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Abstract.
We still know relatively little about the local metal density outside

of galaxies and clusters, but at high redshifts (z I"'.J 3) the advent of highly
efficient high-resolution spectrographs on the new 8-10m telescopes has
revolutionized the study of quasar absorption lines. This allows us to
track the bulk of the baryons in the Universe, which are in highly observ-
able form at this redshift, and to determine the metal density of the gas
that contains most of the baryonic material. One of the more surprising
results that has emerged is how uniformly the intergalactic gas at red-
shifts 2-4 is pervaded by metals, and we discuss current limits on such
metal contamination of the low density gas. These measurements will be
useful in understanding and calibrating feedback processes in early gen-
erations of small galaxies. Future work will track the metal distribution
at higher redshift using bright z == 5 SDSS quasars.

1. Introduction

We are currently in the paradoxical situation in which we know much more
about the metal content of the bulk of the baryons at z = 3 than we do about
the equivalent situation in the low-z universe. Locally, we have a baryon density
of roughly p = 2 X 10-32 g cm-3 in galaxies carrying a metal density of roughly
4 x 10-34 g cm-3 for Hi, == 50 km s-1 Mpc-1 (e.g., Cowie 1988; Fukugita et al.
1998), but much of the baryon content is unseen and probably lies in modestly
hot intergalactic gas (Mushotzky, this volume) about whose metal content we
know nothing. In contrast, at z == 3 the bulk of the baryons appear to lie in
warm ionized gas, which is accessible to direct measurement. The presence and
distribution of heavy elements in the intergalactic medium (IGM) at high red-
shift is turning out to be a crucial discriminant of models of structure formation
in the early Universe. This talk will focus on our understanding of the metals
at these high redshifts.

The physical picture of the evolution of the IGM· that has been emerging
both from numerical simulations and from other approximation techniques (Cen
et al. 1994; Zhang, Anninos, & Norman 1995; Hernquist et al. 1996; Bi &
Davidsen 1997; Hui, Gnedin, & Zhang 1997; Gnedin & Hui 1998) explains the
Lyman alpha forest seen in quasar absorption line spectra in the context of
the gravitational growth of structure in the intergalactic gas. In particular, the
absorbers that give rise to low column density lines (N(H I) < 1015 cm-2 ) at
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Figure 1. Column density distribution of C IV absorbers in
Q1422+231 where f(N) is the number of systems per column den-
sity interval per unit redshift path. The data (solid points) have been
grouped into bins of width 0.3 in log N(C IV) for display purposes only.
The best-fit power law with index Q = 1.44 ± 0.05 is indicated by the
solid line. The two lowest bins show signs of incompleteness as lines
with large b-values and low column density may not have been identi-
fied. Correction factors were determined by simulations, and corrected
points are shown with open circles.

redshifts z rv 3 arise from the gas in large unvirialized objects with densities
close to the cosmic mean. The widths of lines are set by the Hubble expansion
across their width (Weinberg et al. 1997), as well as by thermal or turbulent
velocities, and in this limit there is a rough linear relation between the optical
depth and the baryon overdensity (Croft et al. 1998), so that the lowest column
density lines provide information about the intergalactic medium at or below
the average cosmic density, whereas higher column density lines are produced in
more overdense regions.

In parallel with this theoretical understanding, the HIRES spectrograph
on Keck I has provided a breakthrough in observations of the IGM, giving us
exquisite high resolution spectra of z = 2 - 4 quasars, which allowed us to
study, among other things, the extremely weak Lyman alpha forest lines that
arise in IGM material close to the mean density. One of the most important
discoveries was the detection of widespread contamination by metals in the IGM
(Cowie et a11995; Tytler et ale 1995). Using the straightforward methodology of
identifying metal-line systems corresponding to weak Lyman forest systems, we
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showed (Songaila & Cowie 1996) that C IV can be found in 75% of clouds with
N(H I) > 3 X 1014 cm-2 , which corresponds to an overdensity of about b rv 5 in
the IGM at z rv 3. Such direct measurements have been carried to their current
limits by Ellison et al. (2000), who used a HIRES spectrum of the extremely
bright lensed quasar Q1422+231 to measure C IV lines to a limiting sensitivity of
10gN(C IV) = 11.75. To this level, the number of metal-line systems continues
to rise smoothly as a -1.4 power law, paralleling the slope of the H I clouds
in the Lyo forest (Figure 1). This result already implies that metals permeate
much of the intergalactic gas, an extremely surprising result that has yet to be
fully understood.

One of the most important outstanding questions is how the metals are
distributed into the intergalactic gas, and in particular, whether metals reside
in the average density IGM or are restricted to overdense regions. If forest
clouds are associated with galaxies, large radii (rv 200h-1 kpc) are required to
account for the number density of N(H I) > 1015 cm-2 clouds at z = 3 (e.g.,
Steinmetz 1997), and it appears improbable that star formation in the galaxy
itself could contaminate this entire region (Aguirre et al. 2000a, b; Theuns, Mo,
& Schaye 2000; Efstathiou 2000). The remaining possibilities are that the metals
are being produced by star formation in the clouds themselves (e.g., Madau &
Shull 1996), perhaps at an early stage in the galaxy formation process, or that
they are formed in an even earlier stage of metal production at much higher
redshift that has uniformly enhanced the intergalactic medium (e.g., Gnedin &
Ostriker 1997). Since this last process presumably would occur on a sub-galactic
scale, we might expect it to produce a more uniform metallicity at the scale of
the clouds; in contrast, we would expect in situ enrichment to depend heavily
on the properties of individual clouds and perhaps to be strongest in higher
density clouds. Understanding these questions is critical to modelling the earliest
generation of small galaxies and also to understanding how they expelled the
metals into the more general IGM. Indeed, while the agreement between current
models and observations is extremely good (Haehnelt, Steinmetz, & Rauch 1996;
Dave et al. 1997; Hellsten et al. 1997; Machacek et al. 1998) and suggests that
they are fundamentally on the right track, it remains possible that very energetic
processes from early galaxy formation associated with the star formation that
produced the observed metals could result in a multi-phase intergalactic gas
with considerably different properties.

2. Metals in the Low Density IGM

While moderate density (N(H I) > 3 X 1014 cm-2 ) clouds are now well charac-
terized as having a spread of less than an order of magnitude in both volume
density and metallicity, a carbon abundance of very approximately 10-2.5 of so-
lar and SijC about three times solar (Songaila & Cowie 1996; Dave et al. 1998),
the measurement of the abundance of heavy elements in the low density IGM is
not so straightforward, and contradictory results exist.

There has been wide speculation that metallicities may fall rapidly at lower
column densities since galactic enrichment and the merger expulsion and super-
nova generated wind mechanisms responsible for distributing the heavy elements
back into the intergalactic gas should be more efficient in higher overdensity

https://doi.org/10.1017/S0074180900226235 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900226235


326 Songaila & Cowie

10-1
(A)

,.-..
00
~

~

::::
10-2u

~
'-'
~
C\S

~

8 10-3

10-4

10-1

~
~

~

::::
10-2u

~
'-'
~
C\S

:.a
Q.)

10-3S

100 101

median('t'LyJ

Figure 2. Results from the optical depth analysis of Q1422+231
(solid points) compared with three synthetic spectra (open circles in all
three cases). Top panel: the synthetic spectrum is enriched solely with
detected C IV systems. Middle panel: In addition, log N(C IV)= 12.0
is included in all Lyo clouds with log N(H I) > 14.5, .representing the
maximum amount of metals that could be 'hidden' below the detection
limit in strong absorbers. Bottom panel: Supplementary C IV is now
added in all weak (log N(H 1)< 14.5) Lya lines with log C IV/H I ==
-2.6. Clearly, more C IV is present than currently identified directly
and these optical depth results show that the data are consistent with
a significant amount of C IV in low column density clouds.
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regions. In particular, early pre-enrichment models (Gnedin & Ostriker 1997;
Gnedin 1998) in which the metals are formed in sub-galactic clumps at z > 5
predict that at z rv 3 the metallicity should begin to fall rapidly below an over-
density of about fJ rv 10, close to the lowest column densities at which metallicity
measurements have been made. There is therefore a strong motivation to push
the metal determinations to as Iowan overdensity (column density) as possible
to investigate whether this very robust prediction is correct.

Previous attempts (Norris, Peterson, & Hartwick 1983; Lu 1991; Tytler &
Fan 1994; Lu et al. 1998) to measure metallicity at lower densities have gener-
ally focussed on coadding metal lines in some way to improve the signal-to-noise
ratio. Ellison et al. (2000) used this technique on a combined spectrum of
Q1422+231 and APM 08279+5255, producing a stacked spectrum with SIN of
1250, with no C IV being detected. However, it is likely that this and previous
attempts to detect weak C IV in this way are beset by systematic problems. In
Ellison et al. we identified a number of these, the most important being random
velocity offsets between C IV and H I. We have recently evolved a very differ-
ent technique of directly correlating metal line and H I optical depths (Songaila
1998; Cowie & Songaila 1998; Ellison et al. 2000) which has the advantage of
being highly sensitive, of avoiding subjective Voigt profile fitting, and of allow-
ing objective assessment of noise levels, including systematics. We have shown,
using this technique, that C IV/H I remains roughly constant down to at least
N(H I) rv 1014 cm-2 , corresponding to fJ r-;» 1, or "average" IGM gas. This is
illustrated in Figure 2, which shows detailed comparisons of the optical depth
distribution of our observed spectrum of Q1422+231 with synthetic spectra (El-
lison et al. 2000). In the top panel, the synthetic forest spectrum is enriched
only with directly detected C IV systems, and plainly fails to reproduce the
lower optical depth points. The location of the extra required absorption is
tested in the other two panels. In the middle panel, the synthetic spectrum
is enriched with "hidden" C IV at the log N(C IV) = 12.0 level only in the
stronger clouds [logN (H I) > 14.5]. Agreement with the observed distribution
is reached (bottom panel) only when extra C IV is also added in weak clouds,
with log C IV jH I = -2.6. Clearly, more C IV is present than is currently de-
tected directly and, more crucially, a significant amount of this must be in the
low column density clouds which correspond to low density intergalactic gas.
This is an extremely powerful technique, capable of reaching the lowest densi-
ties required with additional data of the quality of Q1422+231, which is still our
current highest SjN spectrum. Confirmation of near-constant metallicity down
to these very low densities, typical of the voids, would be a very important
result. It would mean that the earliest generations of galaxies were extraordi-
narilyefficient at reintroducing metals, and presumably energy as well, into the
IGM, with important implications for modelling the early IGM, which may have
more complex structure and dynamics than the current models are taking into
account.

3. Metals at z = 3

We now have enough metal line data to get a direct handle on the metal density
of the Universe at z rv 3, independent of other assumptions such as the value of

https://doi.org/10.1017/S0074180900226235 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900226235


328 Songaila & Cowie

-11 (aJ z < 3 -11 z ,~3
\

-12 ex = -1.5 -12 ex = -1.5

tt
-13 t -13

Cf-t

eo -14 -140
~

-15 -15

-16 -16

-17 -17
11 12 13 14 15 11 12 13 14 15

Log N(C IV) Log N(C IV)

Figure 3. C IV column density distribution functions for z < 3 and
z ~ 3 for a total of 81 absorption line systems in seven lines of sight
toward distant quasars. The bin size is 10°·3N cm-2 . Error bars are
±1 0', based on the number of systems in each bin. The solid lines
show the best fit power law with index Q == -1.5, fitted to data above
6 x 1012 em-2 where the data is substantially complete.

{lb, just by directly integrating the C IV and Si IV column densities, and this
measurement was carried out by Songaila (1998). Fig. 3 shows the C IV column
density distribution, f(N), which is the number per unit column density per
unit redshift path, split by redshift interval, approx 2 - 3 and 3 - 3.5 and a
similar figure for silicon can be found in Songaila (1998). The total sample is 81
C IV systems and 35 Si IV systems, all lying outside the Lyo forest, drawn from
7 QSO lines of sight, excluding systems close to the quasar. Power law fits over
the column densities log N(C IV) == 12 - 14.3, and 10gN(Si IV) = 11.70 - 13.9
give power law indices of -1.5 for both low and high redshift C IV and -1.8 for
low-redshift Si IV and -2 for high redshift Si IV. (These power laws are fitted
to the regions where the data are substantially complete.) -As one would expect,
the C IV data show the same power law slope as H I, reflecting the fact that the
C IV/H I value is nearly constant with redshift.

The density of C IV and Si IV can now be directly integrated from the C IV
and Si IV distributions. For the z > 3 systems this gives the values f!c IV ==
(1.2±0.3) x 10-8 h-1 [1+2qoz] 1/2 and {lSi IV == (4.3± 1.6) x 10-9 h-1 [1+2qoz]1/2.

The errors are 1 a (statistical error only). We have restricted ourselves to
N(C IV) < 3 X 1014 cm-2 because higher column density systems are much
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Figure 4. A spectrum of the z == 5 quasar SDSS J0338+0021, shown
in j.LJy versus wavelength. The dashed and dotted lines show vO and
vI continuum fits, normalized to the region 7700 - 8000 A, which lies
redward of the atmospheric A band but blueward of the Si IV emission
line. Irrespective of the extrapolation, the Lyman break is extremely
strong and the forest highly blended.

rarer and require a longer redshift path to determine the number density. The
contribution to both C IV and Si IV converges at the low column density end,
so that weaker than observed systems will not contribute much unless there is
a radical upturn in the distribution at the low end. One now has to correct
for ionization level. As already shown, the dominant ionization stage is triply
ionized. C IIfC IV is less than 0.1, and the implied high ionization then means
that Si III is less than Si IV and C III is less than C IV, and even with forest
contamination, Si III is comparable to Si IV. N VIC IV is seen to be small in
the few systems we have. So our best guess is Oc rv 2 Oc IV and the same for
silicon. To get the overall metal density in a crude fashion, we scale the Q process
elements (0, Ne, Si, Mg, S) with Si and the Fe-coproduction elements (C, N, Fe)
with C to give the metal density Ometals == (3.3 ± 0.8) x 10-7 h"6l (1 + 2qoz)o.s.

Does this check with what we know about the high redshift Universe? In
particular, the absence of an H I Gunn-Peterson effect at the highest redshifts
means, of course, that the hydrogen is highly ionized to z = 5. Is this consis-
tent with what we see of the effects of metal production, presumably at these
same redshifts? Can the stars that form the metals ionize the intergalactic gas?
The production of metals approximately calibrates the production of ionizing
photons. The energy in ionizing photons/baryon is as given, just the energy

https://doi.org/10.1017/S0074180900226235 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900226235


330 Songaila & Cowie

from nucleosynthesis. This works out that Z rv 10-5 gives one ionizing pho-
ton/baryon, so that the value we see (a minimum) comes out to be about 2
photons per baryon, just enough to ionize the Universe.

4. Metals at Higher Redshift

An alternate way to explore these issues is to measure the metal distributions at
yet higher redshifts. It is becoming practical to obtain substantial samples in the
redshift range, Z = 4 - 6 as the Sloan digital sky survey is now yielding quasars
(Fan et al. 1999,2000,2001; Zheng et al. 2000) (Fig. 4) which are bright enough
that we can obtain high quality high resolution spectra. The ESI spectrograph
on the Keck II 10 m telescope provides highly efficient coverage of the whole
spectrum (0.39 - 1.1 J.lm), permitting a systematic study of the properties of the
gas and metals at these redshifts.

These observations will be extremely useful for the metal studies, since the
rise in the overall column densities means that, while we cannot reach quite as
sensitive limits in the metal lines because the quasars are fainter and we are
working in the more difficult red portion of the spectrum, we can nevertheless
probe to comparable overdensities in the gas, again allowing us to test how the
metals are distributed in near-average density intergalactic gas. Hopefully, in
the next year or two we will begin to see metal estimates similar to those at
z == 2 - 4 at these higher redshifts, and will determine if there is, evolution in
the the higher redshift range.
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