite wall; violet shade: overlap layers affected by ‘eddies’ originating from the opposite wall. (a) Overlap
logarithmic slope reduced relative to the wall layers for pipe and channel flows; (b) overlap logarithmic slope
increased relative to the wall layer for Couette flow.

HYPOTHESIS 2.1. The breakpoint y+
break, separating the short logarithmic region with

slope (1/κM) between y+ ≈ 150 and y+
break and the true overlap log-law with Kármán

parameter κ , corresponds to the penetration depth of large-scale turbulent structures
originating from the opposite wall.

This hypothesis (2.1) is visualized by the cartoon of figure 3 and has two testable
consequences:

(i) In pipe and channel flows the disturbances of opposite vorticity emanating from the
opposite wall reduce dU+/dy+ for y+ > y+

break and hence κ > κM . Conversely, in
Couette flow these vorticity disturbances must increase the mean shear outside of
y+

break, leading to κ < κM .
(ii) At sufficiently high Reτ , the short logarithmic layer with slope (1/κM) is possibly

not influenced by geometry and the inner layer 0 ≤ y+ ≤ y+
break may therefore be

universal, at least for the truly parallel flows considered here.

Finding a theoretical underpinning for the above hypothesis or an alternative explanation
is left for future research. For this, the variance of vorticity components in the simulations
of Lee & Moser (2015) may provide a lead, as it changes from a 1/y+ power-law decay to
an exponential decay right around a y+ of 103, independently of Reτ .

2.3. Outline of §§ 3–5
In § 3, a number of high quality profiles for plane channel flow, up to Reτ = 5186 (Lee
& Moser 2015), are used to construct, for the first time, the complete inner and outer
asymptotic expansions of U+ up to terms of order O(Re−1

τ ). This allows the extraction
of the leading-order MVP from DNS at low to moderate Reτ values. In particular the
leading-order inner profile U+

in,0, obtained in § 3.3, corroborates the hypothesis (2.1) by
revealing a clean break point at y+

break � 600, around which the logarithmic slope of U+
decreases from (1/0.398) to (1/0.42) over a short y+-distance.

An analogous reconstruction of 2-term asymptotic expansions from available Couette
DNS, on the other hand, has not been feasible. Limited to the leading-order inner and
outer asymptotic expansions, it is nevertheless possible to demonstrate in § 4.1, that the

910 A45-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

99
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.998


P.A. Monkewitz

Couette DNS of Kraheberger, Hoyas & Oberlack (2018) for Reτ = 1026 does show the
steepening of U+ at y+

break, corresponding to κ = 0.367 < κM = 0.40, in conformity with
the hypothesis (2.1).

A brief review of three pipe DNS profiles in § 4.2 finally reveals, that the differences
between available profiles are too large to attempt an analysis analogous to the one for the
channel.

The paper closes with a recap of selected findings and a selection of open questions
in § 5.

3. Higher-order asymptotic expansions of U+ for the plane channel

At this point, the paper switches from phenomenology to a purely formal singular
perturbation approach. The only assumptions for the following analysis are the restriction
to the two classical inner and outer layers, connected through an overlap layer, which is at
leading order of the physically motivated logarithmic form (1.1). However, no assumptions
are made on the value of the Kármán parameter κ , nor on the exact location of the overlap
layer.

3.1. Methodology for extracting asymptotic expansions from DNS
The objective is to obtain, for the plane channel, the inner and outer asymptotic expansions
of the mean velocity U+ up to and including the block order O(Re−1

τ ) (see Crighton &
Leppington (1973), and § 1 for the concept of block order)

U+
in( y+) = U+

in,0( y+) + Re−1
τ U+

in,1( y+) + O(Re−2
τ ), (3.1)

and

U+
out(Y) = U+

out,0(Y) + Re−1
τ U+

out,1(Y) + O(Re−2
τ ), (3.2)

together with the common part U+
cp, which can be expressed in terms of y+, Y , or

the intermediate variable η = y+Re−1/2
τ = YRe1/2

τ . Identifying the composite expansion
U+

comp = U+
in + U+

out − U+
cp with U+

DNS, the first two orders in the expansions (3.1) and
(3.2) are successively determined for the first time and fitted by suitable functions.

Rather counter-intuitively, the determination of the inner and outer expansions is best
started with the order O(Re−1

τ ) terms. Between the wall and the overlap region, the
deviation of the inner velocity ((3.1)) from the total velocity, taken to be U+

DNS( y+), is
of the order of | U+

out(Y) − U+
cp |. Hence, assuming that the asymptotic expansion (3.1)

converges rapidly (an assumption justified a posteriori), one obtains a good estimate of
U+

in,1( y+) between the wall and the overlap layer by taking differences of two total velocity
profiles at equal y+ values (obtained by 3-point quadratic interpolation of the original DNS
data) and different Reτ values

[U+
DNS( y+; Reτ,1) − U+

DNS( y+; Reτ,2)][Re−1
τ,1 − Re−1

τ,2]−1

= U+
in,1( y+) + O(Re−1

τ ; | U+
out(Y) − U+

cp |). (3.3)

Similarly, between the overlap region and the centreline, the outer velocity ((3.2))
is equal to the total velocity U+

DNS(Y), with an error of order | U+
in( y+) − U+

cp |.
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Profile Reτ Colour in figures Reference

#1 5186 � (purple) Lee & Moser (2015)
#2 2004 � (sky blue) Hoyas & Jiménez (2006)
#3 1000 � (green) Lee & Moser (2015)
#4 934 � (spring green) Del Álamo et al. (2004)

Table 1. Channel DNS profiles used to determine contributions of O(Re−1
τ ).

However, obtaining the first-order term U+
out,1(Y) is a bit trickier, because the leading block

order of the outer expansion (3.2) is of the well-known form

U+
out,0(Y) = (1/κ) ln(Reτ ) + F(Y). (3.4)

Two strategies to determine U+
out,1(Y) are pursued in § 3.2:

(i) The first is to assume κ in (3.4) and to use the analogue of (3.3) to determine
U+

out,1(Y; κ). The ‘true’ U+
out,1(Y) is then obtained by iterating on κ until the best

collapse of U+
out,1(Y) is obtained from different profile pairs.

(ii) The second, assumption-free strategy is to use a third DNS profile at a different
Reynolds number to eliminate the (1/κ) ln(Reτ ) term from the two DNS profiles at
Reτ,1 and Reτ,2, before proceeding analogous to (3.3).

The strategies outlined above to educe higher-order terms from DNS, are fundamentally
different from the attempts to determine higher-order terms in the overlap region, discussed
in § 1. Here, U+

in,1( y+) and U+
out,1(Y) are determined from the profiles in the inner wall

region and the outer region near the centreline, respectively. Their proper matching in the
overlap region only serves as an a posteriori verification.

The primary difficulty in implementing the above program is the required extraordinary
fidelity of the DNS. Deviations from the Navier–Stokes solution must be sufficiently
smaller than U+/Reτ in order to extract the O(Re−1

τ ) terms with any kind of confidence,
since profile uncertainties are amplified by a factor of the order of the smaller Reτ used
in (3.3). At first thought, one might wish for higher DNS Reynolds numbers in order to
obtain a better separation of inner and outer scales and hence a clean(er) overlap log law.
However, if the uncertainty of the DNS does not diminish at least as 1/Reτ , nothing is
gained for the determination of higher-order terms in the asymptotic expansion. In other
words, it appears more important to improve the fidelity of DNS than to keep increasing the
Reynolds number. Finally, it has to be kept in mind that the dependence of the U+ profiles
on additional parameters, such as the computational box size, has to be much weaker than
its dependence on Reτ .

The four DNS profiles listed in table 1 have been found to produce consistent results
for both first-order terms U+

in,1 and U+
out,1 in the expansions (3.1) and (3.2), and will in the

following be referred to by their profile number in the table. The principal computational
characteristics of these DNS are summarized in table 1 of Lee & Moser (2015).

3.2. The outer expansion U+
out(Y)

The first-order outer profile U+
out,1(Y) is determined with both methods discussed in § 3.1.

Iterating on κ , until the best collapse of U+
out,1(Y; κ, i, j) determined from different profile
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Figure 4. (a) Higher-order term U+
out,1(Y) of the outer expansion for the optimal κ = 0.42, obtained with pairs

of DNS from table 1: —, (#1,#3); - - -, (#1,#4); − · −, (#1,#2); − · ·−, (#2,#3); • • • (magenta), fit by (3.5);
grey: U+

out,1(Y) with same profile pairs, but κ = 0.41. (b) Derivative dU+
out,1(Y)/dY obtained from the same

DNS pairs as in (a); • • • (magenta), derivative of (3.5).

pairs (i, j) is obtained in the core of the channel, leads to κ = 0.42. The resulting good
collapse in the region 0.4 � Y ≤ 1 of the U+

out,1(Y), obtained from different pairs, is shown
in figure 4(a), together with the fit

Û+
out,1 = −210 − 130 cos(πY) ∼ −340 + O(Y2) for Y → 0, (3.5)

where the reader is reminded that analytical fits are designated by hats, while quantities
derived from DNS profiles are left without.

As it turns out, the optimal κ = 0.42 is rather sharply defined, as seen from the
divergence of the U+

out,1(Y) profiles for κ = 0.41, obtained from the same profile pairs
and included in figure 4(a) in grey. The confidence in the fit (3.5) is reinforced by the good
match in figure 4(b) between the derivative of the fit (3.5) and the derivatives dU+

out,1/dY
obtained from the same profile pairs as in figure 4(a), with a scheme analogous to (3.3)
that requires no knowledge of κ .

Since the determination of U+
out,1(Y) is a key step of the present analysis, which tests the

limits of present DNS, it is useful to compare with the parameter-free method (ii), based
on three DNS profiles and outlined in § 3.1. The resulting U+

out,1(Y) is shown in figure 5(a)
for four profile triplets and the corresponding κ values are shown in panel (b). What is
striking in this figure, are the surprisingly good results for the two triplets involving only
profiles from table 1. The results for κ in particular, which deviate on the centreline by
less than ±0.003 from 0.42, are outstanding. In contrast, the results from the two triplets
including a profile of table 2 are rather useless for the present purpose. They have been
included to show why the present methodology fails with a number of DNS profiles: as
seen in figure 5, the two ‘bad’ triplets yield results consistent with the two ‘good’ ones
up to around Y ≈ 0.2, where they are of no interest for the outer expansion, and become
erratic towards the centreline. This suggests an imbalance of computational effort between
near-wall and core regions, which has been recognized and corrected by the Texas group
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Figure 5. (a) Higher-order term U+

out,1(Y) of the outer expansion obtained from three DNS of table 1:
—, (#1,#2,#3); - - - (green), (#1,#2,#4). Results involving one DNS of table 2: − · − (grey), (#2,#3,#6);
− · ·− (grey), (#2,#3,#5); • • • (magenta), fit by (3.5). (b) κ from the same triplets as in panel (a);
• • • (magenta), κ = 0.42.

Profile Reτ Colour in figures Reference

#5 4179 � (brick red) Lozano-Durán & Jiménez (2014)
#6 3000 � (red) Thais, Mompean & Gatski (2013)

Table 2. Channel DNS profiles used to validate the composite fit (3.17).

during the computations for Lee & Moser (2015) (private communication of R. Moser and
M.K. Lee).

To complete the outer expansion, the leading-order term of U+
out(Y) is split into several

contributions

U+
out(Y) =

{
1

0.42
ln[Reτ Y(2 − Y)] + C + W0(Y)

}
+ 1

Reτ

U+
out,1 + · · · , (3.6)

where all the terms, including the outer log term, satisfy the channel symmetry U+(Y) =
U+(2 − Y). This requirement is rarely implemented in the literature, where the original
decomposition of Coles (1956) into simple logarithm and ‘wake’ dominates. The only
unknowns left in the outer expansion (3.6) are the constant C and the ‘wake function’
W0(Y) (note that W0 is different from Coles’ wake function because of the symmetrized
log term). Specifying W0(Y = 1) = 0 in (3.6) leads to the 2-term expansion of the
centreline velocity

Û+
cl =

{
1

0.42
ln(Reτ ) + 6.22

}
− 80

Reτ

+ O(Re−2
τ ), (3.7)

with the optimal C = 6.22. Equation (3.7) is seen in figure 6 to reproduce the reference
DNS data of table 1 with an error of less than 0.2 %, which is marginally better than the
leading-order fit by Monkewitz (2017).
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103 104
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0

U
+ cl

  –
  Û

cl
Reτ

Figure 6. Various channel/duct centreline velocities minus Û+
cl ((3.7)) versus Reτ . � (purple) � (sky

blue) � (green) � (spring green), DNS of table 1; � (grey), other DNS used in Monkewitz (2017);
×, Schultz & Flack (2013); +, Zanoun, Durst & Nagib (2003). · − · (red), ±0.2 % of Û+

cl . · · · , slope
corresponding to the Musker κM = 0.398 ((3.16)).

–3
0 0.2 0.4 0.6 0.8 1.0

–2

–1

0

W0

Y
Figure 7. Value of W0(Y) obtained from (3.6), with U+

out(Y) approximated by the four DNS profiles
of table 1 (colours as in the table). • • • (magenta), fit by (3.8); · · · (magenta), leading term −4.87
(1 − Y)2 of Taylor expansion around Y = 1.

Finally, W0 is obtained from (3.6) by using the fit (3.5) for U+
out,1 and identifying the

total velocity U+
out with U+

DNS in the outer region. The resulting W0(Y) is shown in figure 7,
together with its fit

dŴ0

dY
= 2.66 tanh

{
3.66

1 − Y
[Y(2 − Y)]2.5

}
,

Ŵ0 = −
∫ 1

Y
[dŴ0/dY](Y ′) dY ′ ∼ −2.24 + 2.66Y + O(Y2) for Y → 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.8)

which is necessarily rather elaborate to avoid compromising the determination of the inner
expansion in § 3.3. Note that the collapse of W0 from different DNS in figure 7 justifies
the functional form of U+

out,0 in (3.6).
The two fits Û+

out,1 and Ŵ0 complete the formal description of the 2-term outer expansion
(3.6) of U+. For the matching to the inner expansion, to be developed in § 3.3, the limiting
behaviour of Û+

out for Y → 0 is required. After expanding the logarithm in (3.6) and using
the fits (3.5) and (3.8), one obtains for Y � 1

Û+
out(Y � 1) ∼ 1

0.42
ln(Reτ Y) + 5.63 + 1.47Y − 340

Reτ

+ O(Re−2
τ ), (3.9)

where the log-law constant B = 5.63 is the result of C = 6.22 minus 2.24 ((3.8)) plus
ln(2)/0.42 from the Taylor expansion of the logarithm in (3.6).
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Figure 8. (a) The effect of subtracting the fit Û+

out,1 ((3.5)) from the four DNS profiles of table 1. (b) Solid
lines, outer indicator function Y(1 − Y/2)(dU+

DNS/dY) versus Y for the three highest Reτ ; corresponding
• • •, DNS minus first-order fit Y(1 − Y/2)(dÛ+

out,1/dY)Re−1
τ ((3.5)); — (magenta), leading-order fit

Y(1 − Y/2)(dÛ+
out,0/dY) ((3.6) and (3.8)); - - - (magenta), Y(1 − Y/2) times derivative of logarithm in (3.6).

The terms of (3.9) will appear in the common part, only if they have a counterpart in
the limit y+ � 1 of the inner expansion. As will be seen in § 3.3, this is the case for all the
terms in (3.9).

Before moving on to the inner expansion, it is worthwhile to document in figure 8 the
significant improvement in the description of the outer velocity profile, brought about
by the O(Re−1

τ ) correction (3.5). Panel (a) documents the improved collapse of the four
profiles of table 1 in the central part of the channel. Panel (b) is a variation of figure 7(a) of
Jiménez & Moser (2007), showing the ‘outer indicator function’ with the proper symmetry
about the centreline. It clearly demonstrates the improved profile collapse brought about in
the central part of the channel by subtracting the outer O(Re−1

τ ) contributions associated
with Û+

out,1 ((3.5)) from the DNS data. The discussion of the indicator function near the
wall, obtained by subtracting the inner O(Re−1

τ ) contributions from DNS, is deferred to
figure 12.

3.3. The inner expansion U+
in( y+) and the final matching

Starting again with the order O(Re−1
τ ), the first order of the inner expansion U+

in,1( y+)

is determined with (3.3). Although at the limit of DNS uncertainty, different pairs of the
profiles in table 1 yield reasonably consistent U+

in,1, seen in figure 9 to have three distinct
features:

(i) An initial negative excursion near the origin due to the pressure gradient, which
produces the exact quadratic term −(β/2)( y+)2 in the Taylor expansion of U+ about
the wall. This minute negative part is correctly reproduced by two of the four DNS
pairs.

(ii) A first-order ‘hump’ very similar to the hump proposed by Nagib & Chauhan (2008)
to improve the Musker profile (see appendix A and (A7)), except that its height
diminishes as Re−1

τ .
(iii) A final approach to the linear function 1.47y+ − 340 which matches the linear part

of Û+
out(Y � 1) ((3.9)).
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Figure 9. First-order term U+
in,1( y+), obtained from differences (3.3) of U+-profiles in table 1. Profile pairs

and line styles as in figure 5(a) (green lines up to Y = 0.25 for the lower Reτ of the pair, grey lines beyond).
• • • (magenta), complete fit Û+

in,1 ((3.10)); - - - (magenta), linear function 1.47y+ − 340 matching the linear

part of Û+
out(Y � 1) ((3.9)). Inset: blowup of the origin with · · · (violet), −(1/2)( y+)2.

These three distinct features of the first-order inner velocity are fitted by the three terms
of

Û+
in,1 = −1

2 ( y+)2 exp[−0.004( y+)3] + ĤNC( y+; 67, 0.75, 27)

+ 490.5 ln cosh[2.99610−3y+] ∼ 1.47y+−340 for y+ → ∞, (3.10)

with ĤNC the ‘hump’ function (A7). As required, the large y+ limit of Û+
in,1/Reτ matches

the corresponding terms in the small Y expansion (3.9) of Û+
out. Hence, the common part

of the 2-term inner and outer expansions is

Û+
cp(Y) =

{
1

0.42
ln(Reτ Y) + 5.63 + 1.47Y

}
− 340

Reτ

+ O(Re−2
τ ), (3.11)

or equivalently

Û+
cp( y+) =

{
1

0.42
ln( y+) + 5.63

}
+ 1

Reτ

{1.47y+−340} + O(Re−2
τ ). (3.12)

The leading term U+
in,0 of the inner expansion is now finally obtained by identifying the

2-term composite expansion with the DNS profile

U+
DNS

∼= U+
in,0 + Û+

out,0 − Û+
cp,0( y+) + 1

Reτ

{
Û+

in,1 + Û+
out,1 − Û+

cp,1( y+)
}

, (3.13)

with the common part expressed in terms of y+, i.e. split into leading- and first-order parts
according to (3.12). The resulting U+

in,0 minus the leading-order common part is shown on
the left axis of figure 10. For comparison, the same quantity, obtained without the O(Re−1

τ )

terms in (3.13), is plotted on the right axis and the striking improvement brought about
by taking O(Re−1

τ ) terms into account is evident. This improvement also reveals a clean
logarithmic region of U+

in,0 beyond y+ ≈ 150, where the Musker fit has already reached
its design logarithmic asymptote with κM = 0.398 and BM = 4.717. This first logarithmic
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Figure 10. Left axis and solid lines: leading-order inner velocity U+
in,0 minus U+

cp,0( y+) obtained from (3.13)
and (3.12) for the four profiles of table 1. Right axis and broken lines: leading-order inner velocity minus
common part, equal to U+

DNS − Û+
out,0, determined without the O(Re−1

τ ) terms in (3.13). · · · (lime green),

improved Musker profile Û+
mM ((A6)) without ‘hump’, for κM = 0.398 and BM = 4.784, minus Û+

cp,0( y+)

((3.12)); · · · (magenta), Û+
mM − Û+

cp,0( y+) − Δ̂log,Ch, including the change in logarithmic slope ((3.14)) at ©
(magenta), the breakpoint y+

break = 624.

region ends at a breakpoint y+
break = 624 (the magenta circle in figure 10), where U+

in,0
switches to the true leading-order overlap log law (1/0.42) ln( y+) + 5.63 of (3.12).

This change of logarithmic slope at y+
break = 624 is well fitted by the function

Δ̂log,Ch( y+) = 1
4

[
1

0.398
− 1

0.42

]
ln

[
1 +

(
y+

624

)4
]

, (3.14)

already used by Monkewitz (2017).
The last term of the 2-term composite expansion of U+ to be fitted is U+

in,0. This is
achieved in two steps. First, the modified Musker profile ((A6)) with κM = 0.398 and
BM = 4.784 is subtracted, and the changeover to the true log law Δ̂+

log,ch ((3.14)) is added.
The result is shown in figure 11(a) which reveals the leading-order hump, seen to be similar
to the one discussed by Nagib & Chauhan (2008). To maintain the highest possible fidelity
of the fits, the hump of figure 11(a) is described by the modified Hump function

ĤmNC( y+) = ĤNC( y+; 0.313, 1.3, 33) − 4 × 10−5( y+)4 exp
[
−(0.12y+)2.5

]
, (3.15)

with the function ĤNC given by (A7).
Putting (A6), (3.14) and (3.15) together, the complete fit of U+

in,0 is obtained as

Û+
in,0 = Û+

mM( y+; 0.398, 4.784) − Δ̂log,Ch + ĤmNC. (3.16)

At this point, all the terms of the composite expansion have been fitted, and the complete
2-term composite fit

Û+
comp

∼= Û+
in,0 + Û+

out,0 − Û+
cp,0( y+) + 1

Reτ

{
Û+

in,1 + Û+
out,1 − Û+

cp,1( y+)
}

, (3.17)
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Figure 11. (a) Value of U+
in,0 − Û+

mM + Δ̂log,Ch ((A6) and (3.14)) for the four profiles of table 1 (colour
scheme in table); • • • (magenta), fit by (3.10) (b) DNS profiles U+

DNS minus complete composite fit
Û+

comp up to and including O(Re−1
τ ) terms; horizontal dashed lines indicate ±0.02 from the composite fit.

(a,b): - - -, validation cases of table 2 (colour scheme of table).

can now be compared to the four DNS profiles of table 1. The result is shown in figure 11(b)
which demonstrates an unprecedented collapse of all the four DNS profiles onto the
composite profile Û+

comp, with absolute deviations of less than ±0.02.
This is also the moment to validate the new 2-term composite MVP fit ((3.17)), obtained

as the average from different combinations of the four DNS in table 1, by comparing to
the two profiles from independent sources in table 2. As seen in figure 11, the validation
profiles are within the band of variations between the four ‘Master’ profiles up to y+

�

200, but show deviations of the order of 0.1 in the outer part. While this represents less
than 0.5 % of the local U+, it prevented the use of these profiles for the determination of
U+

out,1 (see also figure 5).
As the implications of pushing the asymptotic expansion of U+ to order O(Re−1

τ ) and
of the excellent data collapse in figure 11 may not be obvious, the indicator function
Ξ+ = y+(dU+/dy+), commonly used to locate logarithmic regions, is examined next.
Since the overlap log-law results from an asymptotic argument, it must correspond to a
region where the leading-order indicator function is constant. With the present results it
is, for the first time, possible to subtract the first-order contribution of O(Re−1

τ ) from the
full indicator profiles, as shown in figure 12. The salient features of this figure are:

(i) The Ξ+
DNS, obtained directly from DNS profiles, as well as the composite Ξ̂+

comp
at higher Reτ are substantially different from the leading-order fit of the inner
indicator function Ξ̂+

in,0, obtained from (3.16). Here, and in the following, Ξ+ with
a subscript indicates which term of the asymptotic expansion of U+ is used. The
large deviation of Ξ+

DNS from the leading order is principally due to the third part of
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101
2.0

2.5

3.0

102 103 104 105 106

y+

Ξ +

Figure 12. Solid lines, channel indicator function Ξ+
DNS versus y+ for the three highest Reτ of table 1 plus

three profiles obtained from the 2-term composite expansion (3.17) for Reτ = 2 × 104, 105 and 106; short
dashes - - -, Ξ+

DNS of validation profiles in table 2 (colours as in table); • • •, corresponding Ξ+
DNS − Ξ̂+

in,1;
− · − (spring green), Ξ+

DNS − Ξ̂+
in,1 − Ξ̂+

out,1 for profile #3 of table 1. − − − (magenta), leading-order inner fit
Ξ̂+

in,0 (obtained from (3.16)); − · ·− (purple), transitory plateau 1/0.384 in Ξ+
DNS for profile #1 of table 1.

Û+
in,1 ((3.10)), which becomes the linear term 1.47y+/Reτ in the common part (3.12).

The contribution of the outer Ξ̂+
out,1 ((3.5)) is shown in figure 12 only for Reτ = 103

(profile #3 of table 1), as it becomes negligible in the overlap region for Reτ � 4000.
(ii) From the above it is obvious, that the emergent horizontal tangent of Ξ+

DNS in profile
#1 of table 1 and #5 of table 2 is a transient feature for Reτ ≈ 5000, not related to
the true overlap plateau of the leading-order indicator function at 1/0.42.

(iii) The full indicator function Ξ+
DNS only reveals the true overlap plateau, i.e. the clean

overlap log law with κ = 0.42, well beyond a Reτ of 105. For Reτ = 106 this plateau
extends from y+ = 103 to 104, or Y = 10−3 to 10−2, with the intermediate variable
y+Re−1/2

τ = O(1), as ‘in the textbook’. This means, that at the highest DNS Reτ of
5186 it is not possible to obtain the true overlap κ from the indicator function.

(iv) Figure 12 finally shows, that subtracting the fit Ξ̂+
in,1 for the first-order inner indicator

function from Ξ+
DNS dramatically improves the situation: It produces a good collapse

of all the data derived from DNS onto the leading order Ξ+
DNS − Ξ̂+

in,1 and suggests
that, by subtracting Ξ̂+

in,1, the true overlap log law could be identified already at
Reτ � 2 × 104.

It is also worthwhile to compare the Reynolds stress from DNS to the fit obtained
from the momentum equation and the derivative of the 2-term composite expansion
(3.17). The result is shown in figure 13 for four Reτ . For Reτ = 5186 the composite
expansion is seen to match the DNS #1 of table 1 within plotting accuracy, as expected
from the quality of the fit for U+, shown in figure 11(b). Also included in figure 13
are the locations and values of the Reynolds stress maxima. As the maximum results
from a balance between derivatives of inner and outer U+, its location scales on the
intermediate variable η = y+Re−1/2

τ = YRe1/2
τ , as recognized by Sreenivasan & Sahay

(1997). Hence, for sufficiently high Reτ , the Reynolds stress maximum must be located
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101 102
1
+
〈uv

〉+
10–3

10–2

10–1

100

104 106

y+

Figure 13. Solid lines, 1 + 〈uv〉+ obtained from the momentum equation and the 2-term composite expansion
of Û+, for Reτ = 5186, 2 × 104, 105 and 106; - - - (red), Reτ = ∞; small white ◦, 1 minus computed Reynolds
stress from DNS #1 in table 1. •, value and location of maximum Reynolds stress ((3.18a,b)) for the four
Reτ , with κ = 0.42; white ♦, maximum Reynolds stress from DNS #1; − · − (green), Taylor expansion 1 −
0.00125( y+)3 + · · · around y+ = 0.

within the logarithmic common part of inner and outer expansions

y+
maxRS =

(
Reτ

κ

)1/2

+ O(Re−1/2
τ ), 1 + 〈uv〉+max = 2

(κReτ )1/2 + O(Re−1
τ ). (3.18a,b)

This leading-order result, stated already by Lee & Moser (2015), with κ = 0.42 is seen
in figure 13 to closely match even the DNS for Reτ = 5186, despite y+

maxRS being still
well below the start of the overlap layer at y+

break = 624. Equation (3.18a,b) with κ = 0.42
yields 1 + 〈uv〉+max = 3.09/Re1/2

τ , which is within 0.3 % of the correlation of Sreenivasan
& Sahay, but the location y+

maxRS = 1.54Re1/2
τ is slightly below the range of 1.6 − 2Re1/2

τ

in their figure 2. Note, however, that Sreenivasan & Sahay (1997) implicitly assumed the
same κ for channel and pipe, which is not justified in view of the present findings.

Finally, it is interesting to note that the leading term 0.00125( y+)3 of the Taylor
expansion of the fitted Reynolds stress around y+ = 0 is, within the uncertainty, identical
to 0.00127( y+)3 estimated by Monkewitz & Nagib (2015) from DNS of ZPG TBLs.

In conclusion, this analysis has, for the first time, uncovered the true asymptotic channel
MVP, which is, at the Reτ of current DNS, hidden ‘under’ the inner and outer finite
Reynolds number corrections. In particular, it has shown, that there is a statistically
significant difference between the near-wall Musker κM and the overlap κ (see figure 12).
In other words, the asymptotic structures of channel and Superpipe MVPs are similar, as
seen in figure 14.

4. Evidence for the hypothesis (2.1) in Couette flow and review of pipe DNS

4.1. Couette flow
The main test of the hypothesis (2.1) consists of the demonstration, that in Couette flow
the logarithmic slope of U+ increases at y+

break. In terms of an ‘eddy’ model, this increase
of logarithmic slope in the region y+ ≥ y+

break is brought about by eddies, which originate
from the opposite wall, evolve and weaken progressively, and finally stop contributing
to the mean shear at y+

break. It would be desirable to construct inner and outer asymptotic
expansions to order O(Re−1

τ ) analogous to those for the channel in § 3. However, as seen in
figure 15, the available DNS are limited to Reτ � 103 and there are doubts on whether the
turbulence is fully developed below Reτ of 500. Furthermore, several of the authors cited
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102 103 104 105 106101

102 103 104 105 106101

Superpipe

Channel
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–0.5

0

0.5

1.0

0
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2

y+

U
+ SP

 –
  Û

+ cp
,0

U
+ D

N
S 

–   Û
+ cp

,0

(a)

(b)

Figure 14. (a) Channel mean velocity profiles minus the leading-order common part Û+
cp,0 =

(1/0.42) ln( y+) + 5.63 ((3.12)). DNS profiles from tables 1 and 2 plus composite profiles for
Reτ = 2 × 104, 105 and 106 ((3.17)), with same colour scheme as in figure 12. - - - (magenta), modified Musker
profile Û+

mM( y+; 0.398, 4.78) ((A6)) plus ‘hump’ ĤmNC ((3.15)) minus Û+
cp,0. − · −, Û+

cl,0 − Û+
cp,0 = 0.59.

(b) Analogous graph for the Superpipe profiles of Zagarola & Smits (1998) at comparable Reτ values
of 1.09, 2.35, 5.02, 19.7, 102, 529 × 103 minus the common part Û+

cp,0 = (1/0.436) ln( y+) + 6.20.

- - - (magenta), Musker profile Û+
M( y+; 0.384, 4.26) + ĤNC( y+; 0.351, 1, 30) ((A1) and (A7)) minus Û+

cp,0.

Change of log slope (intersection of Musker asymptote and Û+
cp,0) at y+

break = 450. − · − , Û+
cl − Û+

cp = 1.45,

corresponding to Û+
cl of figure 1(b).

102

–1

0

1

103

Reτ

U
+ cl

 –
  Û

+ cl

Figure 15. Various Couette centreline velocities minus Û+
cl ((4.1)) versus Reτ from different DNS. ◦,

Tsukahara, Kawamura & Shingai (2006); � (Blue), Lee & Moser (2018); � (orange), Avsarkisov
et al. (2014); � (green), Pirozzoli, Bernardini & Orlandi (2014); • (red), Kraheberger et al. (2018).
- - -, (1/0.384) ln(Reτ ) + 3.75 minus (4.1); · · · , (1/0.481) ln(Reτ ) + 7.01 minus (4.1).

in the caption of figure 15 report, that even the MVP is sensitive to both the streamwise
and spanwise sizes of the computational box.

Therefore, only the most recent profile of Kraheberger et al. (2018) for the highest
Reτ = 1026, obtained with state of the art numerical methods, is analysed here. This,
of course, limits the analysis to the leading order of inner and outer expansions and leaves
some uncertainty about the coefficients of the expansions.
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To start the analysis, the centreline κ and C are determined from the data points of Lee
& Moser (2018) at Reτ = 501 and Kraheberger et al. (2018) at Reτ = 1026 in figure 15:

Û+
cl = 1

0.367 ln(Reτ ) + 3.04. (4.1)

Analogous to (3.6) for the channel, except for the opposite symmetry of the logarithm
about the centreline, the leading-order outer velocity is described by

Û+
out(Y) = 1

0.367
ln

[
Reτ Y
2 − Y

]
+ 3.04 + W0(Y) with W0(Y) = 2.15 cos

(π

2
Y
)

,

(4.2)

Û+
out(Y � 1) ∼ 1

0.367 ln(Reτ Y) + 3.30 + 1.36Y + O(Y)2. (4.3)

Since the linear term in the small-Y limit (4.3) translates in the inner expansion to a
first-order term, not considered here, the common part consists of just the log law in (4.3):

Û+
cp = 1

0.367 ln( y+) + 3.30. (4.4)

The simple wake function W0(Y) of (4.2) is seen in panel (a) of figure 16 to provide an
excellent fit to the DNS for Y � 0.4, which is all that can be expected at this low Reynolds
number. Panel (b) of figure 16 shows the same U+

DNS( y+) minus the outer fit Û+
out (equation

(4.2)), which is equal to Û+
in − Û+

cp, up to terms of order O(Re−1
τ ). Fitting Û+

in with the
modified Musker profile plus hump, Û+

mM( y+; 0.367, 3.30) + ĤNC( y+; 0.38, 1, 34) ((A6)
and (A7) with the overlap parameters of (4.4)), is seen in figure 16(b) to be obviously
inadequate. A proper fit of U+

in is only possible with κM = 0.40, requiring a change of
logarithmic slope at y+

break = 379, described by the function

Δ̂log,Cou( y+) = 1
4

[
1

0.40
− 1

0.367

]
ln

[
1 +

(
y+

379

)4
]

, (4.5)

similar to Δ̂log,Ch of (3.14).
Hence, the leading order of the inner expansion for the mean velocity in Couette flow is

Û+
in = Û+

mM( y+; 0.40, 4.64) + ĤNC( y+; 0.38, 1, 34) − Δ̂log,Cou( y+), (4.6)

with the different terms given by (A6), (A7) and (4.5), respectively. The final composite
profile is obtained by combining equations (4.2), (4.4) and (4.6). The result is seen in
figure 16(c) to provide an excellent description of the DNS profile of Kraheberger et al.
(2018), except for the ‘wiggle’ between y+ ≈ 2 and 70, which is due to the simple hump
model of (A7). No attempt has been made to improve the hump fit as for the channel,
because the central point, the demonstration of a switch from a lower (1/0.40) to a higher
(1/0.367) logarithmic slope at y+

break � 400, is not affected.

4.2. The prospects of extracting asymptotic expansions from pipe DNS
Of the three flows considered in this paper, pipe flow is by far the one of largest practical
interest and it would therefore be highly desirable to develop a complete asymptotic
description of its MVP from DNS, analogous to the one for the channel in § 3.
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+ cp

U
+ D

N
S 

 –
  Û
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Figure 16. (a) — (green), Difference between the U+-profile of Kraheberger et al. (2018) for Reτ = 1026
and Û+

cp ((4.4)); • • • (magenta), outer fit Û+
out(Y) ((4.2)) minus Û+

cp ((4.4)). (b) — (green), U+
DNS( y+)

minus the outer fit Û+
out ((4.2)); - - - (aquamarine), Û+

mM( y+; 0.367, 3.30) + ĤNC( y+; 0.38, 1, 34) ((A6)
and (A7)); • • • (magenta), Û+

in − Û+
cp ((4.6) and (4.4)); - - -, asymptote of Û+

mM( y+; 0.40, 4.64).
(c) — (green), U+

DNS( y+) minus the composite fit Û+
in + Û+

out − Û+
cp.

However, the three DNS data points, included as red squares in figure 1, do not even
provide a consistent fit for the centreline velocity. Looking at the lines ±(103/Reτ ), added
to the figure to guide the eye, it appears that the coefficient of Re−1

τ on the centreline must
be less than 103. However, it is not clear from the present data, whether the higher-order
correction is positive, negative or zero – clearly, more high accuracy DNS profiles in the
Reτ range of 103 − 5 × 103 are needed to clarify the situation.

To show the necessary improvements in order to perform an analysis analogous to the
one in § 3 for the channel, the DNS profiles minus an example outer logarithmic part

W0(Y) = U+
DNS −

{
1

0.42 ln[Reτ Y(2 − Y)] + 6.84
}

, (4.7)

are shown in figure 17 for the three pipe DNS of figure 1. Comparing to figure 7,
it is obvious that the core region and in particular the handling of the coordinate
singularity on the centreline require more attention, before an analysis analogous to § 3
can be envisioned. In conclusion, the extraction of asymptotic expansions from DNS (or
experiment) analogous to the channel is not yet feasible, and one is left with considerable
uncertainty about κM , y+

break and κ for the pipe.
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Figure 17. Pipe analogue to figure 7 with W0 of (4.7), for the three pipe DNS of figure 1: — (lavender),
Reτ = 999, — (aquamarine), Reτ = 1142 and — (green), Reτ = 2003. —, - - -, − · −, corresponding tentative
linear fits with slopes 4.0, 4.9 and 3.3, respectively.

5. Conclusions

The present investigation, in particular the determination of the 2-term inner and outer
asymptotic expansions for the channel, together with the Superpipe data and a detailed
analysis of the leading-order asymptotic expansions for a Couette flow DNS, has uncovered
a common feature of ducted parallel flows: a change of logarithmic slope of the mean
velocity U+( y+) at a y+

break of the order O(103). According to the hypothesis (2.1), the
sign of this slope change depends on the flow symmetry, with a slope decrease in channel
and pipe flows and an increase in Couette flow.

The evidence for this phenomenon is strong for channel flow, due to a consistent set of
DNS, analysed in § 3, and a rigorous asymptotic analysis, which shows that the log law in
the common part of inner and outer mean velocity expansions emerges in the MVP at a
much higher Reτ than previously thought. For Couette flow, the analysis of the DNS profile
at the highest available Reτ supports the hypothesis (2.1), but more DNS for Reτ in the
range 103 − 5 × 103 are needed to confirm the present findings and reduce the parameter
uncertainty. For pipe flow, finally, the late start of the logarithmic overlap layer has been
firmly established by the Superpipe and CICLoPE experiments, but the available DNS data
base does not yet allow an analogous asymptotic analysis to narrow down the estimates of
κM , κ and y+

break, obtained from the experiments.
The paper concludes with the following list of further observations and open

questions:

(i) The analysis of both channel flow in § 3 and Couette flow in § 4.1, found for the
logarithmic asymptote of the Musker profile beyond y+

� 150 a κM of close to 2/5.
In the pipe, on the other hand, the different MVP fits require a κM closer to the ZPG
TBL value of 0.384. So the question, whether κM for truly one-dimensional flows is
universal or not, will have to wait for more high quality pipe and Couette DNS, which
allow the extraction of reliable asymptotic expansions. The reader is reminded here,
that the logarithmic asymptote of the Musker profile with slope 1/κM cannot belong
to the overlap layer, i.e. the common part of inner and outer expansions, because the
outer expansion does not contain the corner and the logarithmic region with slope
1/κM towards the wall.
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(ii) Once the overlap κ values for pipe and Couette flows are finally ‘nailed down’ with
an uncertainty below say ±0.005, one should be able to answer the question, whether
κ is a function of the pressure gradient (see Nagib & Chauhan 2008 for the relation
κ(β) in TBLs), or rather depends on the symmetry S of mean vorticity about the
centreline, with S = −1 for channel and pipe, and S = 1 for Couette flow and/or the
duct geometry. In this paper, the change of logarithmic slope (κ−1 − κ−1

M ) at y+
break

has been determined as −0.13 for channels and +0.22 for Couette flow. As the +0.22
in § 4.1 may be on the high side (see figure 15), a relation such as (κ−1 − κ−1

M ) �

0.13S appears possible for channel and Couette flows. However, there is a significant
difference between channel and pipe, where (κ−1 − κ−1

M ) is estimated at � −0.3,
but could be as low as −0.23 based on McKeon et al. (2004) – see next point.

(iii) From the present profile analyses, the approximate doubling of (κ−1 − κ−1
M ) from

channel to pipe appears significant and may possibly be explained by taking the
hypothesis (2.1) one step further, and also consider a dependence of (κ−1 − κ−1

M )

on the geometry of the opposite wall. In channel and Couette flows the latter is
flat, while its transverse curvature in the pipe could have a focussing effect for
perturbations traversing the core. This explanation may be somewhat simplistic and
does not take into account probable differences between vortical perturbations in
channels and pipes, but cannot be ruled out either.

(iv) The height of the ‘hump’ above the Musker profile ((A7)) around y+ of
30 is clearly dependent on Reτ , as shown in § 3 for channel flow. The
maximum overshoot over the logarithmic Musker asymptote κ−1

M ln( y+) + BM
is approximately 0.19 + (65/Reτ ), which resolves the discrepancies between the
height originally proposed by Nagib & Chauhan (2008) and the fits of low Reynolds
number data by Luchini (2018).

(v) As discussed in § 1, the linear term λY in the small-Y limit of U+
out,0, the leading

order of the outer expansion, appears in the common part only if the inner expansion
is carried to O(Re−1

τ ), i.e. contains a matching term λy+/Reτ in the limit y+ → ∞.
Most recently, Luchini (2017) has claimed that λ is equal to the pressure gradient
parameter β, which is equal to 0, 1 and 2 for Couette, channel and pipe flow,
respectively. From the present profile analyses, λ = 1.36 for Couette flow ((4.3)),
λ = 1.47 for channel flow ((3.9)) and λ ∈ [2.1, 3.7] for pipe flow, where these
latter values correspond to the range of estimated slopes of the three W0 profiles
in figure 17, minus (2κ)−1 from the small-Y expansion of κ−1 ln(2 − Y) (equation
(4.7)). The reason for this discrepancy is exposed in appendix B.

(vi) The sudden decrease of logarithmic slope at y+
break � 600, found in § 3.3 for the

channel mean velocity U+, appears also in the profiles of fluctuating pressure 〈p′p′〉+
obtained by Panton, Lee & Moser (2017). This is particularly evident for the pressure
derived from the Reτ = 5186 DNS data of Lee & Moser (2015) (profile #1 in
table 1): in figure 1(a) of Panton et al. for the total 〈p′p′〉+, the decrease of slope
from the interval y+ ∈ [150, 600] to y+ > 600 is perceptible, but not very marked.
However, in their figure 3 the pressure indicator function for the highest Reτ = 5186
clearly shows two plateaus with a decrease of logarithmic slope by around 5 %
between y+ of 500 and 103. This slope change is also evident in their figure 4(a)
for the ‘rapid pressure’. As noted by Panton et al. (2017), the near correspondence
between the logarithmic slopes in the 〈p′p′〉+ profiles for the channel and the ones
obtained in § 3 from the asymptotic analysis of U+ is unexplained and begs for
further research.
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(vii) The idea has been advanced by Hultmark et al. (2012) and Marusic et al. (2013), that
the identification of logarithmic regions is facilitated by looking for simultaneous log
regions in the MVP and in second order statistics, in particular in 〈uu〉+. It has been
supported mainly by measurements in the Princeton Superpipe with the NSTAP
miniature hot-wires. However, the significant difference between the Pitot and the
NSTAP Superpipe MVPs (see Monkewitz (2017), figure 6) have, to this author’s
knowledge, not been resolved. At lower Reτ , the second-order statistics do not appear
more promising than the MVP to identify log regions, as evidenced by the indicator
functions in Lee & Moser (2015, § 3.2) for the channel, where only the spanwise
normal stress exhibits a short log region for y+ between approximately 100 and 300.
One may therefore consider the construction of multi-term asymptotic expansions
for the second-order statistics, analogous to § 3 for the channel MVP. In order to do
this, one has to know the proper asymptotic sequence, but for 〈uu〉+, for instance,
even the leading term is still being debated. While the ‘attached eddy model’ leads to
an inner peak of 〈uu〉+ which increases indefinitely as ln(Reτ ), Monkewitz & Nagib
(2015) have demonstrated with the help of the complete momentum equation, that
this inner peak remains finite in the ZPG TBL (see also the discussion in Monkewitz,
Nagib & Boulanger 2017).

(viii) Finally, it might also be interesting to determine the distribution and type of eddies
attached to, or originating from the opposite wall, which preserve the logarithmic
law in the overlap layer beyond y+

break (for the attached eddy model, see e.g. Marusic
& Monty (2019) and references therein).
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Appendix A. The ‘Musker’ fit for the inner U+-profile, with additions

The Musker profile (Musker 1979) is obtained by integrating dU+
M/dy+ = [κMS + ( y+)2]

[κMS + ( y+)2 + κM( y+)3]−1 analytically, where the subscript M designates parameters
used to generate the Musker fit. Note in particular, that κM is not necessarily equal to
the overlap κ . The two parameters κM and S determine the asymptotic behaviour of
the Musker profile Û+

M ∼ ln( y+)/κM + BM but, as noted by Nagib & Chauhan (2008),
the straightforward integration is prone to numerical near-cancellations. The problem is
avoided by recasting the result in the following form:

Û+
M( y+; κM, BM) = Γ1 ln

(
1 − y+

g1

)
+ Γ2

2
ln

(
1 − g2y+

g3
+ ( y+)2

g3

)

+ 2Γ3 + Γ2g2

g4

[
arctan

(
2y+−g2

g4

)
+ arctan

(
g2

g4

)]
, (A1)
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102 103101
–0.2

–0.1

0
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y+

Figure 18. Improvement of the Musker profile (A1): - - -, original Û+
M − [κ−1

M ln( y+) + BM] for κM = 0.396
and BM = 4.717 (S = 905.86); − · −·, asymptotic approach of Û+

M to the log law; — (red), modified Û+
mM

minus log law ((A6)); · · · (red), corrective term in (A6).

with

s1,2 =
(

−S
2

)1/3
{

1 + 2
S(3κM)3 ±

[
1 + 4

S(3κM)3

]1/2
}1/3

, (A2)

g1 = s1 + s2 − 1
3κM

; g2 = −g1 − 1
κM

; (A3a,b)

g3 = 1
4

(
s1 + s2 + 2

3κM

)2

+ 3
4
(s1 − s2)

2; g4 = (4g3 − g2
2)

1/2, (A3c,d)

Γ1 = S + κ−1
M g2

1

g2
1 − g1g2 + g3

; Γ2 = 1
κM

− Γ1; Γ3 = g3Γ1 − S
g1

. (A4a–c)

The additive log-law constant BM is the limit y+ → ∞ of (A1)

BM = −Γ1 ln(−g1) − Γ2

2
ln(g2) + 2Γ3 + Γ2g2

g4

[
π

2
+ arctan

(
g2

g4

)]
, (A5)

and its desired value is obtained by a simple iteration on S.
The basic Musker profile (A1) provides a good approximation to actual near-wall

profiles with a logarithmic region at large y+, but it also has shortcomings. One of them
is the slow asymptotic approach to the log-law as Û+

M → κ−1
M y+ + BM + κ−2

M ( y+)−1 +
O( y+)−2. This defect is irrelevant when fitting experimental data, but is of concern for the
higher-order asymptotic expansion of § 3. It is easily corrected by cancelling the ( y+)−1

deviation of Û+
M from the log law at large y+, resulting in the modified Musker profile

Û+
mM( y+; κM, BM) = Û+

M( y+; κM, BM) − (κ2
My+)−1 exp(−100/y+). (A6)

As shown in figure 18, the effect is to ensure a clean log law for y+ beyond approximately
150.

Another, more prominent, defect of the basic Musker profile is that it is too low in a
region around y+ of 30. This has first been described by Nagib & Chauhan (2008), who
added to the Musker profile the ‘hump’ function

ĤNC( y+; h1, h2, h3) = h1 exp[−h2 ln2( y+/h3)], (A7)

with the original parameters h1 = 0.351, h2 = 1 and h3 = 30. Their addition of a
higher-order term, behaving as −0.5β( y+)2/Reτ for y+ → 0 with β the pressure gradient
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parameter, is, however, not consistent, if the Musker profile is used as an approximation
for the leading order of the inner asymptotic expansion of U+.

Appendix B. Comment on the dimensional analysis of Luchini (2017)

Luchini (2017) (see also Luchini 2018) has used dimensional analysis to derive a
higher-order linear pressure gradient correction of the log law. His analysis is briefly
summarized here to pinpoint where it goes wrong.

Luchini’s application of the Buckingham Π theorem starts with the five dimensional
variables {(dŬ/dy̆), y̆, ŭτ , (∂ p̆/∂ x̆), ρ̆}. One immediately notes that this starting list of
variables implicitly contains the hydraulic diameter D̆H ≡ −4τ̆w(∂ p̆/∂ x̆)−1, while Luchini
explicitly excluded the other outer length scale L̆ (e.g. the channel half-height or pipe
radius). From this starting list, two non-dimensional groupings are obtained,

Π1 = y̆(dŬ/dy̆)
ŭτ

, Π2 = − y̆(∂ p̆/∂ x̆)
τ̆w

≡ 4
y̆

D̆H
, (B1a,b)

which are related by the functional relation Π1 = F(Π2). Assuming that the function
F is analytic around Π2 = 0, Luchini Taylor-expanded F around Π2 = 0 and truncated
the series after the linear term ∝ Π2, which leads to (6) in Luchini (2017) and, after
non-dimensionalization and integration with respect to y+, to

U+=κ−1 ln y+ + B + 4A1
y+

D+
H

. (B2)

It is between (6) and (7) of Luchini (2017) that the analysis goes wrong, when he replaces
the single outer length scale D+

H in the last term of (B2) by β(4L+)−1 and implies that
β = 4L+/D+

H and L+ can be chosen independently, in contradiction with the exclusion of
L̆ from the list of starting variables for the Buckingham’s Π theorem. In other words, (7)
of Luchini (2017) is only valid for a fixed ratio of D+

H and L+ ≡ Reτ , i.e. a fixed β.
Introducing also L̆ in the starting list of variables for the application of Buckingham’s Π

theorem adds a third Π3 = β to the list of the parameters (B1). As a consequence, nothing
prevents the three parameters κ , B and A1 in (B2) from becoming non-universal functions
of β, as already suggested for κ and B by Nagib & Chauhan (2008), Monkewitz (2017) and
Monkewitz (2019), for instance.
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