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Subspaces spanned by eigenforms with
nonvanishing twisted central 𝐿-values
June Kayath, Connor Lane, Ben Neifeld, Tianyu Ni and Hui Xue

Abstract. In this paper,we construct explicit spanning sets for two spaces ofmodular forms.One is the
subspace generated by integral-weight Hecke eigenforms with nonvanishing quadratic twisted cen-
tral 𝐿-values. Theother is a subspace generatedbyhalf-integralweightHecke eigenformswith certain
nonvanishing Fourier coefficients. Along the way, we show that these subspaces are isomorphic via
the Shimura lift.

1 Introduction

Let ℓ ≥ 2 be an integer. For 𝑁 ≥ 1 and a Dirichlet character 𝜒modulo 𝑁 , let𝑀ℓ (𝑁, 𝜒)
and 𝑆ℓ (𝑁, 𝜒) be the space of modular forms and cuspforms of weight ℓ, level 𝑁 and
nebentypus 𝜒, respectively. When 𝜒 is trivial, we simply write 𝑀ℓ (𝑁) and 𝑆ℓ (𝑁). Let
𝑀ℓ+1/2 (4𝑁) and 𝑆ℓ+1/2 (4𝑁) be the space of modular forms and the space of cuspforms
of weight ℓ + 1/2 for Γ0 (4𝑁), respectively. For 𝑁 = 1 we recall the Kohnen [10] plus
space as the subspace

𝑀+
ℓ+1/2 (4) := { 𝑓 =

∑︁
𝑛≥0

𝑐 𝑓 (𝑛)𝑞𝑛 ∈ 𝑀ℓ+1/2 (4) | 𝑐 𝑓 (𝑛) = 0 if (−1)ℓ𝑛 ≡ 2, 3 (mod 4)},

and put 𝑆+
ℓ+1/2 (4) := 𝑀+

ℓ+1/2 (4) ∩ 𝑆ℓ+1/2 (4). Let 𝐷 be a fundamental discriminant (i.e.
𝐷 = 1 or is the discriminant of a quadratic field) such that (−1)ℓ𝐷 > 0. Follow-
ing Kohnen [10, p. 251], for 𝑓 (𝑧) =

∑
𝑛≥0 𝑐 𝑓 (𝑛)𝑞𝑛 ∈ 𝑀+

ℓ+1/2 (4), we define its 𝐷-th
Shimura lift as

S𝐷

(∑︁
𝑛≥0

𝑐 𝑓 (𝑛)𝑞𝑛
)
:=

𝑐 𝑓 (0)
2

𝐿𝐷 (1 − ℓ) +
∑︁
𝑛≥1

©­«
∑︁
𝑑 |𝑛

(
𝐷

𝑑

)
𝑑ℓ−1𝑐 𝑓

(
|𝐷 | 𝑛

2

𝑑2

)ª®¬ 𝑞𝑛,(1.1)
where

(
𝐷
·
)
is the Kronecker symbol. It is known thatS𝐷 maps𝑀+

ℓ+1/2 (4) to𝑀2ℓ (1) and
𝑆+
ℓ+1/2 (4) to 𝑆2ℓ (1), and commutes with the action of Hecke operators; see Kohnen [10,

Theorem 1] and Shimura [19].
Now we recall the Selberg identity on the Shimura lift. Let 𝜃 (𝑧) =

∑
𝑛∈Z 𝑞

𝑛2 ∈
𝑀1/2 (4) be the Jacobi theta function. Selberg observed that for a normalized Hecke
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2

eigenform 𝑓 (𝑧) ∈ 𝑀ℓ (1) with 𝑎 𝑓 (1) = 1, the first Shimura lift provides the identity

S1 ( 𝑓 (4𝑧)𝜃 (𝑧)) = 𝑓 (𝑧)2 ∈ 𝑀2ℓ (1). (1.2)

For a fundamental discriminant 𝐷 with (−1)𝑘𝐷 > 0 with 𝑘 ≥ 4 an integer, if one
defines

F𝐷 (𝑧) := Tr𝐷1 (𝐺𝑘,𝐷 (𝑧)2) ∈ 𝑀2𝑘 (1)

G𝐷 (𝑧) := 3
2

(
1 −

(
𝐷

2

)
2−𝑘

)−1
pr+ Tr4𝐷4 (𝐺𝑘,4𝐷 (4𝑧)𝜃 ( |𝐷 |𝑧)) ∈ 𝑀+

𝑘+1/2 (4),

then Kohnen-Zagier [9, Proposition 3] proved the following generalization of (1.2):

S𝐷 (G𝐷 (𝑧)) = F𝐷 (𝑧). (1.3)

We must make several definitions for the above to make sense. The Eisenstein series
𝐺𝑘,𝐷 and𝐺𝑘,4𝐷 are given by [9, p. 185]

𝐺𝑘,𝐷 (𝑧) :=𝐿𝐷 (1 − 𝑘)
2

+
∞∑︁
𝑛=1

©­«
∑︁
𝑑 |𝑛

(
𝐷

𝑑

)
𝑑𝑘−1ª®¬ 𝑞𝑛 ∈ 𝑀𝑘

(
|𝐷 |,

(
𝐷

·

))
, (1.4)

𝐺𝑘,4𝐷 (𝑧) :=𝐺𝑘,𝐷 (4𝑧) − 2−𝑘
(
𝐷

2

)
𝐺𝑘,𝐷 (2𝑧) ∈ 𝑀𝑘

(
4|𝐷 |,

(
𝐷

·

))
, (1.5)

where 𝐿𝐷 (𝑠) =
∑

𝑛≥1
(
𝐷
𝑛

)
𝑛−𝑠 . The operator pr+ is the projection from 𝑀ℓ+1/2 (4) to

𝑀+
ℓ+1/2 (4) given by [9, p. 195]

(pr+ 𝑔) (𝑧) = 1 − (−1)ℓ𝑖
6

(Tr164 𝑉𝑔) (𝑧) + 1
3
𝑔(𝑧), (1.6)

where 𝑉 (𝑔) (𝑧) = 𝑔(𝑧 + 1
4 ) = 𝑔(𝑧) |𝑘+1/2

[ 4 1
0 4

]
, using the notation of (1.7) and (1.8).

Additionally, for 𝑁 | 𝑀 , Tr𝑀
𝑁
is the trace map

Tr𝑀𝑁 : 𝑀𝑚 (𝑀) → 𝑀𝑚 (𝑁), 𝑔 ↦→
∑︁

𝛾∈Γ0 (𝑀 )\Γ0 (𝑁 )
𝑔 |𝑚𝛾, (1.7)

where for any real number𝑚 and 𝛾 =
[
𝑎 𝑏
𝑐 𝑑

]
∈ GL+2 (R) we define the slash operator [2,

Theorem 7.1]

(𝑔 |𝑚𝛾) (𝑧) = det(𝛾)𝑚/2 (𝑐𝑧 + 𝑑)−𝑚𝑔
(
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

)
. (1.8)

On the other hand, the Selberg identity (1.2) for the first Shimura lift has been gen-
eralized to the setting of Rankin-Cohen brackets. Let us first introduce the definition of
Rankin-Cohen brackets for modular forms.

Definition 1.1 Let 𝑓 (𝑧) ∈ 𝑀𝑎 (Γ) and 𝑔(𝑧) ∈ 𝑀𝑏 (Γ) be modular forms for some
congruence subgroup Γ of weights 𝑎 and 𝑏, respectively. For an nonnegative integer 𝑒,
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1 INTRODUCTION 3

we define the 𝑒-th Rankin-Cohen bracket as

[ 𝑓 (𝑧), 𝑔(𝑧)]𝑒 :=
𝑒∑︁

𝑟=0
(−1)𝑟

(
𝑒 + 𝑎 − 1
𝑒 − 𝑟

) (
𝑒 + 𝑏 − 1

𝑟

)
𝑓 (𝑧) (𝑟 )𝑔(𝑧) (𝑒−𝑟 ) , (1.9)

where 𝑓 (𝑧) (𝑟 ) is the 𝑟-th normalized derivative 𝑓 (𝑧) (𝑟 ) := 1
(2𝜋𝑖)𝑟

𝑑𝑟 𝑓 (𝑧)
𝑑𝑧𝑟

of 𝑓 . Here
𝑎, 𝑏 can be in 1

2Z and the binomial coefficients are defined through gamma functions.
Moreover, [ 𝑓 , 𝑔]𝑒 ∈ 𝑀𝑎+𝑏+2𝑒 (Γ) and [ 𝑓 , 𝑔]𝑒 ∈ 𝑆𝑎+𝑏+2𝑒 (Γ) for 𝑒 > 1; see [2, Theorem
7.1]. We remark that the Rankin-Cohen bracket defined in Zagier [25, (73)] is related to
(1.9) through 𝐹 (𝑎,𝑏)

𝑒 ( 𝑓 (𝑧), 𝑔(𝑧)) = (−2𝜋𝑖)𝑒𝑒![ 𝑓 (𝑧), 𝑔(𝑧)]𝑒; see [12, (1.1)].

Choie-Kohnen-Zhang [1] andXue [24] independently showed that if 𝑘 ≥ 4 is an even
integer, 𝑓 (𝑧) ∈ 𝑀𝑘 (1) is a normalized Hecke eigenform, and 𝑒 is a nonnegative integer,
then

S1 ( [ 𝑓 (4𝑧), 𝜃 (𝑧)]𝑒) =
(𝑘+𝑒−1

𝑒

)(𝑘+2𝑒−1
2𝑒

) [ 𝑓 (𝑧), 𝑓 (𝑧)]2𝑒 . (1.10)

Note that (1.10) was also proved in [17, Proposition B1] when 𝑓 is an Eisenstein series.
Recently, Wang [21] generalized (1.10) to higher-level forms. Let 𝑘 ≥ 4 and 𝑒 > 0 be
integers with ℓ = 𝑘+2𝑒 and let𝐷 be a fundamental discriminant such that (−1)ℓ𝐷 > 0.
We introduce functions

F𝐷,𝑘,𝑒 (𝑧) :=Tr𝐷1 ( [𝐺𝑘,𝐷 (𝑧), 𝐺𝑘,𝐷 (𝑧)]2𝑒) ∈ 𝑆2ℓ (1), (1.11)

G𝐷,𝑘,𝑒 (𝑧) :=
3
2

(
1 −

(
𝐷

2

)
2−𝑘

)−1
pr+ Tr4𝐷4

[
𝐺𝑘,4𝐷 (𝑧), 𝜃 ( |𝐷 |𝑧)

]
𝑒
∈ 𝑆+

ℓ+1/2 (4).(1.12)

Note that both F𝐷,𝑘,𝑒 (𝑧) are G𝐷,𝑘,𝑒 (𝑧) are cuspforms, since 𝑒 > 0. Now, we state our
first main result, which can be viewed as a combination of (1.3) and (1.10).

Theorem 1.1 Let 𝐷 be an odd fundamental discriminant such that (−1)ℓ𝐷 > 0 and let
𝑘 ≥ 4 and 𝑒 > 0 be integers such that 𝑘 + 2𝑒 = ℓ. Then we have the identity

S𝐷

(
G𝐷,𝑘,𝑒

)
= |𝐷 |𝑒

(𝑘+𝑒−1
𝑒

)(𝑘+2𝑒−1
2𝑒

) F𝐷,𝑘,𝑒 . (1.13)

We have required that 𝑒 > 0 because the case 𝑒 = 0 is exactly (1.3). Our next main
result concerns the nonvanishing of twisted central values of 𝐿-functions associated to
Hecke eigenforms. Before stating the precise result, let us first introduce some notation.

Definition 1.2 Let 𝐷 be a fundamental discriminant such that (−1)ℓ𝐷 > 0.

(1) Let 𝑆0,𝐷2ℓ (1) denote the subspace of 𝑆2ℓ (1) generated by normalized Hecke eigen-
forms 𝑓 with nonzero central twisted 𝐿-values 𝐿 ( 𝑓 , 𝐷, ℓ), where 𝐿 ( 𝑓 , 𝐷, 𝑠) =∑

𝑛≥1
(
𝐷
𝑛

)
𝑎 𝑓 (𝑛)𝑛−𝑠 is the 𝐿-function of 𝑓 twisted by

(
𝐷
·
)
. We write 𝑆−,𝐷2ℓ (1) for

the orthogonal complement of 𝑆0,𝐷2ℓ (1), which is spanned byHecke eigenformswith
vanishing central twisted 𝐿-values.
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(2) Let 𝑆0,𝐷
ℓ+1/2 (4) be the subspace of 𝑆+

ℓ+1/2 (4) generated by Hecke eigenforms 𝑔 =∑
𝑛≥1 𝑐𝑔 (𝑛)𝑞𝑛 with 𝑐𝑔 ( |𝐷 |) ≠ 0. We write 𝑆−,𝐷

ℓ+1/2 (4) for the orthogonal comple-
ment of 𝑆0,𝐷

ℓ+1/2 (4), which is spanned by Hecke eigenforms 𝑔 =
∑

𝑛≥1 𝑐𝑔 (𝑛)𝑞𝑛 with
𝑐𝑔 ( |𝐷 |) = 0.

The twisted 𝐿-function 𝐿 ( 𝑓 , 𝐷, 𝑠), originally defined for Re(𝑠) ≫ 0, can be ana-
lytically continued to the whole complex plane, and for a Hecke eigenform 𝑓 ∈ 𝑆2ℓ (1)
satisfies [16, Lemma 9.2]:

Λ( 𝑓 , 𝐷, 𝑠) = (−1)ℓ
(
𝐷

−1

)
Λ( 𝑓 , 𝐷, 2ℓ − 𝑠),

where Λ( 𝑓 , 𝐷, 𝑠) = (2𝜋)−𝑠Γ(𝑠)𝐿 ( 𝑓 , 𝐷, 𝑠) is the completed twisted 𝐿-function of 𝑓 .
Since

(
𝐷
−1

)
is the sign of 𝐷 , the assumption (−1)ℓ𝐷 > 0 implies that the functional

equation for 𝐿 ( 𝑓 , 𝐷, 𝑠) has a positive sign. Therefore, the subspace 𝑆0,𝐷2ℓ (1) in Defini-
tion 1.2 (1) is not trivially zero. It is speculated that the central 𝐿-value 𝐿 ( 𝑓 , 𝐷, ℓ) is
nonvanishing for every Hecke eigenform 𝑓 ∈ 𝑆2ℓ (1). Thus, it is believed that 𝑆2ℓ (1) =
𝑆
0,𝐷
2ℓ (1) for every fundamental discriminant 𝐷. For further discussion, see Section 7.
Our second main result gives an explicit construction of a set of generators for the

subspaces 𝑆0,𝐷2ℓ (1) and 𝑆0,𝐷
ℓ+1/2 (4). We hope this result would help investigate the afore-

mentioned speculation on the nonvanishing of twisted central 𝐿-values. Furthermore,
we prove that the 𝐷-th Shimura lift S𝐷 gives an isomorphism between 𝑆

0,𝐷
ℓ+1/2 (4) and

𝑆
0,𝐷
2ℓ (1), which generalizes Kohnen’s results [10, Theorem 2] and [24, Proposition 3.3].

Theorem 1.2 Let 𝐷 be an odd fundamental discriminant with (−1)ℓ𝐷 > 0. Then

𝑆
0,𝐷
ℓ+1/2 (4) = Span{G𝐷,𝑘,𝑒}𝑘+2𝑒=ℓ , and 𝑆

0,𝐷
2ℓ (1) = Span{F𝐷,𝑘,𝑒}2𝑘+4𝑒=2ℓ ,

where 𝑘 ≥ 4 and 𝑒 > 0. Additionally, the restricted 𝐷-th Shimura lift

𝑆𝐷 : 𝑆0,𝐷
ℓ+1/2 (4) → 𝑆

0,𝐷
2ℓ (1)

is an isomorphism.

We assume 𝐷 to be odd throughout the paper in order to avoid the technical com-
plications caused by even 𝐷 , although we believe our results continue to hold in this
case.

This paper is organized as follows. Section 2 discusses the main results of this paper.
The proof of Theorem 1.1 is based on the same idea as the proof of (1.10) (see [1] and
[24]), but requires explicit computations of the Fourier coefficients of both sides of (1.13).
Most of the technical details required for the proof of Theorem 1.1 are presented in
Section 6. Based on the Petersson inner product formalae forF𝐷,𝑘,𝑒 andG𝐷,𝑘,𝑒 derived
in Section5,we explicitly construct a spanning set for 𝑆0,𝐷2ℓ (1) (Proposition 2.4).We then
show that the 𝐷-th Shimura lift is an isomorphism from 𝑆

0,𝐷
ℓ+1/2 (4) to 𝑆

0,𝐷
2ℓ (1) (Propo-

sition 2.2). Finally, using these results we prove Proposition 2.6, explicitly constructing
a spanning set for 𝑆0,𝐷

ℓ+1/2 (4) and finishing the proof of Theorem 1.2.
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2 SELBERG IDENTITY AND SPANNING SETS OF SUBSPACES 5

The remaining sections are dedicated to proofs of the results needed in Section 2.
Section 3 proves an alternate formula for G𝐷,𝑘,𝑒 which we use to compute its Fourier
coefficients in Section 6. Section 4 recalls the theory of Eisenstein series, which will be
useful to the Fourier development of F𝐷,𝑘,𝑒 and G𝐷,𝑘,𝑒 in Section 6. Assuming those
two sections, Section 5 derives Petersson inner product formulae for F𝐷,𝑘,𝑒 andG𝐷,𝑘,𝑒

via the Rankin-Selberg convolution. In Section 6, we carry out the computations of
Fourier coefficients for Theorem 1.1. Section 7 discusses the relationship between these
results and their potential applications to the nonvanishing of twisted central 𝐿-values
of Hecke eigenforms in 𝑆2ℓ (1).

2 Selberg identity and spanning sets of subspaces

This section proves our main results, assuming the necessary results to be proved later.
We begin by proving Theorem 1.1, a generalization of the Selberg identity.

Proof Recall that G𝐷,𝑘,𝑒 (1.12) and F𝐷,𝑘,𝑒 (1.11) are cuspforms. Write

S𝐷 (G𝐷,𝑘,𝑒 (𝑧)) =
∑︁
𝑛≥1

𝑔𝐷,𝑘,𝑒 (𝑛)𝑞𝑛 and F𝐷,𝑘,𝑒 (𝑧) =
∑︁
𝑛≥1

𝑓𝐷,𝑘,𝑒 (𝑛)𝑞𝑛.

Comparing the Fourier coefficients 𝑓𝐷,𝑘,𝑒 (𝑛) and 𝑔𝐷,𝑘,𝑒 (𝑛) that are respectively given
by Lemma 6.5 and Lemma 6.6, it suffices to show for each nonnegative integer pair
(𝑎1, 𝑎2) with 𝑎1 + 𝑎2 = 𝑛|𝐷1 | that(

𝑘 + 𝑒 − 1
𝑒

) 2𝑒∑︁
𝑟=0

(−1)𝑟𝑎𝑟1𝑎2𝑒−𝑟2

(
2𝑒 + 𝑘 − 1
2𝑒 − 𝑟

) (
2𝑒 + 𝑘 − 1

𝑟

)
=

(
𝑘 + 2𝑒 − 1

2𝑒

) ∑︁
𝑟+𝑠=𝑒

(−1)𝑟
(
𝑘 + 𝑒 − 1

𝑠

) (
𝑒 − 1/2

𝑟

)
4𝑟 (𝑎2 − 𝑎1)2𝑠 (𝑎1𝑎2)𝑟 . (2.1)

Without loss of generality we may assume that 𝑅 ≤ 𝑆 and compare the coefficients
of the monomial 𝑎𝑅1 𝑎

𝑆
2 of the two sides of (2.1). The 𝑎𝑅1 𝑎

𝑆
2 -coefficient on the left hand

side of (2.1) is

(−1)𝑅
(
𝑘 + 𝑒 − 1

𝑒

) (
2𝑒 + 𝑘 − 1
2𝑒 − 𝑅

) (
2𝑒 + 𝑘 − 1

𝑅

)
,

and the right hand side of (2.1) has 𝑎𝑅1 𝑎
𝑆
2 -coefficient(

𝑘 + 2𝑒 − 1
2𝑒

) 𝑅∑︁
𝑟=0

(−1)𝑟
(
𝑘 + 𝑒 − 1
𝑒 − 𝑟

) (
𝑒 − 1/2

𝑟

)
4𝑟

(
2𝑒 − 2𝑟
𝑅 − 𝑟

)
(−1)𝑅−𝑟

=(−1)𝑅
(
𝑘 + 2𝑒 − 1

2𝑒

) 𝑅∑︁
𝑟=0

(
𝑘 + 𝑒 − 1
𝑒 − 𝑟

) (
𝑒 − 1/2

𝑟

)
4𝑟

(
2𝑒 − 2𝑟
𝑅 − 𝑟

)
.

Using Lemma 2.1, we finish the proof of Theorem 1.1. ■
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Lemma 2.1 Let 𝑅 ≤ 𝑒 be nonnegative and 𝑘 ≥ 4. Then we have the following identity(
𝑘 + 𝑒 − 1

𝑒

) (
𝑘 + 2𝑒 − 1
2𝑒 − 𝑅

) (
𝑘 + 2𝑒 − 1

𝑅

)
=

(
𝑘 + 2𝑒 − 1

2𝑒

) 𝑅∑︁
𝑟=0

4𝑟
(
𝑘 + 𝑒 − 1
𝑒 − 𝑟

) (
𝑒 − 1/2

𝑟

) (
2𝑒 − 2𝑟
𝑅 − 𝑟

)
,

where fractional binomial coefficients are defined by the Γ function.

Proof We reproduce the proof of [24, Proposition 2.1]. By definition we have(
𝑒 − 1/2

𝑟

)
=

Γ(𝑒 + 1/2)
Γ(𝑟 + 1)Γ(𝑒 + 1/2 − 𝑟) .

By Legendre’s duplication formulas we have

Γ(𝑒 + 1/2) = (2𝑒)!
4𝑒𝑒!

√
𝜋, Γ(𝑒 − 𝑟 + 1/2) = (2(𝑒 − 𝑟))!

4𝑒−𝑟 (𝑒 − 𝑟)!
√
𝜋.

These together yield(
𝑒 − 1/2

𝑟

)
=

(2𝑒)!4𝑒−𝑟 (𝑒 − 𝑟)!
√
𝜋

𝑟 !4𝑒𝑒!(2(𝑒 − 𝑟))!
√
𝜋

=
(2𝑒)!4−𝑟 (𝑒 − 𝑟)!
𝑟 !𝑒!(2(𝑒 − 𝑟))! ,

which yields the following formula for each term on the right hand side

4𝑟
(
𝑘 + 2𝑒 − 1

2𝑒

)(
𝑘 + 𝑒 − 1
𝑒 − 𝑟

)(
𝑒 − 1/2

𝑟

)(
2𝑒 − 2𝑟
𝑅 − 𝑟

)
=

(𝑘 + 2𝑒 − 1)!(𝑘 + 𝑒 − 1)!
(𝑘 − 1)!(𝑘 + 𝑟 − 1)!(𝑅 − 𝑟)!(2𝑒 − 𝑅 − 𝑟)!𝑒!𝑟 ! .

The left hand side expands in to(
𝑘 + 𝑒 − 1

𝑒

) (
𝑘 + 2𝑒 − 1
2𝑒 − 𝑅

) (
𝑘 + 2𝑒 − 1

𝑅

)
=

(𝑘 + 𝑒 − 1)!(𝑘 + 2𝑒 − 1)!(𝑘 + 2𝑒 − 1)!
𝑒!(𝑘 − 1)!(2𝑒 − 𝑅)!(𝑘 + 𝑅 − 1)!𝑅!(𝑘 + 2𝑒 − 1 − 𝑅)! .

If we cancel (𝑘 +𝑒−1)!(𝑘 +2𝑒−1)! from both sides, andmultiply by 𝑅!(𝑘 +2𝑒−𝑅−1),
we see that it suffices to show

𝑅∑︁
𝑟=0

(
𝑅

𝑅 − 𝑟

) (
𝑘 + 2𝑒 − 𝑅 − 1

𝑘 + 𝑟 − 1

)
=

(
𝑘 + 2𝑒 − 1
𝑘 + 𝑅 − 1

)
.

After applying the involution 𝑟 ↦→ 𝑅 − 𝑟 , this is then the Vandermonde’s identity [18,
p.11]

𝑡∑︁
𝑗=0

(
𝑛

𝑗

) (
𝑚

𝑡 − 𝑗

)
=

(
𝑛 + 𝑚

𝑡

)
for the case of 𝑛 = 𝑅, 𝑚 = 𝑘 + 2𝑒 − 𝑅 − 1, and 𝑡 = 𝑘 + 𝑅 − 1. ■

We now build toward the proof of Theorem 1.2. We begin by showing that the 𝐷-
th Shimura lift gives rise to an isomorphism between 𝑆0,𝐷

ℓ+1/2 (4) and 𝑆
0,𝐷
2ℓ (1), which is a

generalization of [10, Theorem 2] for 𝐷 = 1.

Proposition 2.2. Let 𝐷 be an odd fundamental discriminant with (−1)ℓ𝐷 > 0. Then the
𝐷-th Shimura lift S𝐷 restricts to an isomorphism 𝑆

0,𝐷
ℓ+1/2 (4) → 𝑆

0,𝐷
2ℓ (1) for all ℓ ≥ 6.
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Proof Recall that by [10, Theorem 1] or [9, p. 182], if 𝑔 =
∑

𝑛≥1 𝑐𝑔 (𝑛)𝑞𝑛 ∈ 𝑆+
ℓ+1/2 (4)

is a Hecke eigenform and 𝑓 ∈ 𝑆2ℓ (1) is the normalizedHecke eigenform corresponding
to 𝑔, thenS𝐷 (𝑔) = 𝑐𝑔 ( |𝐷 |) 𝑓 . This means thatS𝐷 is a monomorphismwhen restricted
to 𝑆0,𝐷

ℓ+1/2 (4). Thus, in order to show S𝐷 restricts to an isomorphism from 𝑆
0,𝐷
ℓ+1/2 (4) to

𝑆
0,𝐷
2ℓ (1) it suffices to show that dim 𝑆

0,𝐷
ℓ+1/2 (4) = dim 𝑆

0,𝐷
2ℓ (1) since 𝑐𝑔 ( |𝐷 |) = 0 if and

only if 𝐿𝐷 ( 𝑓 , ℓ) = 0 by Theorem [9, Theorem 1].
Note that dim 𝑆

0,𝐷
2ℓ (1) is the number of Hecke eigenforms in 𝑆2ℓ (1) with nonzero

central twisted 𝐿-value, and dim 𝑆
0,𝐷
ℓ+1/2 (4) is the number of Hecke eigenforms in

𝑆+
ℓ+1/2 (4) with nonzero |𝐷 |-th Fourier coefficient. According to [9, Theorem 1], these

two nonvanishing conditions are the same under the Shimura correspondence, thus we
conclude that dim 𝑆

0,𝐷
ℓ+1/2 (4) = dim 𝑆

0,𝐷
2ℓ (1). ■

Remark 2.3 In the ℓ = 5, 7 case, the space of cuspforms 𝑆2ℓ (1) is zero, and so is the
space 𝑆+

ℓ+1/2 (4). So this proposition is trivially true.

We now construct an explicit spanning set for 𝑆0,𝐷2ℓ (1). Before doing so, we need to
introduce the period of a modular form. For 𝑓 ∈ 𝑆2ℓ (1) and 0 ≤ 𝑡 ≤ 2ℓ − 2, the 𝑡-th
period of 𝑓 is given by

𝑟𝑡 ( 𝑓 ) :=
𝑡!

(−2𝜋𝑖)𝑡+1 𝐿 ( 𝑓 , 𝑡 + 1). (2.2)

Here the 𝐿-series of 𝑓 (𝑧) = ∑
𝑛≥1 𝑎𝑛𝑞

𝑛 is 𝐿 ( 𝑓 , 𝑠) = ∑
𝑛≥1 𝑎𝑛𝑛

−𝑠 , which converges for
Re(𝑠) ≫ 0 and can be extended analytically to the whole complex plane; for details, see
[14].

Proposition 2.4. The set {F𝐷,𝑘,𝑒}2𝑘+4𝑒=2ℓ for 1 ≤ 𝑒 ≤ ⌊ ℓ−42 ⌋ spans 𝑆0,𝐷2ℓ (1), for all
ℓ ≥ 6.

Proof By Proposition 5.6, we know that if 𝑔 ∈ 𝑆
−,𝐷
2ℓ (1) then 𝑔 is orthogonal to

the subspace of 𝑆𝐷2ℓ (1) spanned by {F𝐷,𝑘,𝑒}2𝑘+4𝑒=2ℓ . So it suffices to show that the
orthogonal complement of the span of {F𝐷,𝑘,𝑒}2𝑘+4𝑒=2ℓ is contained in 𝑆

−,𝐷
2ℓ (1).

We will show that any modular form𝐺 =
∑

𝑗 𝑐 𝑗𝑔 𝑗 which is a linear combination of
normalized Hecke eigenforms in 𝑔 𝑗 ∈ 𝑆

0,𝐷
2ℓ (1) such that ⟨𝐺, F𝐷,𝑘,𝑒⟩ = 0 for all F𝐷,𝑘,𝑒

must be zero.
Note that Proposition 5.6 and (2.2) imply that

⟨F𝐷,𝑘,𝑒, 𝑔 𝑗⟩ =
1
2
Γ(2𝑘 + 4𝑒 − 1)Γ(𝑘 + 2𝑒)
(2𝑒)!(4𝜋)2𝑘+4𝑒−1Γ(𝑘)

𝐿𝐷 (1 − 𝑘)
𝐿𝐷 (𝑘)

(−2𝜋𝑖)2𝑘+2𝑒−1
(2𝑘 + 2𝑒 − 2)! 𝐿 (𝑔 𝑗 , 𝐷, 𝑘 + 2𝑒)𝑟2𝑘+2𝑒−2 (𝑔 𝑗 ).

Thus, the orthogonality condition ⟨𝐺, F𝐷,𝑘,𝑒⟩ = 0 is equivalent to∑︁
𝑗

𝑐 𝑗𝐿 (𝑔 𝑗 , 𝐷, 𝑘 + 2𝑒)𝑟2𝑘+2𝑒−2 (𝑔 𝑗 ) = 0. (2.3)
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Following an idea from the proof of [6, Theorem 1], we define another form in 𝑆2ℓ (1) by

𝐹 =
∑︁
𝑗

𝑐 𝑗𝐿 (𝑔 𝑗 , 𝐷, 𝑘 + 2𝑒)𝑔 𝑗 .

Hence (2.3) implies that

𝑟2𝑘+2𝑒−2 (𝐹) =
∑︁
𝑗

𝑐 𝑗𝐿 (𝑔 𝑗 , 𝐷, 𝑘 + 2𝑒)𝑟2𝑘+2𝑒−2 (𝑔 𝑗 ) = 0.

As 1 ≤ 𝑒 ≤ ⌊ ℓ−42 ⌋ and 𝑘 + 2𝑒 = ℓ, we have ℓ − 2 ≥ 𝑘 ≥ 4. Then 𝑡 = 2𝑘 + 2𝑒 − 2 ranges
through all even values ℓ + 2 ≤ 𝑡 ≤ 2ℓ − 4, so 𝑟𝑡 (𝐹) = 0 for all even ℓ + 2 ≤ 𝑡 ≤ 2ℓ − 4.
As a result of the following lemma, we have 𝐹 = 0. Since 𝐿 (𝑔 𝑗 , 𝐷, 𝑘 + 2𝑒) ≠ 0 as
𝑔 𝑗 ∈ 𝑆

0,𝐷
2ℓ (1), we must have 𝑐 𝑗 = 0 for all 𝑗 , and thus𝐺 = 0. ■

Lemma 2.5 Let 𝐹 ∈ 𝑆2ℓ (1) and ℓ ≥ 6, and let 𝑟𝑡 (𝐹) be the 𝑡-th period of 𝐹 . If 𝑟𝑡 (𝐹) = 0
for all even 𝑡 such that ℓ + 2 ≤ 𝑡 ≤ 2ℓ − 4, then 𝐹 = 0.

Proof We follow the idea of [23]. By the Eichler-Shimura theory [14, Proposition 2.3
(b)] and [23, Remark 2.4], we know that 𝐹 = 0 if and only if 𝑟𝑡 (𝐹) = 0 for all even
2 ≤ 𝑡 ≤ 2ℓ − 4. By the Eichler-Shimura relation

𝑟𝑡 (𝐹) + (−1)𝑡𝑟2ℓ−2−𝑡 (𝐹) = 0, (2.4)

and the assumption that 𝑟𝑡 (𝐹) = 0 for all even ℓ + 2 ≤ 𝑡 ≤ 2ℓ − 4, we know that
𝑟𝑡 (𝐹) = 0 also for all even 2 ≤ 𝑡 ≤ ℓ − 4. To show that the periods ℓ − 4 < 𝑡 < ℓ + 2 are
zero, we split into cases based on the parity of ℓ.

(1) If ℓ is even, it suffices to show that 𝑟ℓ (𝐹) = 𝑟ℓ−2 (𝐹) = 0. Since ℓ is even, by (2.4)

𝑟ℓ (𝐹) + 𝑟ℓ−2 (𝐹) = 0. (2.5)

Substituting 𝑡 = ℓ − 2 into the Eichler-Shimura relation

(−1)𝑡𝑟𝑡 (𝐹) +
∑︁

0≤𝑚≤𝑡
𝑚≡0 (mod 2)

(
𝑡

𝑚

)
𝑟2ℓ−2−𝑡+𝑚 (𝐹) +

∑︁
0≤𝑚≤2ℓ−2−𝑡
𝑚≡𝑡 (mod 2)

(
2ℓ − 2 − 𝑡

𝑚

)
𝑟𝑚 (𝐹) = 0

(2.6)

and noting that 𝑟0 (𝐹) + 𝑟2ℓ−2 (𝐹) = 0, we obtain((
ℓ

2

)
+ 1

)
𝑟ℓ−2 (𝐹) + 2𝑟ℓ (𝐹) = 0.

This equation, along with (2.5) implies that 𝑟ℓ (𝐹) = 𝑟ℓ−2 (𝐹) = 0 for ℓ ≥ 6.
(2) If ℓ is odd, it suffices to show that 𝑟ℓ−3 (𝐹) = 𝑟ℓ−1 (𝐹) = 𝑟ℓ+1 (𝐹) = 0. Substituting

𝑡 = ℓ − 1 into (2.6), we get

3𝑟ℓ−1 (𝐹) +
(
ℓ − 1
2

)
𝑟ℓ+1 (𝐹) +

(
ℓ − 1
ℓ − 3

)
𝑟ℓ−3 (𝐹) = 0.
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Since
(ℓ−1

2
)
=

(ℓ−1
ℓ−3

)
, and we know by (2.4) that 𝑟ℓ−3 (𝐹) + 𝑟ℓ+1 (𝐹) = 0, we conclude

that 𝑟ℓ−1 (𝐹) = 0. Substituting 𝑡 = ℓ + 1 into (2.6) yields

2𝑟ℓ−3 (𝐹) +
(
ℓ + 1
2

)
𝑟ℓ−1 (𝐹) +

(
1 +

(
ℓ + 1
4

))
𝑟ℓ+1 (𝐹) = 0,

and noting that 𝑟ℓ−1 (𝐹) = 0, we conclude by (2.4) that

𝑟ℓ−3 (𝐹) = 𝑟ℓ+1 (𝐹) = 0.

This finishes the proof. ■

Finally, we construct a spanning set for 𝑆0,𝐷
ℓ+1/2 (4) and finish the proof of Theorem

1.2.

Proposition 2.6. The set {G𝐷,𝑘,𝑒}𝑘+2𝑒=ℓ for 1 ≤ 𝑒 ≤ ⌊ ℓ−42 ⌋ spans the subspace
𝑆
0,𝐷
ℓ+1/2 (4), for all ℓ ≥ 6.

Proof For a Hecke eigenform 𝑔 ∈ 𝑆
−,𝐷
ℓ+1/2 (4), we have ⟨𝑔,G𝐷,𝑘,𝑒⟩ = 0 by Proposition

5.7. So 𝑔 is orthogonal to Span{G𝐷,𝑘,𝑒}𝑘+2𝑒=ℓ and thus

Span{G𝐷,𝑘,𝑒}𝑘+2𝑒=ℓ ⊆ 𝑆
0,𝐷
ℓ+1/2 (4). (2.7)

Note that Theorem 1.1 implies that

dim Span{G𝐷,𝑘,𝑒}𝑘+2𝑒=ℓ ≥ dim Span{F𝐷,𝑘,𝑒}𝑘+2𝑒=ℓ . (2.8)

By Propositions 2.2 and 2.4, we have

Span{F𝐷,𝑘,𝑒}𝑘+2𝑒=ℓ = 𝑆
0,𝐷
2ℓ (1) and dim 𝑆

0,𝐷
2ℓ (1) = dim 𝑆

0,𝐷
ℓ+1/2 (4). (2.9)

Now (2.7), (2.8) and (2.9) together imply that dim Span{G𝐷,𝑘,𝑒}𝑘+2𝑒=ℓ ≥ dim 𝑆
0,𝐷
ℓ+1/2 (4).

So we conclude that Span{G𝐷,𝑘,𝑒}𝑘+2𝑒=ℓ = 𝑆
0,𝐷
ℓ+1/2 (4). ■

Combining Propositions 2.2, 2.4 and 2.6, we complete the proof of Theorem 1.2.

3 Projection

In this section we prove an alternate formula for G𝐷,𝑘,𝑒 (1.12):

G𝐷,𝑘,𝑒 (𝑧) = Tr4𝐷4 [𝐺𝑘,𝐷 (4𝑧), 𝜃 ( |𝐷 |𝑧)]𝑒 .

A similar formula is implicit in equations (6) and (7) in [9]. This formula allows us to
compute the Fourier coefficients (Proposition 6.4).

We need to introduce some notation and facts needed for the proof of Lemma 3.2. Let

P1 (Z/𝑁Z) = {(𝑎 : 𝑏) : 𝑎, 𝑏 ∈ Z/𝑁Z, gcd(𝑎, 𝑏, 𝑁) = 1}/∼

be the projective line over Z/𝑁Z, where (𝑎 : 𝑏) ∼ (𝑎′ : 𝑏′) if there exists 𝑢 ∈ (Z/𝑁Z)∗
such that 𝑎 = 𝑢𝑎′, 𝑏 = 𝑢𝑏′. It is known that there is a bijection between Γ0 (𝑁)\ SL2 (Z)
and P1 (Z/𝑁Z), which sends a coset representative

[
𝑎 𝑏
𝑐 𝑑

]
to the class (𝑐 : 𝑑) in
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P1 (Z/𝑁Z), see [20, Proposition 3.10]. For future reference, we prove a result on coset
representatives of certain quotients of congruence subgroups.

Lemma 3.1 Let 𝑁 ∈ N and let 𝑆 ∈ N be squarefree with (𝑁, 𝑆) = 1. Then{[
1 0

𝑁𝑆1 1

] [
1 𝜇

0 1

]
: 𝑆1 | 𝑆, 𝜇 mod

𝑆

𝑆1

}
is a set of coset representatives for Γ0 (𝑁𝑆)\Γ0 (𝑁).

Proof The statement follows easily fom the description of the cosets given in ([5], p.
276). ■

Lemma 3.2 Let ℓ ≥ 1 be an integer and 𝐷 be odd. We have 𝑉 Tr4𝐷4 𝑔 = Tr16𝐷16 𝑉𝑔 for all
𝑔 ∈ 𝑀ℓ+1/2 (4|𝐷 |).

Proof The statement was mentioned in [9, p. 195], we only sketch it. We first remark
that by direct calculation, 𝑉𝑔 ∈ 𝑀ℓ+ 1

2
(16|𝐷 |), so Tr16𝐷16 𝑉𝑔 is well-defined. Note

that applying the fixed set of cosets for Γ0 (4𝐷)\Γ0 (4) and Γ0 (16𝐷)\Γ0 (16) given by
Lemma 3.1 to 𝑁 = 4, 16 and 𝑆 = |𝐷 |, we have the following explicit formulas (see (1.8)
for the definition of slash operators)

𝑉 Tr4𝐷4 𝑔(𝑧) =
∑︁

𝐷1𝐷2=𝐷

∑︁
𝜇 mod |𝐷2 |

𝑔(𝑧) |ℓ𝛾𝐷1 ,𝜇

[
1 1

4
0 1

]
,

Tr16𝐷16 𝑉𝑔(𝑧) =
∑︁

𝐷1𝐷2=𝐷

∑︁
𝜇 mod |𝐷2 |

𝑔(𝑧) |ℓ
[
1 1

4
0 1

]
𝛾′𝐷1 ,𝜇

,

where

𝛾𝐷1 ,𝜇 =

[
1 0

4|𝐷1 | 1

] [
1 𝜇

0 1

]
and 𝛾′𝐷1 ,𝜇

=

[
1 0

16|𝐷1 | 1

] [
1 𝜇

0 1

]
.

And the outer sums are over all factorizations of 𝐷 into a product of fundamental dis-
criminants 𝐷1, 𝐷2. Therefore, to prove the desired equality it suffices to show that the
set of cosets{

Γ0 (4|𝐷 |)
[
1 1/4
0 1

]
𝛾′𝐷1 ,𝜇

[
1 1/4
0 1

]−1
: 𝐷1𝐷2 = 𝐷, 𝜇 mod |𝐷2 |

}
is a system of representatives of Γ0 (4|𝐷 |)\Γ0 (4), which can be easily checked. ■

Definition 3.1 For 𝑚 ∈ N and 𝑓 (𝑧) = ∑
𝑛≥0 𝑎 𝑓 (𝑛)𝑞𝑛 ∈ 𝑆𝑘 (𝑁, 𝜒) we define𝑈𝑚 𝑓 by

𝑈𝑚 𝑓 (𝑧) = 1
𝑚

∑︁
𝑣 mod 𝑚

𝑓

( 𝑧 + 𝑣

𝑚

)
=

∑︁
𝑛≥0

𝑎 𝑓 (𝑚𝑛)𝑞𝑛. (3.1)

Equivalently, we may write via (1.8)

𝑈𝑚 𝑓 (𝑧) = 𝑚𝑘/2−1
∑︁

𝑣 mod𝑚

𝑓 (𝑧)
����
𝑘

[
1 𝑣

0 𝑚

]
. (3.2)
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We need the following two simple observations. Note that Lemma 3.3 follows from (3.1)
and it implies Lemma 3.4.

Lemma 3.3 Let𝑈2 be the operator defined in (3.1). Then

𝑈2𝐺𝑘,𝐷 (𝑧) =
(
1 + 2𝑘−1

(
𝐷

2

))
𝐺𝑘,𝐷 (𝑧) − 2𝑘−1

(
𝐷

2

)
𝐺𝑘,𝐷 (2𝑧).

Lemma 3.4 The following identity holds:

𝐺𝑘,𝐷 (4𝑧)−𝐺𝑘,𝐷 (8𝑧)−2−𝑘
(
𝐷

2

) (
𝐺𝑘,𝐷

(
2𝑧 + 1

2

)
+ 𝐺𝑘,𝐷 (2𝑧)

)
= −

(
𝐷

2

)
2−𝑘+1𝐺𝑘,𝐷 (4𝑧).

Note that 𝛾𝑣 =
[ 1 0
4 |𝐷 |𝑣 1

]
for 𝑣 = 0, 1, 2, 3 form a system of representatives of

Γ0 (16|𝐷 |)\Γ0 (4|𝐷 |) [9, p. 195]. The following lemma explicitly computes each term in
Tr16𝐷4𝐷 (𝑉𝐺𝑘,𝐷 (2𝑧)).

Lemma 3.5 For 𝛾𝑣 =
[ 1 0
4 |𝐷 |𝑣 1

]
, we have

𝑉 (𝐺𝑘,𝐷 (2𝑧))
���
𝑘
𝛾𝑣 =

{
𝐺𝑘,𝐷

(
2𝑧 + 1

2
)

𝑣 ≡ 0, 2 (mod 4),(
𝐷
2
)
2𝑘𝐺𝑘,𝐷 (8𝑧) 𝑣 ≡ 1, 3 (mod 4).

Proof First,

𝑉 (𝐺𝑘,𝐷 (2𝑧))
�����
𝑘

[
1 0

4|𝐷 |𝑣 1

]
= 2−𝑘/2𝐺𝑘,𝐷 (𝑧)

�����
𝑘

[
2 0
0 1

] [
4 1
0 4

] [
1 0

4|𝐷 |𝑣 1

]
= 2−𝑘/2𝐺𝑘,𝐷 (𝑧)

�����
𝑘

[
8( |𝐷 |𝑣 + 1) 2
16|𝐷 |𝑣 4

]
.

Now we do some casework.

(1) 𝑣 = 0: We have

𝑉 (𝐺𝑘,𝐷 (2𝑧))
�����
𝑘

[
1 0
0 1

]
= 𝑉 (𝐺𝑘,𝐷 (2𝑧)) = 𝐺𝑘,𝐷

(
2
(
𝑧 + 1

4

))
= 𝐺𝑘,𝐷

(
2𝑧 + 1

2

)
.

(2) 𝑣 = 1, 3: Since 𝑣 and |𝐷 | are odd, 𝑣 |𝐷 | + 1 must be even, gcd( |𝐷 |𝑣+1
2 , |𝐷 |𝑣) = 1,

and there exist some 𝑥, 𝑦 ∈ Z such that |𝐷 |𝑣+1
2 𝑥 + |𝐷 |𝑣𝑦 = 1. Note also that 𝑥 ≡ 2

(mod 𝐷) and
(
𝐷
𝑥

)
=

(
𝐷
2
)
. Thus

𝑉 (𝐺𝑘,𝐷 (2𝑧))
�����
𝑘

[
1 0

4|𝐷 |𝑣 1

]
= 2−𝑘/2𝐺𝑘,𝐷 (𝑧)

�����
𝑘

[
8( |𝐷 |𝑣 + 1) 2
16|𝐷 |𝑣 4

]
= 2−𝑘/2𝐺𝑘,𝐷 (𝑧)

�����
𝑘

[ |𝐷 |𝑣+1
2 −𝑦

|𝐷 |𝑣 𝑥

][
16 2𝑥 + 4𝑦
0 2

]
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= 2−𝑘/2
(
𝐷

𝑥

)
𝐺𝑘,𝐷 (𝑧)

�����
𝑘

[
16 2𝑥 + 4𝑦
0 2

]
= 2𝑘

(
𝐷

𝑥

)
𝐺𝑘,𝐷 (8𝑧 + 𝑥 + 2𝑦)

=

(
𝐷

2

)
2𝑘𝐺𝑘,𝐷 (8𝑧).

(3) 𝑣 = 2: Since gcd(2|𝐷 | + 1, 4|𝐷 |) = 1, we can pick 𝑥, 𝑦 ∈ Z such that (2|𝐷 | + 1)𝑥 +
4|𝐷 |𝑦 = 1. As 4|𝐷 |𝑦 is even, 𝑥 must be odd, so𝐺𝑘,𝐷 (2𝑧 + 𝑥

2 ) = 𝐺𝑘,𝐷 (2𝑧 + 1
2 ), and

further
(
𝐷
𝑥

)
= 1 since 𝑥 ≡ 1 (mod 𝐷). Hence

𝑉 (𝐺𝑘,𝐷 (2𝑧))
�����
𝑘

[
1 0

8|𝐷 | 1

]
= 2−𝑘/2𝐺𝑘,𝐷 (𝑧)

�����
𝑘

[
8(2|𝐷 | + 1) 2

32|𝐷 | 4

]
= 2−𝑘/2𝐺𝑘,𝐷 (𝑧)

�����
𝑘

[
2|𝐷 | + 1 −𝑦
4|𝐷 | 𝑥

] [
8 2𝑥 + 4𝑦
0 4

]
=

(
𝐷

𝑥

)
2−𝑘/2𝐺𝑘,𝐷 (𝑧)

�����
𝑘

[
8 2𝑥 + 4𝑦
0 4

]
= 𝐺𝑘,𝐷

(
2𝑧 + 𝑥

2

)
= 𝐺𝑘,𝐷

(
2𝑧 + 1

2

)
.

Thus, the proof is complete. ■

The following lemma explicitly computes each term in Tr16𝐷4𝐷 (𝑉𝜃 ( |𝐷 |𝑧)).

Lemma 3.6 Let 𝐷 be an odd fundamental discriminant. Then

𝑉 (𝜃 ( |𝐷 |𝑧))
��� 1
2

𝛾0 = 𝜃

(
|𝐷 |𝑧 + |𝐷 |

4

)
,

𝑉 (𝜃 ( |𝐷 |𝑧))
��� 1
2

𝛾1 =

{
(2𝑖)1/2 (𝜃 ( |𝐷 |𝑧) − 𝜃 (4|𝐷 |𝑧)) 𝐷 > 0,
−𝑖(2𝑖)1/2𝜃 (4|𝐷 |𝑧) 𝐷 < 0,

𝑉 (𝜃 ( |𝐷 |𝑧))
��� 1
2

𝛾2 = sgn(𝐷)𝑖𝜃
(
|𝐷 |𝑧 − |𝐷 |

4

)
,

𝑉 (𝜃 ( |𝐷 |𝑧))
��� 1
2

𝛾3 =

{
(2𝑖)1/2𝜃 (4|𝐷 |𝑧) 𝐷 > 0,
−𝑖(2𝑖)1/2 (𝜃 ( |𝐷 |𝑧) − 𝜃 (4|𝐷 |𝑧)) 𝐷 < 0,

taking the principal branch of every square root.

Proof Recall that for𝑊4 :=
[ 0 −1
4 0

]
, we have

𝜃 (𝑧) | 1
2
𝑊4 = 𝑖−1/2𝜃 (𝑧),
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3 PROJECTION 13

see e.g [4, Proposition 15.1.1]. Note that

𝑉 (𝜃 ( |𝐷 |𝑧))
����� 1
2

[
1 0

4|𝐷 |𝑣 1

]
= |𝐷 |−1/4𝜃 (𝑧)

����� 1
2

[
|𝐷 | 0
0 1

] [
4 1
0 4

] [
1 0

4|𝐷 |𝑣 1

]
= |𝐷 |−1/4𝜃 (𝑧)

����� 1
2

[
|𝐷 |𝑣 + 1 |𝐷 |

4𝑣 4

] [
4|𝐷 | 0
0 1

]
.

In the following we only give detailed proofs for 𝑣 = 0, 1, 2, and leave out details for
𝑣 = 3 because it follows a similar argument to 𝑣 = 1.

(1) 𝑣 = 0:

𝑉 (𝜃 ( |𝐷 |𝑧))
����� 1
2

[
1 0
0 1

]
= 𝜃

(
|𝐷 |𝑧 + |𝐷 |

4

)
.

(2) 𝑣 = 1: We have

𝑉 (𝜃 ( |𝐷 |𝑧))
����� 1
2

[
1 0

4|𝐷 | 1

]
= |𝐷 |−1/4𝜃 (𝑧)

����� 1
2

[
|𝐷 | + 1 |𝐷 |

4 4

] [
4|𝐷 | 0
0 1

]
= |𝐷 |−1/4𝜃 (𝑧)

����� 1
2

[
−|𝐷 | |𝐷 | + 1
−4 4

]
𝑊4

[
|𝐷 | 0
0 1

]
.

Since |𝐷 | is odd, we can choose 𝑥, 𝑦 ∈ Z such that −|𝐷 |𝑥 − 4𝑦 = 1. This gives us[
−|𝐷 | |𝐷 | + 1
−4 4

]
=

[
−|𝐷 | −𝑦
−4 𝑥

] [
1 𝑥 − 1
0 4

]
.

Note that
[
−|𝐷 | −𝑦
−4 𝑥

]
∈ Γ0 (4), so we have

𝑉 (𝜃 ( |𝐷 |𝑧))
����� 1
2

[
1 0

4|𝐷 | 1

]
= |𝐷 |−1/4

(
−4
𝑥

)
𝜀−1𝑥 𝜃 (𝑧)

����� 1
2

[
1 𝑥 − 1
0 4

]
𝑊4

[
|𝐷 | 0
0 1

]
= 2−1/2 |𝐷 |−1/4

(
−4
𝑥

)
𝜀−1𝑥 𝜃

(
𝑧 + 𝑥 − 1

4

) ����� 1
2

𝑊4

[
|𝐷 | 0
0 1

]
,

where

𝜀𝑥 =

{
1 𝑥 ≡ 1 (mod 4),
𝑖 𝑥 ≡ 3 (mod 4).

Now we have two cases since −|𝐷 |𝑥 − 4𝑦 = 1 and the sign of 𝐷 determines 𝜀𝑥 .
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(a) If 𝐷 > 0, then |𝐷 | ≡ 1 (mod 4), so 𝑥 ≡ 3 (mod 4), 𝜃
(
𝑧+𝑥−1

4
)
= 𝜃

(
𝑧
4 +

1
2
)
=

2𝜃 (𝑧) − 𝜃 ( 𝑧4 ), 𝜀𝑥 = 𝑖, and
( −4
𝑥

)
= −1. So we have

𝑉 (𝜃 ( |𝐷 |𝑧))
����� 1
2

[
1 0

4|𝐷 | 1

]
= 2−1/2 |𝐷 |−1/4

(
−4
𝑥

)
𝜀−1𝑥 𝜃

(
𝑧 + 𝑥 − 1

4

) ����� 1
2

𝑊4

[
|𝐷 | 0
0 1

]

= 𝑖2−1/2 |𝐷 |−1/4
(
2𝜃 (𝑧) − 𝜃

( 𝑧
4

)) ����� 1
2

𝑊4

[
|𝐷 | 0
0 1

]
.

Explicitly computing these, we get

𝜃 (𝑧)
����� 1
2

𝑊4

[
|𝐷 | 0
0 1

]
= 𝑖−1/2 |𝐷 |1/4𝜃 ( |𝐷 |𝑧),

𝜃

( 𝑧
4

) ����� 1
2

𝑊4

[
|𝐷 | 0
0 1

]
= 21/2𝜃 (𝑧)

����� 1
2

[
1 0
0 4

]
𝑊4

[
|𝐷 | 0
0 1

]
= 21/2𝜃 (𝑧)

����� 1
2

𝑊4

[
4 0
0 1

] [
|𝐷 | 0
0 1

]
= 21/2𝑖−1/2𝜃 (𝑧)

����� 1
2

[
4 0
0 1

] [
|𝐷 | 0
0 1

]
= 2𝑖−1/2 |𝐷 |1/4𝜃 (4|𝐷 |𝑧).

So our expression simplifies to

𝑖2−1/2 |𝐷 |−1/4
(
2𝜃 (𝑧) − 𝜃

( 𝑧
4

)) ����� 1
2

𝑊4

[
|𝐷 | 0
0 1

]
= (2𝑖)1/2 (𝜃 ( |𝐷 |𝑧) − 𝜃 (4|𝐷 |𝑧)).

(b) If 𝐷 < 0, then |𝐷 | ≡ 3 (mod 4), 𝑥 ≡ 1 (mod 4), 𝜃
(
𝑧+𝑥−1

4
)
= 𝜃 ( 𝑧4 ), 𝜀𝑥 = 1,

and
( −4
𝑥

)
= 1. So we have

𝑉 (𝜃 ( |𝐷 |𝑧))
����� 1
2

[
1 0

4|𝐷 | 1

]
= 2−1/2 |𝐷 |−1/4

(
−4
𝑥

)
𝜀−1𝑥 𝜃

(
𝑧 + 𝑥 − 1

4

) ����� 1
2

𝑊4

[
|𝐷 | 0
0 1

]

= 2−1/2 |𝐷 |−1/4𝜃
( 𝑧
4

) ����� 1
2

𝑊4

[
|𝐷 | 0
0 1

]
= −𝑖(2𝑖)1/2𝜃 (4|𝐷 |𝑧).

2025/09/30 13:43

https://doi.org/10.4153/S0008414X25101697 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101697


3 PROJECTION 15

(3) 𝑣 = 2: Since 2|𝐷 |+1 is coprime to 8,we can find 𝑥, 𝑦 ∈ Z such that (2|𝐷 |+1)𝑥+8𝑦 =

1.

𝑉 (𝜃 ( |𝐷 |𝑧))
����� 1
2

[
1 0

8|𝐷 | 1

]
= |𝐷 |−1/4𝜃 (𝑧)

����� 1
2

[
2|𝐷 | + 1 |𝐷 |

8 4

] [
4|𝐷 | 0
0 1

]
= |𝐷 |−1/4𝜃 (𝑧)

����� 1
2

[
2|𝐷 | + 1 −𝑦

8 𝑥

] [
1 |𝐷 |𝑥 + 4𝑦
0 4

] [
4|𝐷 | 0
0 1

]
.

Now that
[
2|𝐷 | + 1 −𝑦

8 𝑥

]
is in Γ0 (4), we get

𝑉 (𝜃 ( |𝐷 |𝑧))
����� 1
2

[
1 0

8|𝐷 | 1

]
= |𝐷 |−1/4𝜀−1𝑥

(
8
𝑥

)
𝜃 (𝑧)

����� 1
2

[
1 1−𝑥

2
0 4

] [
4|𝐷 | 0
0 1

]
= |𝐷 |−1/4𝜀−1𝑥

(
8
𝑥

)
2−1/2𝜃

(
𝑧

4
+ 1 − 𝑥

8

) ����� 1
2

[
4|𝐷 | 0
0 1

]
= 𝜀−1𝑥

(
8
𝑥

)
𝜃

(
|𝐷 |𝑧 + 1 − 𝑥

8

)
As (2|𝐷 | + 1)𝑥 + 8𝑦 = 1 and the sign of 𝐷 determines 𝜀𝑥 , we do casework again.
(a) If 𝐷 > 0, then |𝐷 | ≡ 1 (mod 4), which implies that 3𝑥 ≡ 1 (mod 8), 𝑥 ≡ 3

(mod 8), 𝜀𝑥 = 𝑖 and
(8
𝑥

)
=

(8
3
)
= −1.Note also that 𝜃 ( |𝐷 |𝑧+ 1−𝑥

8 ) = 𝜃 ( |𝐷 |𝑧− 1
4 ).

(b) If𝐷 < 0, then |𝐷 | ≡ 3 (mod 4), which gives 7𝑥 ≡ 1 (mod 8), 𝑥 ≡ 7 (mod 8),(8
𝑥

)
=

(8
7
)
= 1, 𝜀𝑥 = 𝑖 and 𝜃 ( |𝐷 |𝑧 + 1−𝑥

8 ) = 𝜃 ( |𝐷 |𝑧 − 3
4 ).

Combining these two cases, we can write

𝑉 (𝜃 ( |𝐷 |𝑧))
����� 1
2

[
1 0

4|𝐷 |𝑣 1

]
= sgn(𝐷)𝑖𝜃

(
|𝐷 |𝑧 − |𝐷 |

4

)
.

(4) 𝑣 = 3: The argument in this case is similar to that of 𝑣 = 1, and is omitted.

The above arguments complete the proof. ■

We also need the following two lemmas.

Lemma 3.7 We have that

𝑉𝜃 ( |𝐷 |𝑧)
��� 1
2

𝛾1 +𝑉𝜃 ( |𝐷 |𝑧)
��� 1
2

𝛾3 = 𝜀−1|𝐷 | (2𝑖)
1/2𝜃 ( |𝐷 |𝑧).

Proof It is a trivial consequence of Lemma 3.6. ■

Lemma 3.8 We have that

𝑉𝜃 ( |𝐷 |𝑧)
��� 1
2

𝛾0 +𝑉𝜃 ( |𝐷 |𝑧)
��� 1
2

𝛾2 = (1 + 𝑖sgn(𝐷))𝜃 ( |𝐷 |𝑧).
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Proof By Lemma 3.6, we have

𝑉𝜃 ( |𝐷 |𝑧)
��� 1
2

𝛾0 +𝑉𝜃 ( |𝐷 |𝑧)
��� 1
2

𝛾2 = 𝜃

(
|𝐷 |𝑧 + |𝐷 |

4

)
+ 𝑖sgn(𝐷)𝜃

(
|𝐷 |𝑧 − |𝐷 |

4

)
Note that

𝜃

(
|𝐷 |𝑧 + |𝐷 |

4

)
=

∑︁
𝑛∈Z

𝑒2𝜋𝑖
𝑛2 |𝐷 |

4 𝑒2𝜋𝑖𝑛
2 |𝐷 |𝑧 =

∑︁
𝑛∈Z

𝑎(𝑛)𝑒2𝜋𝑖𝑛2 |𝐷 |𝑧

where 𝑎(𝑛) = 𝑖sgn(𝐷) if 𝑛 is odd and 𝑎(𝑛) = 1 if 𝑛 is even. On the other hand,

𝜃

(
|𝐷 |𝑧 − |𝐷 |

4

)
=

∑︁
𝑛∈Z

𝑒2𝜋𝑖
−𝑛2 |𝐷 |

4 𝑒2𝜋𝑖𝑛
2 |𝐷 |𝑧 =

∑︁
𝑛∈Z

𝑏(𝑛)𝑒2𝜋𝑖𝑛2 |𝐷 |𝑧

where 𝑏(𝑛) = −𝑖sgn(𝐷) if 𝑛 is odd and 𝑏(𝑛) = 1 if 𝑛 is even. Hence

𝜃

(
|𝐷 |𝑧 + |𝐷 |

4

)
+ sgn(𝐷)𝑖𝜃

(
|𝐷 |𝑧 − |𝐷 |

4

)
=

∑︁
𝑛∈Z

(𝑎(𝑛) + 𝑖sgn(𝐷) (𝑏(𝑛))𝑒2𝜋𝑖𝑛2 |𝐷 |𝑧

= (1 + 𝑖sgn(𝐷))𝜃 ( |𝐷 |𝑧),

as desired. ■

Now we are ready to prove the alternate formula (1.12) for G𝐷,𝑘,𝑒 promised at the
beginning of this section.

Proposition 3.9. Let 𝑘 ≥ 4 and 𝑒 > 0 be integers such that 𝑘 + 2𝑒 = ℓ and let 𝐷 be an odd
fundamental discriminant such that (−1)ℓ𝐷 > 0. Then

G𝐷,𝑘,𝑒 (𝑧) = Tr4𝐷4 [𝐺𝑘,𝐷 (4𝑧), 𝜃 ( |𝐷 |𝑧)]𝑒 .

Proof We closely follow [9, p. 195], where a similar result is implicit in the proof of
formulas [9, (6), (7)]. Write ℎ = [𝐺𝑘,4𝐷 (𝑧), 𝜃 ( |𝐷 |𝑧)]𝑒 . By Lemma 3.2 we get

G𝐷,𝑘,𝑒 =
3
2

(
1 −

(
𝐷

2

)
2−𝑘

)−1
pr+ Tr4𝐷4 (ℎ)

=
3
2

(
1 −

(
𝐷

2

)
2−𝑘

)−1 (
1 − (−1)ℓ𝑖

6
Tr164 𝑉 (Tr4𝐷4 (ℎ)) + 1

3
Tr4𝐷4 (ℎ)

)
=
3
2

(
1 −

(
𝐷

2

)
2−𝑘

)−1
Tr4𝐷4

(
1 − (−1)ℓ𝑖

6
Tr16𝐷4𝐷 (𝑉 (ℎ)) + 1

3
ℎ

)
=
3
2

(
1 −

(
𝐷

2

)
2−𝑘

)−1
Tr4𝐷4 𝑔𝐷 , (3.3)

with

𝑔𝐷 =
1 − (−1)𝑘𝑖

6
Tr16𝐷4𝐷 (𝑉 (ℎ)) + 1

3
ℎ.

Note that 𝑘 ≡ ℓmod 2, so we can substitute in (−1)𝑘 for (−1)ℓ above.We now compute
𝑔𝐷 . Thematrices 𝛾𝑣 =

[ 1 0
4 |𝐷 |𝑣 1

]
, where 𝑣 = 0, 1, 2, 3, forma set of coset representatives
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3 PROJECTION 17

for Γ0 (16|𝐷 |)\Γ0 (4|𝐷 |) [9, p. 195]. Then we have

Tr16𝐷4𝐷 (𝑉 (ℎ)) = Tr16𝐷4𝐷 (𝑉 [𝐺𝑘,4𝐷 (𝑧), 𝜃 ( |𝐷 |𝑧)]𝑒)
= Tr16𝐷4𝐷

[
𝑉𝐺𝑘,4𝐷 (𝑧), 𝑉𝜃 ( |𝐷 |𝑧)

]
𝑒

= Tr16𝐷4𝐷

[
𝐺𝑘,𝐷 (4𝑧) − 2−𝑘

(
𝐷

2

)
𝑉 (𝐺𝑘,𝐷 (2𝑧)), 𝑉𝜃 ( |𝐷 |𝑧)

]
𝑒

=
∑︁
𝛾𝑣

[
𝐺𝑘,𝐷 (4𝑧) − 2−𝑘

(
𝐷

2

)
𝑉 (𝐺𝑘,𝐷 (2𝑧)), 𝑉𝜃 ( |𝐷 |𝑧)

]
𝑒

�����
𝑘+ 1

2+2𝑒
𝛾𝑣 .

Since 𝛾𝑣 ∈ Γ0 (4|𝐷 |),𝐺𝑘,𝐷 (4𝑧)
���
𝑘
𝛾𝑣 = 𝐺𝑘,𝐷 (4𝑧). By Lemma 3.5, we get

Tr16𝐷4𝐷 (𝑉 (ℎ)) =
∑︁
𝛾𝑣

[
𝐺𝑘,𝐷 (4𝑧)

���
𝑘
𝛾𝑣 − 2−𝑘

(
𝐷

2

)
𝑉 (𝐺𝑘,𝐷 (2𝑧))

���
𝑘
𝛾𝑣 , 𝑉𝜃 ( |𝐷 |𝑧)

��� 1
2

𝛾𝑣

]
𝑒

=

[
𝐺𝑘,𝐷 (4𝑧) − 2−𝑘

(
𝐷

2

)
𝐺𝑘,𝐷

(
2𝑧 + 1

2

)
, 𝑉𝜃 ( |𝐷 |𝑧)

��� 1
2

𝛾0 +𝑉𝜃 ( |𝐷 |𝑧)
��� 1
2

𝛾2

]
𝑒

+
[
𝐺𝑘,𝐷 (4𝑧) − 𝐺𝑘,𝐷 (8𝑧), 𝑉𝜃 ( |𝐷 |𝑧)

��� 1
2

𝛾1 +𝑉𝜃 ( |𝐷 |𝑧)
��� 1
2

𝛾3

]
𝑒

.

Using Lemmas 3.7 and 3.8 and noting that sgn(𝐷) = (−1)𝑘 by our assumption, we can
simplify this to

Tr16𝐷4𝐷 (𝑉 (ℎ)) =
[
𝐺𝑘,𝐷 (4𝑧) − 2−𝑘

(
𝐷

2

)
𝐺𝑘,𝐷

(
2𝑧 + 1

2

)
, (1 + 𝑖(−1)𝑘)𝜃 ( |𝐷 |𝑧)

]
𝑒

+
[
𝐺𝑘,𝐷 (4𝑧) − 𝐺𝑘,𝐷 (8𝑧), 𝜀−1|𝐷 | (2𝑖)

1/2𝜃 ( |𝐷 |𝑧)
]
𝑒
.

Now we can finally compute the projection.

𝑔𝐷 (𝑧) = 1 − 𝑖(−1)𝑘
6

Tr16𝐷4𝐷 (𝑉 (ℎ(𝑧))) + 1
3
ℎ(𝑧)

=
1 − 𝑖(−1)𝑘

6

[
𝐺𝑘,𝐷 (4𝑧) − 2−𝑘

(
𝐷

2

)
𝐺𝑘,𝐷

(
2𝑧 + 1

2

)
, (1 + 𝑖(−1)𝑘)𝜃 ( |𝐷 |𝑧)

]
𝑒

+ 1 − 𝑖(−1)𝑘
6

[
𝐺𝑘,𝐷 (4𝑧) − 𝐺𝑘,𝐷 (8𝑧), 𝜀−1|𝐷 | (2𝑖)

1/2𝜃 ( |𝐷 |𝑧)
]
𝑒

+ 1
3

[
𝐺𝑘,𝐷 (4𝑧) − 2−𝑘

(
𝐷

2

)
𝐺𝑘,𝐷 (2𝑧), 𝜃 ( |𝐷 |𝑧)

]
𝑒

=
1
3

[
𝐺𝑘,𝐷 (4𝑧) − 2−𝑘

(
𝐷

2

)
𝐺𝑘,𝐷

(
2𝑧 + 1

2

)
, 𝜃 ( |𝐷 |𝑧)

]
𝑒

+ 1
3

[
𝐺𝑘,𝐷 (4𝑧) − 𝐺𝑘,𝐷 (8𝑧), 𝜃 ( |𝐷 |𝑧)

]
𝑒
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+ 1
3

[
𝐺𝑘,𝐷 (4𝑧) − 2−𝑘

(
𝐷

2

)
𝐺𝑘,𝐷 (2𝑧), 𝜃 ( |𝐷 |𝑧)

]
𝑒

=
1
3

[
𝐺𝑘,𝐷 (4𝑧) − 𝐺𝑘,𝐷 (8𝑧) − 2−𝑘

(
𝐷

2

) (
𝐺𝑘,𝐷

(
2𝑧 + 1

2

)
+ 𝐺𝑘,𝐷 (2𝑧)

)
, 𝜃 ( |𝐷 |𝑧)

]
𝑒

+ 2
3
[𝐺𝑘,𝐷 (4𝑧), 𝜃 ( |𝐷 |𝑧)]𝑒 .

Using Lemma 3.4, we can simplify the first term to get

𝑔𝐷 (𝑧) = 1
3

[
−

(
𝐷

2

)
2−𝑘+1𝐺𝑘,𝐷 (4𝑧), 𝜃 ( |𝐷 |𝑧)

]
𝑒

+ 2
3
[𝐺𝑘,𝐷 (4𝑧), 𝜃 ( |𝐷 |𝑧)]𝑒

=
2
3

(
1 −

(
𝐷

2

)
2−𝑘

) [
𝐺𝑘,𝐷 (4𝑧), 𝜃 ( |𝐷 |𝑧)

]
𝑒
. (3.4)

Plugging (3.4) into (3.3) gives the desired result. ■

4 Eisenstein Series

In this section, we define various Eisenstein series and show that 𝐺𝑘,4𝐷 (𝑧) (1.5) is an
Eisenstein series for the cusp at infinity of level 4|𝐷 |. We recall the theory of Eisenstein
series as developed in Miyake [15, §7]. Let 𝜒 and 𝜓 be Dirichlet characters mod 𝐿 and
mod 𝑀 , respectively. For 𝑘 ≥ 3, we put

𝐸𝑘 (𝑧; 𝜒, 𝜓) =
∑︁′

𝑚,𝑛∈Z
𝜒(𝑚)𝜓(𝑛) (𝑚𝑧 + 𝑛)−𝑘 .

Here
∑′ is the summation over all pairs of integers (𝑚, 𝑛) except (0, 0). In particular,

𝐸𝑘 (𝑀𝑧; 𝜒, 𝜓) is a modular form in 𝑀𝑘 (𝐿𝑀, 𝜒𝜓), see [15, pp. 269-271] for details.

Lemma 4.1 ([15, Theorem 7.1.3]) Assume 𝑘 ≥ 3. Let 𝜒 and 𝜓 be Dirichlet characters mod
𝐿 and mod 𝑀 , respectively, satisfying 𝜒(−1)𝜓(−1) = (−1)𝑘 . Let𝑚𝜓 be the conductor of 𝜓,
and 𝜓0 be the primitive character associated with 𝜓. Then

𝐸𝑘 (𝑧; 𝜒, 𝜓) = 𝐶 + 𝐴

∞∑︁
𝑛=1

𝑎(𝑛)𝑒2𝜋𝑖𝑛𝑧/𝑀 ,

where

𝐴 = 2(−2𝜋𝑖)𝑘𝐺 (𝜓0)/𝑀𝑘 (𝑘 − 1)!,

𝐶 =

{
2𝐿𝑀 (𝑘, 𝜓) 𝜒 : the principal character,
0 otherwise,

𝑎(𝑛) =
∑︁
0<𝑐 |𝑛

𝜒(𝑛/𝑐)𝑐𝑘−1
∑︁

0<𝑑 | (𝑙,𝑐)
𝑑𝜇(𝑙/𝑑)𝜓0 (𝑙/𝑑)𝜓0 (𝑐/𝑑).

Here 𝑙 = 𝑀/𝑚𝜓 , 𝜇 is the Möbius function, 𝐿𝑀 (𝑘, 𝜓) =
∑∞

𝑛=1 𝜓(𝑛)𝑛−𝑘 is the Dirichlet
series, and 𝐺 (𝜓0) is the Gauss sum of 𝜓0.
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4 EISENSTEIN SERIES 19

For a fundamental discriminant 𝐷 , we write 𝜒𝐷 (·) =
(
𝐷
·
)
and 𝐿𝐷 (𝑘) =∑∞

𝑛=1 𝜒𝐷 (𝑛)𝑛−𝑘 .

Example 4.2 Let 𝐷 be a fundamental discriminant and 1 be the principal character.
Then

𝐸𝑘 (𝑧; 1, 𝜒𝐷) = 2𝐿𝐷 (𝑘) + 2(−2𝜋𝑖)𝑘𝐺 (𝜒𝐷)
(𝑘 − 1)!|𝐷 |𝑘

∞∑︁
𝑛=1

©­«
∑︁
𝑑 |𝑛

(
𝐷

𝑑

)
𝑑𝑘−1ª®¬ 𝑞2𝜋𝑖𝑛𝑧/|𝐷 | .

Example 4.3 If 𝐷 = 𝐷1𝐷2 is a product of relatively prime fundamental discriminants
then

𝐸𝑘 (𝑧; 𝜒𝐷2 , 𝜒𝐷1 ) := 𝐶 +
2(−2𝜋𝑖)𝑘𝐺 (𝜒𝐷1 )
|𝐷1 |𝑘 (𝑘 − 1)!

∞∑︁
𝑛=1

©­­­«
∑︁

𝑑1 ,𝑑2>0
𝑑1𝑑2=𝑛

(
𝐷1

𝑑1

) (
𝐷2

𝑑2

)
𝑑𝑘−1
1

ª®®®¬ 𝑒
2𝜋𝑖𝑛𝑧/|𝐷1 | ,

where𝐶 is zero unless 𝐷2 = 1.

We shall compare our Eisenstein series 𝐺𝑘,𝐷 (𝑧) (1.4) and 𝐺𝑘,𝐷1 ,𝐷2 (𝑧), defined
below in (4.2) [9, p. 193]with the ones above given inMiyake [15]. Comparing the Fourier
coefficients of𝐺𝑘,𝐷 (𝑧) and 𝐸𝑘 (𝑧; 1, 𝜒𝐷) gives

𝐺𝑘,𝐷 (𝑧) = (𝑘 − 1)!|𝐷 |𝑘
2(−2𝜋𝑖)𝑘𝐺 (𝜒𝐷)

𝐸𝑘 ( |𝐷 |𝑧, 1, 𝜒𝐷) ∈ 𝑀𝑘 ( |𝐷 |, 𝜒𝐷). (4.1)

Recall that [9, p. 193] for 𝐷1, 𝐷2 relatively prime fundamental discriminants with
(−1)𝑘𝐷1𝐷2 > 0:

𝐺𝑘,𝐷1 ,𝐷2 (𝑧) =
∑︁
𝑛≥0

𝜎𝑘−1,𝐷1 ,𝐷2 (𝑛)𝑞𝑛, (4.2)

𝜎𝑘−1,𝐷1 ,𝐷2 (𝑛) =


−𝐿𝐷1 (1 − 𝑘)𝐿𝐷2 (0) 𝑛 = 0,∑
𝑑1 ,𝑑2>0
𝑑1𝑑2=𝑛

(
𝐷1
𝑑1

) (
𝐷2
𝑑2

)
𝑑𝑘−1
1 𝑛 > 0.

where the constant term is zero unless 𝐷2 = 1. Hence by comparing the Fourier
coefficients of𝐺𝑘,𝐷1 ,𝐷2 (𝑧) and 𝐸𝑘 (𝑧; 𝜒𝐷2 , 𝜒𝐷1 ), we get

𝐺𝑘,𝐷1 ,𝐷2 (𝑧) =
|𝐷1 |𝑘 (𝑘 − 1)!

2(−2𝜋𝑖)𝑘𝐺 (𝜒𝐷1 )
𝐸𝑘 ( |𝐷1 |𝑧; 𝜒𝐷2 , 𝜒𝐷1 ) ∈ 𝑀𝑘 ( |𝐷1𝐷2 |, 𝜒𝐷1 𝜒𝐷2 ).(4.3)

The following expression of𝐺𝑘,𝐷1 ,𝐷2 (𝑧) is useful for Lemma 6.1.
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Lemma 4.4 Let 𝑘 ≥ 3 and 𝐷 = 𝐷1𝐷2 be a product of coprime fundamental discriminants.
Then

𝐺𝑘,𝐷1 ,𝐷2 (𝑧) =
|𝐷1 |𝑘 (𝑘 − 1)!

2(−2𝜋𝑖)𝑘𝐺 (𝜒𝐷1 )
𝜒𝐷2 ( |𝐷1 |)

∑︁′

𝑚,𝑛∈Z
𝐷1 |𝑚

𝜒𝐷2 (𝑚)𝜒𝐷1 (𝑛)
(𝑚𝑧 + 𝑛)𝑘

. (4.4)

Proof Note that

𝐸𝑘 ( |𝐷1 |𝑧; 𝜒𝐷2 , 𝜒𝐷1 ) =
∑︁′

𝑚,𝑛∈Z
𝜒𝐷2 (𝑚)𝜒𝐷1 (𝑛) (𝑚 |𝐷1 |𝑧 + 𝑛)−𝑘

= 𝜒𝐷2 ( |𝐷1 |)
∑︁′

ℓ,𝑛∈Z
𝐷1 |ℓ

𝜒𝐷2 (ℓ)𝜒𝐷1 (𝑛) (ℓ𝑧 + 𝑛)−𝑘 .

Thus the result follows from (4.3). ■

Let 𝑘 ≥ 3 and 𝜒 be a Dirichlet character mod 𝑁 . We define the Eisenstein series for
the cusp at infinity [15, p. 272] as

𝐸∗
𝑘,𝑁 (𝑧; 𝜒) =

∑︁
[
𝑎 𝑏
𝑐 𝑑

]
∈Γ∞\Γ0 (𝑁 )

𝜒(𝑑)
(𝑐𝑧 + 𝑑)𝑘

,

where Γ∞ = {±
[ 1 𝑛
0 1

]
: 𝑛 ∈ Z}.

Now, we are ready to prove that𝐺𝑘,4𝐷 is an Eisenstein series for the cusp at infinity
of level 4|𝐷 |.

Lemma 4.5 [15, (7.1.30)] Let 1 denote the principal Dirichlet character. Then

2𝐿𝑁 (𝑘, 𝜒)𝐸∗
𝑘,𝑁 (𝑧; 𝜒) = 𝐸𝑘 (𝑁𝑧; 1, 𝜒).

From (4.1) and Lemma 4.5, we know that𝐺𝑘,𝐷 (𝑧) is an Eisenstein series at infinity.
We have

𝐺𝑘,𝐷 (𝑧) = 𝐿𝐷 (1 − 𝑘)
2

𝐸∗
𝑘, |𝐷 | (𝑧; 𝜒𝐷). (4.5)

Note also that (4.1) and the proof of Lemma 4.5 imply that

𝐺𝑘,𝐷 (𝑧) = (𝑘 − 1)!|𝐷 |𝑘
2(−2𝜋𝑖)𝑘𝐺 (𝜒𝐷)

∑︁′

𝑐,𝑑∈Z
𝐷 |𝑐

𝜒𝐷 (𝑑)
(𝑐𝑧 + 𝑑)𝑘

. (4.6)

In fact, equation (4.6) will be more convenient for us to compute the Fourier expansion
of𝐺𝑘,𝐷 (𝑧) at different cusps. We need the following lemma; see also [5, p. 271].
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4 EISENSTEIN SERIES 21

Lemma 4.6 Let 𝐿 (4)
𝐷

(𝑘) = ∑
(𝑛,4)=1
𝑛≥1

𝜒𝐷 (𝑛)𝑛−𝑘 . Then

𝐸∗
𝑘,4 |𝐷 | (𝑧; 𝜒𝐷) =

𝐿𝐷 (𝑘)
𝐿
(4)
𝐷

(𝑘)

(
𝐸∗
𝑘, |𝐷 | (4𝑧; 𝜒𝐷) − 2−𝑘

(
𝐷

2

)
𝐸∗
𝑘, |𝐷 | (2𝑧; 𝜒𝐷)

)
.

Proof Observe that

2𝐿 (4)
𝐷

(𝑘)𝐸∗
𝑘,4 |𝐷 | (𝑧; 𝜒𝐷) = 2

∑︁
𝑛≥1

(4,𝑛)=1

𝜒𝐷 (𝑛)
𝑛𝑘

©­­­«
1
2

∑︁
(𝑐,𝑑)=1
4𝐷 |𝑐

𝜒𝐷 (𝑑)
(𝑐𝑧 + 𝑑)𝑘

ª®®®¬
=

∑︁
𝑛≥1

(4,𝑛)=1

∑︁
(𝑐,𝑑)=1
4𝐷 |𝑐

𝜒𝐷 (𝑛𝑑)
(𝑛𝑐𝑧 + 𝑛𝑑)𝑘

=
∑︁

(𝑑′ ,4𝐷)=1
4𝐷 |𝑐′

𝜒𝐷 (𝑑′)
(𝑐′𝑧 + 𝑑′)𝑘

,

where 𝑛𝑐 = 𝑐′ and 𝑛𝑑 = 𝑑′. Note that we can replace (𝑑′, 4𝐷) = 1 by (𝑑′, 4) since
𝜒𝐷 (𝑑′) = 0 otherwise. It follows that

2𝐿 (4)
𝐷

(𝑘)𝐸∗
𝑘,4 |𝐷 | (𝑧; 𝜒𝐷) =

∑︁
(𝑑,4)=1
4𝐷 |𝑐

𝜒𝐷 (𝑑)
(𝑐𝑧 + 𝑑)𝑘

=
∑︁′

𝑐,𝑑∈Z
4𝐷 |𝑐

©­«
∑︁

𝑒 | (𝑑,4) ,𝑒>0
𝜇(𝑒)ª®¬ 𝜒𝐷 (𝑑)

(𝑐𝑧 + 𝑑)𝑘

=
∑︁

𝑒 |4,𝑒>0
𝜇(𝑒)

∑︁′

𝑐,𝑑∈Z
4𝐷 |𝑐,𝑒 |𝑑

𝜒𝐷 (𝑑)
(𝑐𝑧 + 𝑑)𝑘

,

where we used
∑

𝑒 | (𝑑,4)
𝜇(𝑒) = 0 for (𝑑, 4) > 1 in the second equality. Substituting

𝑑 = 𝑒𝑦 and 𝑐 = 4𝑥,

2𝐿 (4)
𝐷

(𝑘)𝐸∗
𝑘,4 |𝐷 | (𝑧; 𝜒𝐷) =

∑︁
𝑒 |4,𝑒>0

𝜇(𝑒)
∑︁′

𝑥,𝑦∈Z
𝐷 |𝑥

𝜒𝐷 (𝑒𝑦)
(4𝑥𝑧 + 𝑒𝑦)𝑘

=
∑︁

𝑒 |4,𝑒>0
𝜇(𝑒)𝑒−𝑘 𝜒𝐷 (𝑒)

∑︁′

𝑥,𝑦∈Z
𝐷 |𝑥

𝜒𝐷 (𝑦)
(𝑥4𝑧/𝑒 + 𝑦)𝑘

=
∑︁

𝑒 |4,𝑒>0
𝜇(𝑒)𝑒−𝑘 𝜒𝐷 (𝑒)2𝐿𝐷 (𝑘)𝐸∗

𝑘,𝐷 (4𝑧/𝑒, 𝜒𝐷)
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= 2𝐿𝐷 (𝑘)
(
𝐸∗
𝑘, |𝐷 | (4𝑧; 𝜒𝐷) − 2−𝑘

(
𝐷

2

)
𝐸∗
𝑘, |𝐷 | (2𝑧; 𝜒𝐷)

)
,

where the second to last equality is from the proof of Lemma 4.5. ■

From Lemma 4.6 and (4.5), we know that 𝐺𝑘,4𝐷 (𝑧) is an Eisenstein series for the
cusp at infinity in 𝑀𝑘 (4|𝐷 |, 𝜒𝐷). We have

𝐺𝑘,4𝐷 (𝑧) = 𝐿𝐷 (1 − 𝑘)
2

(
1 − 2−𝑘

(
𝐷

2

))
𝐸∗
𝑘,4𝐷 (𝑧; 𝜒𝐷). (4.7)

5 The Rankin-Selberg convolution

The purpose of this section is to prove Propositions 5.6 and 5.7. For two elements 𝑓 and
𝑔 of 𝑀𝑘 (𝑁) such that 𝑓 𝑔 is a cuspform, the Petersson inner product is given by

⟨ 𝑓 , 𝑔⟩Γ0 (𝑁 ) =

∫
Γ0 (𝑁 )\H

𝑓 (𝑧)𝑔(𝑧) Im(𝑧)𝑘𝑑𝜇, (5.1)

where 𝑧 = 𝑥 + 𝑖𝑦 and 𝑑𝜇 = 𝑑𝑥𝑑𝑦/𝑦2. We use ⟨·, ·⟩ to denote ⟨·, ·⟩Γ0 (𝑁 ) if the level
is clear from the context. For 𝑓 (𝑧) =

∑
𝑛≥1 𝑎 𝑓 (𝑛)𝑞𝑛 ∈ 𝑆𝑘 (𝑁, 𝜒), we put 𝑓𝜌 (𝑧) :=∑

𝑛≥1 𝑎 𝑓 (𝑛)𝑞𝑛. Note that 𝑓𝜌 (𝑧) = 𝑓 (𝑧) if 𝑓 is a newform and 𝜒 is trivial.
We now review the classical result on the Rankin-Selberg convolution, which was

reformulated and generalized in Zagier [25], keeping in mind the difference between
our definition of the Rankin-Cohen bracket and the one used therein.

Lemma 5.1 ([25, Propsition 6]) Let 𝑘1 and 𝑘2 be real numbers with 𝑘2 ≥ 𝑘1 + 2 > 2.
Let 𝑓 (𝑧) =

∑∞
𝑛=1 𝑎(𝑛)𝑞𝑛 and 𝑔(𝑧) =

∑∞
𝑛=0 𝑏(𝑛)𝑞𝑛 be modular forms in 𝑆𝑘 (𝑁, 𝜒) and

𝑀𝑘1 (𝑁, 𝜒1), where 𝑘 = 𝑘1 + 𝑘2 + 2𝑒, 𝑒 ≥ 0 and 𝜒 = 𝜒1𝜒2. Then

⟨ 𝑓 , [𝑔, 𝐸∗
𝑘2 ,𝑁

(·; 𝜒2)]𝑒⟩ =
(−1)𝑒
𝑒!

Γ(𝑘 − 1)Γ(𝑘2 + 𝑒)
(4𝜋)𝑘−1Γ(𝑘2)

∞∑︁
𝑛=1

𝑎(𝑛)𝑏(𝑛)
𝑛𝑘1+𝑘2+𝑒−1

.

To obtain Proposition 5.6, we need to deal with the case 𝑘1 = 𝑘2, which can be
done by following Shimura [19] and Lanphier’s work [11]. For 𝑓 (𝑧) = ∑∞

𝑛=1 𝑎(𝑛)𝑞𝑛 ∈
𝑆𝑘 (𝑁, 𝜒) and 𝑔(𝑧) =

∑∞
𝑛=0 𝑏(𝑛)𝑞𝑛 ∈ 𝑀ℓ (𝑁, 𝜓), we put

𝐷 (𝑠, 𝑓 , 𝑔) =
∞∑︁
𝑛=1

𝑎(𝑛)𝑏(𝑛)𝑛−𝑠 , Re(𝑠) ≫ 0.

We are particularly interested in the following case.

Lemma 5.2 Let 𝑓 =
∑∞

𝑛=1 𝑎(𝑛)𝑞𝑛 ∈ 𝑆2ℓ (1) be a normalized eigenform with ℓ = 𝑘 +
2𝑒, 𝑒 > 0 and 𝑘 ≥ 4 integers, and let 𝐷 be an odd fundamental discriminant. Then

𝐷 (𝑠, 𝑓 , 𝐺𝑘,𝐷) =
𝐿 ( 𝑓 , 𝑠)𝐿 ( 𝑓 , 𝐷, 𝑠 − 𝑘 + 1))
𝐿𝐷 (2𝑠 − 3𝑘 − 4𝑒 + 2) , Re(𝑠) ≫ 0.
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5 THE RANKIN-SELBERG CONVOLUTION 23

Proof Note that for Re(𝑠) ≫ 0, we have

𝐷 (𝑠, 𝑓 , 𝐺𝑘,𝐷) =
∞∑︁
𝑛=1

𝜎𝑘−1,1,𝜒𝐷 (𝑛)𝑎(𝑛)
𝑛𝑠

,

where𝜎𝑘−1,1,𝜒𝐷 (𝑛) = ∑
𝑑 |𝑛 𝜒𝐷 (𝑑)𝑑𝑘−1. A standard computation (see [22, Proposition

4.1]) gives
∞∑︁
𝑛=1

𝜎𝑘−1,1,𝜒𝐷 (𝑛)𝑎(𝑛)
𝑛𝑠

=
𝐿 ( 𝑓 , 𝑠)𝐿 ( 𝑓 , 𝐷, 𝑠 − (𝑘 − 1))

𝐿𝐷 (2𝑠 − (𝑘 − 1) + 1 − (2𝑘 + 4𝑒)) ,

as desired. ■

From Shimura [19, p. 786-789], 𝐷 (𝑠, 𝑓 , 𝐺𝑘,𝐷) has a meromorphic continuation to
the whole complex plane and 𝐷 (𝑠, 𝑓 , 𝐺𝑘,𝐷) is holomorphic at 𝑠 = 2𝑘 + 2𝑒 − 1, see [19,
p. 789].

The Maass-Shimura operators [19, p. 788 (2.8)] are defined by

𝛿𝜆 =
1
2𝜋𝑖

(
𝜆

2𝑖𝑦
+ 𝜕

𝜕𝑧

)
, 0 < 𝜆 ∈ Z,

𝛿
(𝑟 )
𝜆

= 𝛿𝜆+2𝑟−2 · · · 𝛿𝜆+2𝛿𝜆, 0 ≤ 𝑟 ∈ Z,

where we understand that 𝛿 (0)
𝜆

is the identity operator. A relation between Maass-
Shimura operators and the Rankin-Cohen bracket is given by(

𝛿
(𝑛)
𝑘

𝑓 (𝑧)
)
𝑔(𝑧) =

𝑛∑︁
𝑗=0

(−1) 𝑗
(𝑛
𝑗

) (𝑘+𝑛−1
𝑛− 𝑗

)(𝑘+ℓ+2 𝑗−2
𝑗

) (𝑘+ℓ+𝑛+ 𝑗−1
𝑛− 𝑗

) 𝛿 (𝑛− 𝑗 )
𝑘+ℓ+2 𝑗 [ 𝑓 , 𝑔] 𝑗 (𝑧), (5.2)

where 𝑓 ∈ 𝑀𝑘 (Γ) and 𝑔 ∈ 𝑀ℓ (Γ) for any congruence subgroup Γ; see [11, Theorem 1].
We recall the following two results.

Lemma 5.3 ([19, Lemma 6]) Suppose 𝑓 ∈ 𝑆𝑘 (𝑁, 𝜒), 𝑔 ∈ 𝑀𝑙 (𝑁, 𝜒) and 𝑘 = 𝑙 + 2𝑟 with
a positive integer 𝑟. Then ⟨𝛿 (𝑟 )𝑔, 𝑓𝜌⟩ = 0.

Lemma 5.4 ([19, Theorem 2]) Suppose 𝑓 ∈ 𝑆2ℓ ( |𝐷 |) with ℓ = 𝑘 + 2𝑒, 𝑒 > 0 and 𝑘 ≥ 4,
and 𝐷 is a fundamental discriminant. Then

𝐷 (2𝑘 + 4𝑒 − 1 − 2𝑒, 𝑓 , 𝐺𝑘,𝐷) = 𝑐𝜋2𝑘+4𝑒−1⟨𝐺𝑘,𝐷𝛿
(2𝑒)
𝑘

𝐸∗
𝑘, |𝐷 | (𝑧; 𝜒𝐷), 𝑓𝜌⟩,

where ⟨·, ·⟩ denotes the non-normalized Petersson inner product on defined in (5.1) and

𝑐 =
Γ(2𝑘 + 4𝑒 − 𝑘 − 2(2𝑒))

Γ(2𝑘 + 4𝑒 − 1 − 2𝑒)Γ(2𝑘 + 4𝑒 − 𝑘 − 2𝑒) (−1)
2𝑒42𝑘+4𝑒−1.

=
Γ(𝑘)

Γ(2𝑘 − 1 + 2𝑒)Γ(𝑘 + 2𝑒) 4
2𝑘+4𝑒−1

We apply these two results in our situation to obtain the following.
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Proposition 5.5. Let 𝑓 ∈ 𝑆2ℓ (1) be a normalized eigenform with ℓ = 𝑘 + 2𝑒, 𝑒 > 0 and
𝑘 ≥ 4. Then

⟨[𝐺𝑘,𝐷 , 𝐺𝑘,𝐷]2𝑒, 𝑓 ⟩Γ0 ( |𝐷 | ) =
1
2
Γ(2𝑘 + 4𝑒 − 1)Γ(𝑘 + 2𝑒)
(2𝑒)!(4𝜋)2𝑘+4𝑒−1Γ(𝑘)

𝐿𝐷 (1 − 𝑘)
𝐿𝐷 (𝑘) 𝐿 ( 𝑓 , 2𝑘 + 2𝑒 − 1)𝐿 ( 𝑓 , 𝐷, 𝑘 + 2𝑒).

Proof Note that 𝑓𝜌 = 𝑓 since 𝑓 is a normalized eigenform. Lemma 5.4 gives

⟨𝐺𝑘,𝐷𝛿
(2𝑒)
𝑘

𝐸∗
𝑘, |𝐷 | (𝑧; 𝜒𝐷), 𝑓 ⟩Γ0 ( |𝐷 | ) =

Γ(2𝑘 + 2𝑒 − 1)Γ(𝑘 + 2𝑒)
(4𝜋)2𝑘+4𝑒−1Γ(𝑘)

𝐷 (2𝑘 + 2𝑒 − 1, 𝑓 , 𝐺𝑘,𝐷).

By Lemma 5.3 and (5.2),

⟨𝐺𝑘,𝐷𝛿
(2𝑒)
𝑘

𝐸∗
𝑘, |𝐷 | (𝑧; 𝜒𝐷), 𝑓 ⟩Γ0 ( |𝐷 | ) =

1(2𝑘+4𝑒−2
2𝑒

) ⟨[𝐸∗
𝑘, |𝐷 | (𝑧; 𝜒𝐷), 𝐺𝑘,𝐷]2𝑒, 𝑓 ⟩Γ0 ( |𝐷 | ) ,

which implies that

⟨[𝐸∗
𝑘, |𝐷 | (𝑧; 𝜒𝐷), 𝐺𝑘,𝐷]2𝑒, 𝑓 ⟩Γ0 ( |𝐷 | ) =

(2𝑘+4𝑒−2
2𝑒

)
Γ(2𝑘 + 2𝑒 − 1)Γ(𝑘 + 2𝑒)
(4𝜋)2𝑘+4𝑒−1Γ(𝑘)

𝐷 (2𝑘 + 2𝑒 − 1, 𝑓 , 𝐺𝑘,𝐷).

Since𝐺𝑘,𝐷 (𝑧) = 𝐿𝐷 (1−𝑘 )
2 𝐸∗

𝑘, |𝐷 | (𝑧; 𝜒𝐷) (4.5) and by Lemma 5.2, we have

⟨[𝐺𝑘,𝐷 , 𝐺𝑘,𝐷]2𝑒, 𝑓 ⟩Γ0 ( |𝐷 | ) =
𝐿𝐷 (1 − 𝑘)

2

(2𝑘+4𝑒−2
2𝑒

)
Γ(2𝑘 + 2𝑒 − 1)Γ(𝑘 + 2𝑒)
(4𝜋)2𝑘+4𝑒−1Γ(𝑘)

𝐷 (2𝑘 + 2𝑒 − 1, 𝑓 , 𝐺𝑘,𝐷)

=
1
2
Γ(2𝑘 + 4𝑒 − 1)Γ(𝑘 + 2𝑒)
(2𝑒)!(4𝜋)2𝑘+4𝑒−1Γ(𝑘)

𝐿𝐷 (1 − 𝑘)
𝐿𝐷 (𝑘) 𝐿 ( 𝑓 , 2𝑘 + 2𝑒 − 1)𝐿 ( 𝑓 , 𝐷, 𝑘 + 2𝑒),

as desired. ■

Now we prove Propositions 5.6 and 5.7, which generalize [9, Proposition 1] and [9,
Proposition 2], respectively.

Proposition 5.6. Let 𝑓 =
∑∞

𝑛=1 𝑎(𝑛)𝑞𝑛 be a normalized eigenform in 𝑆2ℓ (1) with ℓ =

𝑘 + 2𝑒, 𝑒 > 0 and 𝑘 ≥ 4, and let 𝐷 be an odd fundamental discriminant with (−1)ℓ𝐷 > 0.
Then

⟨F𝐷,𝑘,𝑒, 𝑓 ⟩=
1
2
Γ(2𝑘 + 4𝑒 − 1)Γ(𝑘 + 2𝑒)
(2𝑒)!(4𝜋)2𝑘+4𝑒−1Γ(𝑘)

𝐿𝐷 (1 − 𝑘)
𝐿𝐷 (𝑘) 𝐿 ( 𝑓 , 2𝑘 + 2𝑒 − 1)𝐿 ( 𝑓 , 𝐷, 𝑘 + 2𝑒).

Proof Recall that (1.11)

F𝐷,𝑘,𝑒 (𝑧) = Tr𝐷1 [𝐺𝑘,𝐷 (𝑧), 𝐺𝑘,𝐷 (𝑧)]2𝑒 .
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5 THE RANKIN-SELBERG CONVOLUTION 25

As ⟨ 𝑓 , 𝑔⟩Γ0 (𝑀 ) = ⟨ 𝑓 ,Tr𝑀
𝑁
𝑔⟩Γ0 (𝑁 ) for 𝑁 | 𝑀 , for 𝑓 ∈ 𝑆𝑘 (𝑁), 𝑔 ∈ 𝑀𝑘 (𝑀) (see [5,

p. 271]), we get

⟨F𝐷,𝑘,𝑒, 𝑓 ⟩ = ⟨[𝐺𝑘,𝐷 (𝑧), 𝐺𝑘,𝐷 (𝑧)]2𝑒, 𝑓 ⟩Γ0 ( |𝐷 | ) .

Then the result follows from Proposition 5.5. ■

Proposition 5.7. Let 𝑔 =
∑
𝑐𝑔 (𝑛)𝑞𝑛 ∈ 𝑆+

ℓ+1/2 (4) be a Hecke eigenform and 𝑓 ∈ 𝑆2ℓ (1)
be the normalized Hecke eigenform corresponding to it by the Shimura correspondence, where
ℓ = 𝑘 + 2𝑒, 𝑒 > 0 and 𝑘 ≥ 4. Let 𝐷 be an odd fundamental discriminant with (−1)ℓ𝐷 > 0.
Then

⟨𝑔,G𝐷,𝑘,𝑒⟩ =
3
2
Γ(𝑘 + 2𝑒 − 1

2 )Γ(𝑘 + 𝑒)
𝑒!(4𝜋)𝑘+2𝑒−1/2Γ(𝑘)

𝐿𝐷 (1 − 𝑘)
𝐿𝐷 (𝑘) |𝐷 |−𝑘−𝑒+1/2𝐿 ( 𝑓 , 2𝑘 + 2𝑒 − 1)𝑐𝑔 ( |𝐷 |),

where the Petersson inner product is ⟨𝑔,G𝐷,𝑘,𝑒⟩ :=∫
Γ0 (4)\H

𝑔(𝑧)G𝐷,𝑘,𝑒 (𝑧) Im(𝑧)𝑘+2𝑒+1/2𝑑𝜇.

Proof Recall that G𝐷,𝑘,𝑒 is given in (1.12):

G𝐷,𝑘,𝑒 (𝑧) =
3
2

(
1 − 2−𝑘

(
𝐷

2

))−1
pr+ Tr4𝐷4 [𝐺𝑘,4𝐷 (𝑧), 𝜃 ( |𝐷 |𝑧)]𝑒 .

Since pr+ (1.6) is the projection from 𝑀ℓ+1/2 (4) to 𝑀+
ℓ+1/2 (4), we have

⟨𝑔,G𝐷,𝑘,𝑒⟩ =
3
2

(
1 − 2−𝑘

(
𝐷

2

))−1
⟨pr+ 𝑔,Tr4𝐷4 ( [𝐺𝑘,4𝐷 (𝑧), 𝜃 ( |𝐷 |𝑧)]𝑒⟩

=
3
2

(
1 − 2−𝑘

(
𝐷

2

))−1
⟨𝑔,Tr4𝐷4 ( [𝐺𝑘,4𝐷 (𝑧), 𝜃 ( |𝐷 |𝑧)]𝑒⟩

=
3
2

(
1 − 2−𝑘

(
𝐷

2

))−1
⟨𝑔, ( [𝐺𝑘,4𝐷 (𝑧), 𝜃 ( |𝐷 |𝑧)]𝑒⟩Γ0 (4 |𝐷 | )

=
3
4
𝐿𝐷 (1 − 𝑘)⟨𝑔(𝑧), [𝐸∗

𝑘,4𝐷 (𝑧; 𝜒𝐷), 𝜃 ( |𝐷 |𝑧)]𝑒⟩Γ0 (4 |𝐷 | )

=
3(−1)𝑒

4
𝐿𝐷 (1 − 𝑘)⟨𝑔(𝑧), [𝜃 ( |𝐷 |𝑧), 𝐸∗

𝑘,4𝐷 (𝑧; 𝜒𝐷)]𝑒⟩Γ0 (4 |𝐷 | ) ,

where we used (4.7) in the second to last equality. Now Lemma 5.1 gives

⟨𝑔,G𝐷,𝑘,𝑒⟩ =
3(−1)𝑒

4
𝐿𝐷 (1 − 𝑘) (−1)

𝑒

𝑒!
Γ(𝑘 + 2𝑒 − 1

2 )Γ(𝑘 + 𝑒)
(4𝜋)𝑘+2𝑒−1/2Γ(𝑘)

∞∑︁
𝑛=1

2𝑐𝑔 (𝑛2 |𝐷 |)
( |𝐷 |𝑛2)𝑘+𝑒+1/2−1

=
3
2
Γ(𝑘 + 2𝑒 − 1

2 )Γ(𝑘 + 𝑒)
𝑒!(4𝜋)𝑘+2𝑒−1/2Γ(𝑘)

𝐿𝐷 (1 − 𝑘) |𝐷 |−(𝑘+𝑒−1/2)
∞∑︁
𝑛=1

𝑐𝑔 (𝑛2 |𝐷 |)
𝑛2𝑘+2𝑒−1

.
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By [10, Theorem 1 (ii)], we get

𝐿𝐷 (𝑠 − (𝑘 + 2𝑒) + 1)
∞∑︁
𝑛=1

𝑐𝑔 (𝑛2 |𝐷 |)
𝑛2𝑘+2𝑒−1

= 𝑐𝑔 ( |𝐷 |)𝐿 ( 𝑓 , 𝑠),

which implies that

⟨𝑔,G𝐷,𝑘,𝑒⟩ =
3
2
Γ(𝑘 + 2𝑒 − 1

2 )Γ(𝑘 + 𝑒)
𝑒!(4𝜋)𝑘+2𝑒−1/2Γ(𝑘)

𝐿𝐷 (1 − 𝑘)
𝐿𝐷 (𝑘) |𝐷 |−𝑘−𝑒+1/2𝐿 ( 𝑓 , 2𝑘 + 2𝑒 − 1)𝑐𝑔 ( |𝐷 |),

as desired. ■

6 Fourier expansions

In this section, we compute the Fourier coefficients needed for the proof of Theorem
1.1. It is convenient to have explicit formulas for 𝐺𝑘,𝐷 and 𝜃 under the action of cer-
tain matrices in SL2 (Z), which we do in Lemmas 6.1 and 6.2. Propositions 6.3 and 6.4
then give formulas for F𝐷,𝑘,𝑒 and G𝐷,𝑘,𝑒 , which we use in the final computation of the
Fourier coefficients carried out in Lemmas 6.5 and 6.6.

Lemma 6.1 Let 𝑘 ≥ 3. Suppose 𝐷 is an odd fundamental discriminant and 𝐷 = 𝐷1𝐷2 is a
product of two fundamental discriminants. Let 𝛾 =

[
𝑎 𝑏
𝑐 𝑑

]
∈ SL2 (Z) with gcd(𝑐, 𝐷) = |𝐷1 |.

Then

𝐺𝑘,𝐷 (𝑧)
����
𝑘

[
𝑎 𝑏

𝑐 𝑑

]
=

(
𝐷2

𝑐

) (
𝐷1

𝑑 |𝐷2 |

) (
𝐷2

|𝐷1 |

)
𝜀 |𝐷1 |
𝜀 |𝐷 |

|𝐷2 |−1/2𝐺𝑘,𝐷1 ,𝐷2

(
𝑧 + 𝑐∗𝑑

|𝐷2 |

)
,

where 𝑐∗ is an integer with 𝑐𝑐∗ ≡ 1 (mod |𝐷2 |), and 𝜀𝑛 is given by

𝜀𝑛 =

{
1 𝑛 ≡ 1 (mod 4),
𝑖 𝑛 ≡ 3 (mod 4).

(6.1)

Proof We follow the idea in Gross-Zagier [5, pp. 273-275]. By equation (4.6), we have

2(−2𝜋𝑖)𝑘𝐺 (𝜒𝐷)
(𝑘 − 1)!|𝐷 |𝑘

𝐺𝑘,𝐷 (𝑧)
����
𝑘

[
𝑎 𝑏

𝑐 𝑑

]
=

∑︁′

𝑙,𝑟∈Z
𝐷 |𝑙

𝜒𝐷 (𝑟)
(𝑙 (𝑎𝑧 + 𝑏) + 𝑟 (𝑐𝑧 + 𝑑))𝑘

=
∑︁′

𝑚,𝑛∈Z
𝑚𝑑≡𝑛𝑐 mod |𝐷 |

𝜒𝐷 (𝑎𝑛 − 𝑏𝑚)
(𝑚𝑧 + 𝑛)𝑘

,

where (𝑚, 𝑛) = (𝑙, 𝑟)
[
𝑎 𝑏
𝑐 𝑑

]
. Since 𝑚𝑑 ≡ 𝑛𝑐 (mod |𝐷 |), we have

𝑑 (𝑎𝑛 − 𝑏𝑚) = 𝑎𝑑𝑛 − 𝑏𝑚𝑑 ≡ 𝑎𝑑𝑛 − 𝑏𝑐𝑛 ≡ 𝑛 (mod |𝐷 |), (6.2)
𝑐(𝑎𝑛 − 𝑏𝑚) = 𝑎𝑛𝑐 − 𝑏𝑐𝑚 ≡ 𝑎𝑑𝑚 − 𝑏𝑐𝑚 ≡ 𝑚 (mod |𝐷 |). (6.3)

Note also that gcd(𝐷1, 𝐷2) = 1. Then (6.2) and (6.3) imply that

𝜒𝐷 (𝑎𝑛 − 𝑏𝑚) = 𝜒𝐷1 (𝑎𝑛 − 𝑏𝑚)𝜒𝐷2 (𝑎𝑛 − 𝑏𝑚)
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= 𝜒𝐷1 (𝑑)𝜒𝐷1 (𝑛)𝜒𝐷2 (𝑐)𝜒𝐷2 (𝑚).

Since 𝐷1, 𝐷2 | (𝑚𝑑 − 𝑛𝑐), (𝑑, 𝐷1) = 1, (𝑐, 𝐷2) = 1 and (𝑐, 𝐷) = |𝐷1 |, we must
have 𝐷1 | 𝑚; and 𝑛 ≡ 𝑐∗𝑚𝑑 (mod |𝐷2 |). By the Chinese Remainder Theorem, we can
choose 𝑐∗ such that 𝐷1 | 𝑐∗. Now we write 𝑛 = 𝑐∗𝑚𝑑 + 𝑙 |𝐷2 |. It follows that

2(−2𝜋𝑖)𝑘𝐺 (𝜒𝐷)
(𝑘 − 1)!|𝐷 |𝑘

𝐺𝑘,𝐷 (𝑧)
����
𝑘

[
𝑎 𝑏

𝑐 𝑑

]
=

∑︁′

𝑚,𝑙∈Z
𝐷1 |𝑚

𝜒𝐷1 (𝑑)𝜒𝐷1 (𝑐∗𝑚𝑑 + 𝑙 |𝐷2 |)𝜒𝐷2 (𝑐)𝜒𝐷2 (𝑚)
(𝑚𝑧 + 𝑚𝑐∗𝑑 + 𝑙 |𝐷2 |)𝑘

= 𝜒𝐷2 (𝑐)𝜒𝐷1 (𝑑 |𝐷2 |)
∑︁′

𝑚,𝑙∈Z
𝐷1 |𝑚

𝜒𝐷2 (𝑚)𝜒𝐷1 (𝑙)
(𝑚𝑧 + 𝑚𝑐∗𝑑 + 𝑙 |𝐷2 |)𝑘

= 𝜒𝐷2 (𝑐)𝜒𝐷1 (𝑑 |𝐷2 |) |𝐷2 |−𝑘
∑︁′

𝑚,𝑙∈Z
𝐷1 |𝑚

𝜒𝐷2 (𝑚)𝜒𝐷1 (𝑙)(
𝑚 𝑧+𝑐∗𝑑

|𝐷2 | + 𝑙

) 𝑘 .
(6.4)

Note that (4.4) implies that∑︁′

𝑚,𝑙∈Z
𝐷1 |𝑚

𝜒𝐷2 (𝑚)𝜒𝐷1 (𝑙)(
𝑚 𝑧+𝑐∗𝑑

|𝐷2 | + 𝑙

) 𝑘 =
2(−2𝜋𝑖)𝑘𝐺 (𝜒𝐷1 )
|𝐷1 |𝑘 (𝑘 − 1)!

𝜒𝐷2 ( |𝐷1 |)𝐺𝑘,𝐷1 ,𝐷2

(
𝑧 + 𝑐∗𝑑

|𝐷2 |

)
. (6.5)

Plugging (6.5) into (6.4) gives

𝐺𝑘,𝐷 (𝑧)
����
𝑘

[
𝑎 𝑏

𝑐 𝑑

]
= 𝜒𝐷2 (𝑐)𝜒𝐷1 (𝑑 |𝐷2 |)𝜒𝐷2 ( |𝐷1 |)

𝐺 (𝜒𝐷1 )
𝐺 (𝜒𝐷)

𝐺𝑘,𝐷1 ,𝐷2

(
𝑧 + 𝑐∗𝑑

|𝐷2 |

)
.(6.6)

From [3, Proposition 2.2.24. p. 49] we know that

𝐺 (𝜒𝐷1 ) = 𝜀 |𝐷1 | |𝐷1 |1/2 and 𝐺 (𝜒𝐷) = 𝜀 |𝐷 | |𝐷 |1/2,

which implies that

𝐺𝑘,𝐷 (𝑧)
����
𝑘

[
𝑎 𝑏

𝑐 𝑑

]
=

(
𝐷2

𝑐

) (
𝐷1

𝑑 |𝐷2 |

) (
𝐷2

|𝐷1 |

)
𝜀 |𝐷1 |
𝜀 |𝐷 |

|𝐷2 |−1/2𝐺𝑘,𝐷1 ,𝐷2

(
𝑧 + 𝑐∗𝑑

|𝐷2 |

)
,

as desired. ■

Lemma 6.2 Let 𝐷 be an odd fundamental discriminant and 𝐷 = 𝐷1𝐷2 be a product of two
fundamental discriminants. Then

𝜃 (𝑧)
���� 1
2

[
|𝐷 | 0
4|𝐷1 | 1

]
= 𝜀−1|𝐷2 | |𝐷 |1/4 |𝐷2 |−1/2𝜃

(
|𝐷1 |𝑧 + 4∗

|𝐷2 |

)
,

where 4∗ is an integer such that 44∗ ≡ 1 (mod |𝐷2 |).
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Proof Since (4, 𝐷2) = 1, there exist 𝑛, 𝑚 ∈ Z such that 𝑛|𝐷2 | + 4𝑚 = 1 and[
|𝐷 | 0
4|𝐷1 | 1

]
=

[
|𝐷2 | −𝑚
4 𝑛

] [
|𝐷1 | 𝑚

0 |𝐷2 |

]
.

It follows that

𝜃 (𝑧)
���� 1
2

[
|𝐷 | 0
4|𝐷1 | 1

]
= 𝜃 (𝑧)

���� 1
2

[
|𝐷2 | −𝑚
4 𝑛

] [
|𝐷1 | 𝑚

0 |𝐷2 |

]
.

Recall that the transformation law for 𝜃 (see e.g [8, p. 148]) gives

𝜃 (𝑧)
���� 1
2

[
|𝐷2 | −𝑚
4 𝑛

]
=

(
4
𝑛

)
𝜀−1𝑛 𝜃 (𝑧),

where 𝜀𝑛 is as in (6.1). Since 𝑛|𝐷2 | + 4𝑚 = 1 and 𝐷2 ≡ 1 (mod 4), we have 𝜀𝑛 = 𝜀 |𝐷2 | .
Hence

𝜃 (𝑧)
���� 1
2

[
|𝐷 | 0
4|𝐷1 | 1

]
=𝜀 |𝐷2 |𝜃 (𝑧)

����
1/2

[
|𝐷1 | 𝑚

0 |𝐷2 |

]
=𝜀 |𝐷2 | |𝐷 |1/4 |𝐷2 |−1/2𝜃

(
|𝐷1 |𝑧 + 4∗

|𝐷2 |

)
,

which gives the desired result. ■

Next, we give some computations generalizing the lemma in [9, p. 193].

Proposition 6.3. Let 𝑘 ≥ 4 and 𝑒 > 0 with ℓ = 𝑘 + 2𝑒 and let 𝐷 be an odd fundamental
discriminant with (−1)ℓ𝐷 > 0. Then

F𝐷,𝑘,𝑒 (𝑧) =
∑︁

𝐷=𝐷1𝐷2

(
𝐷2

−1

)
|𝐷2 |−2𝑒𝑈 |𝐷2 | ( [𝐺𝑘,𝐷1 ,𝐷2 (𝑧), 𝐺𝑘,𝐷1 ,𝐷2 (𝑧)]2𝑒),

where the summation is over all decompositions of 𝐷 as a product of two fundamental
discriminants, and𝑈 |𝐷2 | is the operator defined in (3.1).

Proof We consider the following system of representatives (Lemma 3.1) of
Γ0 ( |𝐷 |)\SL2 (Z),{[

1 0
|𝐷1 | 1

] [
1 𝜇

0 1

]
where 𝐷 = 𝐷1𝐷2, 𝜇 mod |𝐷2 |

}
and 𝐷1, 𝐷2 are fundamental discriminants. By (6.6) we have

𝐺𝑘,𝐷 (𝑧)
����
𝑘

[
1 0

|𝐷1 | 1

] [
1 𝜇

0 1

]
=

(
𝐷2

|𝐷1 |

) (
𝐷1

|𝐷2 |

) (
𝐷2

|𝐷1 |

)
𝐺 (𝜒𝐷1 )
𝐺 (𝜒𝐷)

𝐺𝑘,𝐷1 ,𝐷2

(
𝑧 + 𝜇 + |𝐷1 |∗

|𝐷2 |

)
where |𝐷1 |∗ |𝐷1 | = 1 mod |𝐷2 |. We then compute F𝐷,𝑘,𝑒 (𝑧), which is

Tr𝐷1 ( [𝐺𝑘,𝐷 (𝑧), 𝐺𝑘,𝐷 (𝑧)]2𝑒)

=
∑︁

𝐷1𝐷2=𝐷

∑︁
𝜇 mod |𝐷2 |

[
𝐺𝑘,𝐷 (𝑧), 𝐺𝑘,𝐷 (𝑧)

]
2𝑒

����
2𝑘+4𝑒

[
1 0

|𝐷1 | 1

] [
1 𝜇

0 1

]
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=
∑︁

𝐷1𝐷2=𝐷

∑︁
𝜇 mod |𝐷2 |

[
𝐺𝑘,𝐷 (𝑧)

����
𝑘

[
1 0

|𝐷1 | 1

] [
1 𝜇

0 1

]
, 𝐺𝑘,𝐷 (𝑧)

����
𝑘

[
1 0

|𝐷1 | 1

] [
1 𝜇

0 1

] ]
2𝑒

=
∑︁

𝐷1𝐷2=𝐷

∑︁
𝜇 mod |𝐷2 |

(
𝐷2

−1

)
|𝐷2 |−1

[
𝐺𝑘,𝐷1 ,𝐷2

(
𝑧 + 𝜇 + |𝐷1 |∗

|𝐷2 |

)
, 𝐺𝑘,𝐷1 ,𝐷2

(
𝑧 + 𝜇 + |𝐷1 |∗

|𝐷2 |

)]
2𝑒
,

where we used the well-known fact 𝐺 (𝜒𝐷1 )2 =

(
𝐷1
−1

)
|𝐷1 | and 𝐺 (𝜒𝐷)2 =

(
𝐷
−1

)
|𝐷 | in

the last equality (see e.g [3, Corollary 2.1.47 on p. 33]). On the other hand, we have by
our equivalent definition (3.2) of the𝑈 operator that

𝑈 |𝐷2 | ( [𝐺𝑘,𝐷1 ,𝐷2 (𝑧), 𝐺𝑘,𝐷1 ,𝐷2 (𝑧)]2𝑒)

=
∑︁

𝑣 mod |𝐷2 |
|𝐷2 | (2𝑘+4𝑒)/2−1 [𝐺𝑘,𝐷1 ,𝐷2 (𝑧), 𝐺𝑘,𝐷1 ,𝐷2 (𝑧)]2𝑒

����
2𝑘+4𝑒

[
1 𝑣

0 |𝐷2 |

]
=

∑︁
𝑣 mod |𝐷2 |

|𝐷2 | (2𝑘+4𝑒)/2−1
[
|𝐷2 |−𝑘/2𝐺𝑘,𝐷1 ,𝐷2

(
𝑧 + 𝑣

|𝐷2 |

)
, |𝐷2 |−𝑘/2𝐺𝑘,𝐷1 ,𝐷2

(
𝑧 + 𝑣

|𝐷2 |

)]
2𝑒

=
∑︁

𝑣 mod |𝐷2 |
|𝐷2 |2𝑒−1

[
𝐺𝑘,𝐷1 ,𝐷2

(
𝑧 + 𝑣

|𝐷2 |

)
, 𝐺𝑘,𝐷1 ,𝐷2

(
𝑧 + 𝑣

|𝐷2 |

)]
2𝑒
.

It follows that∑︁
𝐷=𝐷1𝐷2

(
𝐷2

−1

)
|𝐷2 |−2𝑒𝑈 |𝐷2 | ( [𝐺𝑘,𝐷1 ,𝐷2 (𝑧), 𝐺𝑘,𝐷1 ,𝐷2 (𝑧)]2𝑒)

=
∑︁

𝐷1𝐷2=𝐷

∑︁
𝑣 mod |𝐷2 |

(
𝐷2

−1

)
|𝐷2 |−1

[
𝐺𝑘,𝐷1 ,𝐷2

(
𝑧 + 𝑣

|𝐷2 |

)
, 𝐺𝑘,𝐷1 ,𝐷2

(
𝑧 + 𝑣

|𝐷2 |

)]
2𝑒

= Tr𝐷1 ( [𝐺𝑘,𝐷 (𝑧), 𝐺𝑘,𝐷 (𝑧)]2𝑒),

as desired. ■

Proposition 6.4. Let 𝑘 ≥ 4 and 𝑒 > 0 and let 𝐷 be an odd fundamental discriminant with
(−1)𝑘𝐷 > 0. Then

G𝐷,𝑘,𝑒 (𝑧) =
∑︁

𝐷=𝐷1𝐷2

(
𝐷2

−|𝐷1 |

)
|𝐷2 |−𝑒𝑈 |𝐷2 | ( [𝐺𝑘,𝐷1 ,𝐷2 (4𝑧), 𝜃 ( |𝐷1 |𝑧)]𝑒)

where the summation is over all decompositions of 𝐷 as a product of two fundamental
discriminants, and𝑈 |𝐷2 | is the map defined in (3.1).

Proof The proof follows a similar outline to Proposition 6.3. FromProposition 3.9, we
know that G𝐷,𝑘,𝑒 (𝑧) = Tr4𝐷4

[
𝐺𝑘,𝐷 (4𝑧), 𝜃 ( |𝐷 |𝑧)

]
𝑒
. We use the coset representatives

(Lemma 3.1) for Γ0 (4|𝐷 |)\Γ0 (4),{
𝛾𝐷1 ,𝜇 =

[
1 0

4|𝐷1 | 1

] [
1 𝜇

0 1

]
: where 𝐷 = 𝐷1𝐷2, 𝜇 (mod |𝐷2 |)

}
,
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where 𝐷 = 𝐷1𝐷2 is a product of fundamental discriminants. By a simple casework we
have

𝜀 |𝐷1 |
𝜀 |𝐷 | · 𝜀 |𝐷2 |

(
𝐷1

|𝐷2 |

)
=

(
𝐷2

−|𝐷1 |

)
. (6.7)

Now, Lemmas 6.1 and 6.2 together with (6.7) imply that∑︁
𝐷1𝐷2=𝐷

∑︁
𝜇 mod |𝐷2 |

[𝐺𝑘,𝐷 (4𝑧), 𝜃 ( |𝐷 |𝑧)]𝑒
��
𝑘+2𝑒+ 1

2
𝛾𝐷1 ,𝜇

=
∑︁

𝐷1𝐷2=𝐷

∑︁
𝜇 mod |𝐷2 |

𝜀 |𝐷1 |
𝜀 |𝐷 | · 𝜀 |𝐷2 |

(
𝐷1

|𝐷2 |

)
|𝐷2 |−1

×
[
𝐺𝑘,𝐷1 ,𝐷2

(
4𝑧 + |𝐷1 |∗ + 4𝜇

|𝐷2 |

)
, 𝜃

(
|𝐷1 |𝑧 + 4∗ + |𝐷1 |𝜇

|𝐷2 |

)]
𝑒

=
∑︁

𝐷1𝐷2=𝐷

∑︁
𝜇 mod |𝐷2 |

(
𝐷2

−|𝐷1 |

)
|𝐷2 |−1

×
[
𝐺𝑘,𝐷1 ,𝐷2

(
4(𝑧 + 4∗ |𝐷1 |∗ + 𝜇)

|𝐷2 |

)
, 𝜃

(
|𝐷1 | (𝑧 + 4∗ |𝐷1 |∗ + 𝜇)

|𝐷2 |

)]
𝑒

=
∑︁

𝐷1𝐷2=𝐷

(
𝐷2

−|𝐷1 |

)
|𝐷2 |−𝑒𝑈𝐷2 [𝐺𝑘,𝐷1 ,𝐷2 (4𝑧), 𝜃 ( |𝐷1 |𝑧)]𝑒,

as desired. ■

We are now ready to compute the Fourier expansions of F𝐷,𝑘,𝑒 and S𝐷 (G𝐷,𝑘,𝑒).

Lemma 6.5 Let 𝑘 ≥ 4, 𝑒 > 0 and let 𝐷 be an odd fundamental discriminant with
(−1)𝑘𝐷 > 0. Then we have the Fourier expansion

F𝐷,𝑘,𝑒 (𝑧) =
∑︁
𝑛≥1

𝑓𝐷,𝑘,𝑒 (𝑛)𝑞𝑛,

where

𝑓𝐷,𝑘,𝑒 (𝑛) =
∑︁

𝐷=𝐷1𝐷2

(
𝐷2

−1

)
|𝐷2 |−2𝑒

∑︁
𝑎1 ,𝑎2≥0

𝑎1+𝑎2=𝑛 |𝐷2 |

∑︁
𝑑 | (𝑎1 ,𝑎2 )

(
𝐷

𝑑

)
𝑑𝑘−1𝜎𝑘−1,𝐷1 ,𝐷2

( 𝑎1𝑎2
𝑑2

)
𝐶𝑒,𝑎1 ,𝑎2 ,

𝐶𝑒,𝑎1 ,𝑎2 =

2𝑒∑︁
𝑟=0

(−1)𝑟𝑎𝑟1𝑎2𝑒−𝑟2

(
2𝑒 + 𝑘 − 1
2𝑒 − 𝑟

) (
2𝑒 + 𝑘 − 1

𝑟

)
.

Proof By Proposition 6.3, we have

𝑓𝐷,𝑘,𝑒 (𝑛) =
∑︁

𝐷=𝐷1𝐷2

(
𝐷2

−1

)
|𝐷2 |−2𝑒𝐹𝐷1 ,𝐷2 ,𝑒 (𝑛),
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where𝐹𝐷1 ,𝐷2 ,𝑒 (𝑛) is the 𝑛|𝐷2 |-th Fourier coefficient of [𝐺𝑘,𝐷1 ,𝐷2 (𝑧), 𝐺𝑘,𝐷1 ,𝐷2 (𝑧)]2𝑒 .
Note that

𝐺𝑘,𝐷1 ,𝐷2 (𝑧) (𝑟 ) =
∑︁
𝑛≥0

𝑛𝑟𝜎𝑘−1,𝐷1 ,𝐷2 (𝑛)𝑞𝑛,

which implies that the 𝑛|𝐷2 |-th Fourier coefficient of𝐺 (𝑟 )
𝑘,𝐷1 ,𝐷2

(𝑧)𝐺 (2𝑒−𝑟 )
𝑘,𝐷1 ,𝐷2

(𝑧) is∑︁
𝑎1 ,𝑎2≥0

𝑎1+𝑎2=𝑛 |𝐷2 |

𝑎𝑟1𝜎𝑘−1,𝐷1 ,𝐷2 (𝑎1)𝑎2𝑒−𝑟2 𝜎𝑘−1,𝐷1 ,𝐷2 (𝑎2).

It follows that 𝐹𝐷1 ,𝐷2 ,𝑒 (𝑛) =
2𝑒∑︁
𝑟=0

(−1)𝑟
(
2𝑒 + 𝑘 − 1
2𝑒 − 𝑟

) (
2𝑒 + 𝑘 − 1

𝑟

) ∑︁
𝑎1 ,𝑎2≥0

𝑎1+𝑎2=𝑛 |𝐷2 |

𝑎𝑟1𝜎𝑘−1,𝐷1 ,𝐷2 (𝑎1)𝑎2𝑒−𝑟2 𝜎𝑘−1,𝐷1 ,𝐷2 (𝑎2)

=
∑︁

𝑎1 ,𝑎2≥0
𝑎1+𝑎2=𝑛 |𝐷2 |

𝜎𝑘−1,𝐷1 ,𝐷2 (𝑎1)𝜎𝑘−1,𝐷1 ,𝐷2 (𝑎2)
2𝑒∑︁
𝑟=0

𝑎𝑟1𝑎
2𝑒−𝑟
2 (−1)𝑟

(
2𝑒 + 𝑘 − 1
2𝑒 − 𝑟

) (
2𝑒 + 𝑘 − 1

𝑟

)

=
∑︁

𝑎1 ,𝑎2≥0
𝑎1+𝑎2=𝑛 |𝐷2 |

𝜎𝑘−1,𝐷1 ,𝐷2 (𝑎1)𝜎𝑘−1,𝐷1 ,𝐷2 (𝑎2)𝐶𝑒,𝑎1 ,𝑎2

=
∑︁

𝑎1 ,𝑎2≥0
𝑎1+𝑎2=𝑛 |𝐷2 |

∑︁
𝑑 | (𝑎1 ,𝑎2 )

(
𝐷

𝑑

)
𝑑𝑘−1𝜎𝑘−1,𝐷1 ,𝐷2

( 𝑎1𝑎2
𝑑2

)
𝐶𝑒,𝑎1 ,𝑎2 .

where the last equality is given by the Hecke multiplicative relation [9, p. 194]

𝜎𝑘−1,𝐷1 ,𝐷2 (𝑎1)𝜎𝑘−1,𝐷1 ,𝐷2 (𝑎2) =
∑︁

𝑑 | (𝑎1 ,𝑎2 )

(
𝐷

𝑑

)
𝑑𝑘−1𝜎𝑘−1,𝐷1 ,𝐷2

( 𝑎1𝑎2
𝑑2

)
.

This finishes the proof. ■

Lemma 6.6 Let 𝑘 ≥ 4, 𝑒 > 0 and let 𝐷 be an odd fundamental discriminant with
(−1)𝑘𝐷 > 0. Then we have the Fourier expansion

S𝐷

(
G𝐷,𝑘,𝑒 (𝑧))

)
=

∑︁
𝑛≥1

𝑔𝐷,𝑘,𝑒 (𝑛)𝑞𝑛,

where

𝑔𝐷,𝑘,𝑒 (𝑛) = |𝐷 |𝑒
∑︁

𝐷=𝐷1𝐷2

(
𝐷2

−1

)
|𝐷2 |−2𝑒

∑︁
𝑎1 ,𝑎2≥0

𝑎1+𝑎2=𝑛 |𝐷2 |

∑︁
𝑑 | (𝑎1 ,𝑎2 )

(
𝐷

𝑑

)
𝑑𝑘−1𝜎𝑘−1,𝐷1 ,𝐷2

( 𝑎1𝑎2
𝑑2

)
𝐸 (𝑎1, 𝑎2),

𝐸 (𝑎1, 𝑎2) =
𝑒∑︁

𝑟=0
(−1)𝑟

(
𝑒 + 𝑘 − 1
𝑒 − 𝑟

) (
𝑒 − 1/2

𝑟

)
4𝑟 (𝑎1𝑎2)𝑟 (𝑎2 − 𝑎1)2(𝑒−𝑟 ) .
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Proof By Proposition 6.4 and (1.9), we have S𝐷 (G𝐷,𝑘,𝑒 (𝑧)) =∑︁
𝐷1𝐷2=𝐷

(
𝐷2

−|𝐷1 |

)
|𝐷2 |−𝑒

𝑒∑︁
𝑟=0

(−1)𝑟
(
𝑒 + 𝑘 − 1
𝑒 − 𝑟

)(
𝑒 − 1/2

𝑟

)
S𝐷

[
𝑈 |𝐷2 | (𝐺𝑘,𝐷1 ,𝐷2 (4𝑧) (𝑟 )𝜃 ( |𝐷1 |𝑧) (𝑒−𝑟 ) )

]
,

where we abuse notation to move the Shimura operator S𝐷 into the sums. Note that

𝐺𝑘,𝐷1 ,𝐷2 (4𝑧) (𝑟 ) =
∑︁
𝑛≥0

(4𝑛)𝑟𝜎𝑘−1,𝐷1 ,𝐷2 (𝑛)𝑞4𝑛,

𝜃 ( |𝐷1 |𝑧) (𝑒−𝑟 ) =
∑︁
𝑛∈Z

(𝑛2 |𝐷1 |)𝑒−𝑟𝑞𝑛
2 |𝐷1 | .

This allows us to rewrite the product

𝐺𝑘,𝐷1 ,𝐷2 (4𝑧) (𝑟 )𝜃 ( |𝐷1 |𝑧) (𝑒−𝑟 ) =
∑︁
𝑛≥0

𝑐𝑟 (𝑛)𝑞𝑛,

𝑐𝑟 (𝑛) :=
∑︁

𝑚≡𝑛 mod 2

(
𝑛 − 𝑚2 |𝐷1 |

)𝑟
𝜎𝑘−1,𝐷1 ,𝐷2

(
𝑛 − 𝑚2 |𝐷1 |

4

)
(𝑚2 |𝐷1 |)𝑒−𝑟 ,

where we take the convention that 𝜎𝑘−1,𝐷1 ,𝐷2 (𝑥) = 0 if 𝑥 ∉ Z or 𝑥 < 0. It follows that

𝑈 |𝐷2 |
(
𝐺𝑘,𝐷1 ,𝐷2 (4𝑧) (𝑟 )𝜃 ( |𝐷1 |𝑧) (𝑒−𝑟 )

)
= 𝑈 |𝐷2 |

(∑︁
𝑛≥1

𝑐𝑟 (𝑛)𝑞𝑛
)
=

∑︁
𝑛≥1

𝑐𝑟 (𝑛|𝐷2 |)𝑞𝑛.(6.8)

Now we compute the 𝐷-th Shimura lift of (6.8). If we write

S𝐷

(∑︁
𝑛≥1

𝑐𝑟 (𝑛|𝐷2 |)𝑞𝑛
)
=

∑︁
𝑛≥1

𝑎𝑟 ,𝐷2 (𝑛)𝑞𝑛

for some 𝑎𝑟 ,𝐷2 (𝑛), then by the definition of S𝐷 (1.1), we have 𝑎𝑟 ,𝐷2 (𝑛) =∑︁
𝑑 |𝑛

(
𝐷

𝑑

)
𝑑𝑘+2𝑒−1

∑︁
𝑚∈Z

(
|𝐷2 | |𝐷 | 𝑛

2

𝑑2
− |𝐷1 |𝑚2

)𝑟 (
𝑚2 |𝐷1 |

)𝑒−𝑟
𝜎𝑘−1,𝐷1 ,𝐷2

(
|𝐷2 | |𝐷 | 𝑛2

𝑑2 − 𝑚2 |𝐷1 |
4

)
.

Note that we can write

|𝐷2 | |𝐷 | 𝑛2
𝑑2 − 𝑚2 |𝐷1 |
4

= |𝐷1 |𝑎1𝑎2, where 𝑎1 =
|𝐷2 | 𝑛𝑑 + 𝑚

2
and 𝑎2 =

|𝐷2 | 𝑛𝑑 − 𝑚

2
.

It follows that 𝑎𝑟 ,𝐷2 (𝑛) =∑︁
𝑑 |𝑛

(
𝐷

𝑑

)
𝑑𝑘+2𝑒−1

∑︁
𝑎1 ,𝑎2≥0

𝑎1+𝑎2= 𝑛
𝑑
|𝐷2 |

(4|𝐷1 |𝑎1𝑎2)𝑟 (𝑎2 − 𝑎1)2(𝑒−𝑟 ) |𝐷1 |𝑒−𝑟𝜎𝑘−1,𝐷1 ,𝐷2 ( |𝐷1 |𝑎1𝑎2)
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=
∑︁

𝑎1 ,𝑎2≥0
𝑎1+𝑎2=𝑛 |𝐷2 |

∑︁
𝑑 | (𝑎1 ,𝑎2 )

(
𝐷

𝑑

)
𝑑𝑘+2𝑒−1

(
4|𝐷1 |

𝑎1𝑎2

𝑑2

)𝑟 ( 𝑎2 − 𝑎1

𝑑

)2(𝑒−𝑟 )
|𝐷1 |𝑒−𝑟𝜎𝑘−1,𝐷1 ,𝐷2

(
|𝐷1 |

𝑎1𝑎2

𝑑2

)

=
∑︁

𝑎1 ,𝑎2≥0
𝑎1+𝑎2=𝑛 |𝐷2 |

∑︁
𝑑 | (𝑎1 ,𝑎2 )

(
𝐷

𝑑

) (
𝐷2

|𝐷1 |

)
𝑑𝑘−1 |𝐷1 |𝑒 (4𝑎1𝑎2)𝑟 (𝑎2 − 𝑎1)2(𝑒−𝑟 )𝜎𝑘−1,𝐷1 ,𝐷2

( 𝑎1𝑎2
𝑑2

)
.

(6.9)

Now we substitute (6.9) back into our equation for S𝐷 (G𝐷,𝑘,𝑒 (𝑧)). Let

S𝐷 (G𝐷,𝑘,𝑒 (𝑧)) =
∑︁
𝑛≥1

𝑔𝐷,𝑘,𝑒 (𝑛)𝑞𝑛.

Then 𝑔𝐷,𝑘,𝑒 (𝑛) =∑︁
𝐷=𝐷1𝐷2

(
𝐷2

−|𝐷1 |

)
|𝐷2 |−𝑒

𝑒∑︁
𝑟=0

(−1)𝑟
(
𝑒 + 𝑘 − 1
𝑒 − 𝑟

) (
𝑒 − 1/2

𝑟

)
𝑎𝑟 ,𝐷2 (𝑛)

=
∑︁

𝐷=𝐷1𝐷2

(
𝐷2

−|𝐷1 |

)
|𝐷2 |−𝑒

𝑒∑︁
𝑟=0

(−1)𝑟
(
𝑒 + 𝑘 − 1
𝑒 − 𝑟

) (
𝑒 − 1/2

𝑟

)
×

∑︁
𝑎1 ,𝑎2≥0

𝑎1+𝑎2=𝑛 |𝐷2 |

∑︁
𝑑 | (𝑎1 ,𝑎2 )

(
𝐷

𝑑

) (
𝐷2

|𝐷1 |

)
𝑑𝑘−1 |𝐷1 |𝑒 (4𝑎1𝑎2)𝑟 (𝑎2 − 𝑎1)2(𝑒−𝑟 )𝜎𝑘−1,𝐷1 ,𝐷2

( 𝑎1𝑎2
𝑑2

)

=|𝐷 |𝑒
∑︁

𝐷=𝐷1𝐷2

(
𝐷2

−1

)
|𝐷2 |−2𝑒

∑︁
𝑎1 ,𝑎2≥0

𝑎1+𝑎2=𝑛 |𝐷2 |

∑︁
𝑑 | (𝑎1 ,𝑎2 )

(
𝐷

𝑑

)
𝑑𝑘−1𝜎𝑘−1,𝐷1 ,𝐷2

( 𝑎1𝑎2
𝑑2

)
×

𝑒∑︁
𝑟=0

(−1)𝑟
(
𝑒 + 𝑘 − 1
𝑒 − 𝑟

) (
𝑒 − 1/2

𝑟

)
4𝑟 (𝑎1𝑎2)𝑟 (𝑎2 − 𝑎1)2(𝑒−𝑟 )

=|𝐷 |𝑒
∑︁

𝐷=𝐷1𝐷2

(
𝐷2

−1

)
|𝐷2 |−2𝑒

©­­­«
∑︁

𝑎1 ,𝑎2≥0
𝑎1+𝑎2=𝑛 |𝐷2 |

∑︁
𝑑 | (𝑎1 ,𝑎2 )

(
𝐷

𝑑

)
𝑑𝑘−1𝜎𝑘−1,𝐷1 ,𝐷2

( 𝑎1𝑎2
𝑑2

)
𝐸 (𝑎1, 𝑎2)

ª®®®¬ ,
as desired. ■

7 Discussion

It is a folklore conjecture that 𝑆0,𝐷2ℓ (1) = 𝑆2ℓ (1). Luo [13] showed that for ℓ sufficiently
large one has dim 𝑆

0,1
2ℓ (1) ≫ ℓ. Our Theorem 1.2 (the case 𝐷 = 1 was proved earlier by

Xue [24, Proposition 3.5]) provides a possible different approach to the conjecture. By
studying the linear independence of G𝐷,𝑘,𝑒 or F𝐷,𝑘,𝑒 , one could obtain lower bounds
on the dimension of 𝑆0,𝐷2ℓ (1).
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Conjecture 7.1. For ℓ even, 𝐷 a positive fundamental discriminant, the set {G𝐷,𝑘,𝑒 | 𝑘 +
2𝑒 = ℓ, 1 ≤ 𝑒 ≤ ⌊ ℓ6 ⌋} is linearly independent.

We checked this conjecture computationally in the 𝐷 = 1 case up to ℓ = 1000 and
for prime 𝐷 less than 50 up to ℓ = 100, using code written in Pari/GP [7]. In particular,
we computationally verified that the matrix

𝑔𝐷,ℓ−2,1 (4) 𝑔𝐷,ℓ−2,1 (8) . . . 𝑔𝐷,ℓ−2,1 (4⌊ ℓ6 ⌋)
𝑔𝐷,ℓ−4,2 (4) 𝑔𝐷,ℓ−4,2 (8) . . . 𝑔𝐷,ℓ−4,2 (4⌊ ℓ6 ⌋)

...
...

. . .
...

𝑔𝐷,ℓ−2⌊ ℓ6 ⌋,⌊
ℓ
6 ⌋
(4) 𝑔𝐷,ℓ−2⌊ ℓ6 ⌋,⌊

ℓ
6 ⌋
(8) . . . 𝑔𝐷,ℓ−2⌊ ℓ6 ⌋,⌊

ℓ
6 ⌋
(4⌊ ℓ6 ⌋)


,

whereG𝐷,𝑘,𝑒 =
∑

𝑛≥1 𝑔𝐷,𝑘,𝑒 (𝑛)𝑞𝑛 for 1 ≤ 𝑒 ≤ ⌊ ℓ6 ⌋ , has nonzero determinant. Further
work in this area should try to prove that this determinant is nonzero in general.

The conjecturewould have several interesting consequences. Using the isomorphism
between 𝑆0,𝐷

ℓ+1/2 (4) and 𝑆
0,𝐷
2ℓ (1) given by the 𝐷-th Shimura lift, we find that the dimen-

sion of 𝑆0,𝐷2ℓ would be at least ⌊ ℓ6 ⌋. Since the dimension of 𝑆2ℓ (1) for even ℓ is ⌊ 2ℓ12 ⌋ =

⌊ ℓ6 ⌋ and 𝑆
0,𝐷
2ℓ (1) ⊆ 𝑆2ℓ (1), we would conclude that 𝑆0,𝐷2ℓ (1) = 𝑆2ℓ (1), settling the

conjecture on the non-vanishing of twisted central 𝐿-values for Hecke eigenforms.
This would then imply that 𝑆0,𝐷

ℓ+1/2 (4) = 𝑆+
ℓ+1/2 (4), so the Kohnen plus space for 𝑘

even is generated by Hecke eigenforms whose 𝐷-th coefficients are nonzero for all fun-
damental discriminants 𝐷. Further, we would conclude that {G𝐷,𝑘,𝑒}𝑘+2𝑒=ℓ,1≤𝑒≤⌊ ℓ6 ⌋

is
a basis for 𝑆+

ℓ+1/2 (4), and the set {G𝐷,𝑘,𝑒}𝑘+2𝑒=ℓ,0≤𝑒≤⌊ ℓ6 ⌋
is a basis for 𝑀+

ℓ+1/2 (4) (since
the 0-th Rankin-Cohen bracket produces a modular form which is non-cuspidal but
still in the Kohnen plus space). To the best of our knowledge, a similar basis was first
mentioned by Henri Cohen in a MathOverflow post.
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