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Abstract

Sets of independence are studied for compact abelian hypergroups and they are used, along
with Riesz products, to investigate lacunarity questions on the dual object. It is shown that
bounded Stechkin sets are always Sidon and that every bounded infinite subset of the dual
contains an infinite Sidon set which is also a A set. Independent sets are shown to always be
Sidon and a necessary condition for Sidonicity is provided. A result of Pisier is used to show
that for compact non-abelian groups Sidon and central A are equivalent. Several applications
are provided, primarily to questions regarding lacunarity on compact groups.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 43 A 46, 43 A 40.

1. Introduction and notation

Lacunary sets have been studied extensively in a wide variety of settings. In
this paper, we will consider lacunary sets within the framework of compact
abelian hypergroups. Many of the results will be applied to draw conclusions
about lacunarity and central lacunarity on compact nonabelian groups.

In Section 2, Riesz products are introduced for compact abelian hyper-
groups and some of their important properties are studied. The ideas and
notation developed in Section 2 are used in Section 3 to define and com-
pare various sets with independence properties. In particular, the familiar
definitions of independence, quasi-independence, Rider and Stechkin sets
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172 Richard C. Vrem [2]

are all extended to the setting of compact abelian hypergroups. Moreover,
it is shown that every infinite subset of the dual contains an infinite quasi-
independent set.

Sufficient conditions for a subset of the dual to be a Sidon set are presented
in Section 4. It is shown that every bounded Stechkin set is a Sidon set and
that every bounded infinite subset of the dual contains an infinite Sidon set
which is also a A set. An analogue of Kronecker's theorem is then used
to show that independent sets are Sidon sets. A necessary condition for
Sidonicity is provided in Section 3, in terms of the Fourier transform of
point masses. A result of Pisier [16] is reformulated in Section 6 to show
that for compact nonabelian groups a set is Sidon if and only if it is central
A.

Applications of Sections 4 and 6 are provided in Section 7 within the
context of lacunarity questions on compact nonabelian groups. Several ques-
tions posed by Parker [14] are discussed and the set of all compact connected
groups with the property that every central Sidon set is also a Sidon set is
shown to be exactly the set of all compact connected Lie groups. It is also
shown that Hutchinson's result [8] that non-tall compact groups admit in-
finite Sidon sets is generalized by results in Section 4. Finally, in Section
8 the countable compact hypergroups introduced by Lasser [10] are used to
illustrate several of the results presented in earlier sections.

We refer the reader to Jewett [9] for basic information about hypergroups
(where they are called convos) and to [22] for specific details regarding lacu-
narity on compact (not necessarily abelian) hypergroups.

Unless otherwise noted, all the hypergroups K under discussion in this
paper will be assumed to be compact and abelian with dual objects K which
are also assumed to be hypergroups, that is,

yyr for all y, ^ e AT.

If (K) = K we call K strong. For each x in K, Sx will denote the point
mass at x and the map x -> x will denote the involution on K while the
involution on K is complex conjugation. If A is a subset of any hypergroup
we denote the subhypergroup generated by A as {A). We denote Haar
measure on K by m .

Given a finite subset P of K the measure n on K formed by convolving
all the point masses on P will be denoted by n = Y[^eP $v and we write
supp/z = Yl¥eP{w} • A subset P of K is called symmetric if ~P = {y/: y/ e
P} - P and P is called asymmetric if 1 £ P (where 1 is the trivial
character) and y/ e P with y/ ^ ~y7 implies !J7 $. P.
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For X C M(K) and P C K let Xp = {fi e X: fi(v) = 0 for all y/ i P) .
As in the case of groups, we call P C K a Sidon set if CP{K) c A{K)
where A(K) denotes all those functions in LX(K) with absolutely convergent
Fourier series. A list of conditions equivalent to Sidonicity are provided in
[22, 2.2 and 2.5]. We call P a A set if there is a constant k such that for all
q > 2 it follows that \\f\\q < kg^UW^ for all / e Tngp(K) where Trig(tf)
denotes all the trigonometric polynomials on K.

2. Riesz products

In this section we generalize the notion of Riesz products to compact
abelian hypergroups. Also, the notation and machinery are developed to de-
fine various degrees of independence for hypergroups which will be presented
in Section 3. The presentation in this section follows closely that found in
Lopez and Ross [11].

Let A" be a compact abelian hypergroup with P an asymmetric subset
of K and let Q = P u 7. Let g be a hermitian function on Q (that is,
g(W) = 8{v) for all y/ in Q). For each finite symmetric subset A of Q
define the Riesz product

D H . , - •• g(y)y + g(y)y
PA= I I ry where ry =

Note that PA is a real-valued function on K and that the asymmetry of P
along with the symmetry of A assure that each element of A is accounted
for precisely once in the Riesz product PA .

We may rewrite the above Riesz product as

where CA{y) = X^dl^ga iKvOHdl^efl^Xy)] anc* ^ e s u m r a n 8 e s o v e r a ^
asymmetric subsets B of A . Here we allow B = 0 and the corresponding
term in the sum is taken to be 1. For s > 0 and y in K define

n K ) oo
<¥ea J

where the sum is over all asymmetric subsets B of A with \B\ = s (here \B\
denotes the cardinality of B). If there are no such sets B we set Cs

A(y) = 0
and we define

co ( 1 if y = l ,
A \ 0 otherwise.
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Thus
Ml

cA(v) = EcA(y)
s=Q

for each y in K. For any subset N of K not containing 1 and s > 0
define

B \V€B

where the sum is over all asymmetric subsets B of N\J~N with \B\ = s. We
adopt the convention that

1 ify = l,

0 otherwise,
and for 5 > 0, if the sum is empty, we set RS(N, y) = 0. Thus, if there is
a constant /? > 0 such that \g{y)\ < P for all y in JV then

for all y/ in K (5 = 0 , 1 , . . . ) and A any symmetric subset of Nl)N. The
above inequality is immediate from the observation that Cs

A(y/) is formed by
summing over asymmetric subsets B of A and the fact that g is hermitian.
We now have the following estimates:

(2.1) \CA(y)-g(y)\<f^Rs(P,y)fis for y e P ,
s=2

oo

s=2

and

(2.3) \CA(y)\<f^Rs(P,y)fis f o r y i P u { l } .
s=2

Certainly, if g{y) = fi > 0 for all y in P (and hence for all y in Q = P\J~P
since g is hermitian) we have

3. Sets of independence

In this section we will restrict our attention to subsets of the dual of a
compact abelian hypergroup. A subset E of K is said to be independent if
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1 ^ E and if the following two conditions are satisfied for any finite subset
F = {yx,...,yn} of E:

(i) for each y € E\F, (F) n (y) = {1} ;
(ii) {y/x} * {iy2} * • • • * {y/n} is a singleton in K for all y/t e (y,) (i =

1 , . . . , « ) .
Of course (ii) is immediate if # is a group but is quite restrictive if K is
only a hypergroup. If AT is a compact abelian group then the definition of in-
dependence given above corresponds to the usual definition of independence.
Further examples may be found in any compact abelian hypergroup whose
dual K. contains a direct product of subhypergroups. The next proposition
provides two important properties of independent sets.

PROPOSITION 3.1. Let K be a compact abelian hypergroup with E c K
independent. Let F = {yl, ... , yk) be any finite subset of E, H = (F) and
Ht € M(H) such that supp(/i() C Ft = {yt) for i = 1, 2, ... , k. Then each
element y/ in H can be written uniquely in the form V = {v^ * {v2 }* • • •*
{yrH} where ^ e F( (i = 1, 2, ... , k) and

1=1

w h e r e j i = n x * - •• * f i k .

PROOF. Clearly, every element in H can be written as a product of ele-
ments from each of the Ft (i=\, ... ,k). Suppose that

where y/t ,<t>itFi (i = I, ... ,k). T h e n { ^ } * { ^ } n ({W2} * {4>2} * ••_• *
fflk) * {0fc}) ^ (t>' S 0 condition (i) of independence implies 1 e {y/{} * {(f>x}
and hence y/{ = 4>y. Uniqueness now follows by induction. Now, for any
y/ e H and n = nx* •••* fik with supp(jU() C Ft we have

V= 1

Since u. is supported on f. we have fij(</>^) = 0 unless <j>^ e F.. Thus
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However, y/ is written uniquely as a product of elements from the Ft (i =
I, ... , k) so we conclude

It is interesting to compare the above proposition with [2, 4.2] where it
is shown that for probability measures fi and v on a hypergroup K with
X, Y c K we have fi * v{X * Y) > fi{X)v{Y).

A subset E of K is called quasi-independent if for each finite subset A of
E, RS(A, 1) = 0 for 5 = 1, 2, . . . . This agrees with the definition of quasi-
independence given by Pisier [17] for compact abelian groups and can easily
be extended to agree with the definition given by Wilson [24, 5.3] for compact
nonabelian groups. We call E c K a Rider set if there is a constant B > 0
such that RS(E, 1) < Bs (5 = 0 , 1 , 2 , . . . ) and a finite union of Rider sets
is called a Stechkin set (compare with [11, 2.13]). For the properties we have
described above, namely

(a) independent,
(b) quasi-independent,
(c) Rider,
(d) Stechkin,

it is immediate that (a) => (b) =• (c) => (d).
While infinite independent sets may not exist in the dual of an infinite

compact abelian hypergroup (see Example 8.1) the next theorem shows that
quasi-independent sets are found in abundance.

THEOREM 3.2. Let K be a compact abelian hypergroup with P an infinite
subset of K. Then P contains an infinite quasi-independent set.

PROOF. Select an arbitrary element yx e ^ \ { 1 } • Having selected y{,...,

yk select yk+lP\F where F is the finite set of all elements of K which
belong to any of the sets { y/x} * {y/2} * • • • * {y/k} where y/i;e { 1 , yt, yt) (i =

1, 2, ... , k). This construction leads to an infinite set E = {yx, y2, ...} C
P. Let A be a finite subset of E, say A = {yn ,yn , ... ,yn], where
n, < n2 < ••• < ns. If RS(A, 1) ^ 0 then 1 e { ^ } * { ^ } * ••• * {y/n}

where y/n. e {yn,, yn) . But this implies either j ^ e { ^ M ^ } * - • - * { v n j }
or yn e {Tj7n } * {Wn }*•• •* {Tj/n } , contrary to the construction of E. Thus
E is an infinite quasi-independent subset of P.

https://doi.org/10.1017/S1446788700032663 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032663


[7] Hypergroups 177

4. Some sufficient conditions for Sidonicity

We call a subset E of K bounded if the set {ky: y e E} is bounded

where k~x — JKyydm . In general, the dual of a compact abelian hypergroup
need not be bounded. Indeed, the dual object for a compact non-abelian
group may not have any infinite bounded subsets (for example, see [8]). For
bounded subsets of K we are able to extend the group result that Stechkin
sets are Sidon sets. First, we need a few preliminary results. The first lemma
generalizes a lemma due to Rider [18].

LEMMA 4.1. If E is a bounded Rider set with bound C and 1 £ E there
is a constant B > 0 such that for s>0

RS(E, y)<Bs for all y in E

and

k;lRs(E,y)<(BC-l)s.

PROOF. Let Bx be the Rider constant for E. Let p = {2BX)~X and define
g{y) = P for y in E. For A an arbitrary finite subset of E define the Riesz
product

Since PA = \[ry, \y{t)\ < 1 for all t in K and fl < 1/2, we see that PA is

nonnegative. Thus for each y in K

\PA{y)\ < \\PA\\U < WPJ, = ?A(i) < JTRS(E, i)Bs < 2.

Therefore, for y in E,

s=0

)S = Bsso RS(E, y) < (4CBX)S = Bs for B = 4C.5,. If y is not in E then

s=0

and hence k^R^E, y) < (4BJ5 = (BC~l)s.
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LEMMA 4.2. Let E be a bounded symmetric Rider set with 1 not in E
and let B > 1 be such that Rs(E, y) < Bs for all y in E and s > 0. / /
0 < e < 1, g is hermitian on E and WgW^ < 1, then there exists n in
M+{K) such that

\\fi\\<e + 2B2C2/e,

\fi(y) - g(y)\ < e fory in E

and
\fi(y)\ < e for y not in Eli {I},

where C is a bound for {ky: y e E}.

PROOF. Let fi = e(2B2C)~l and define g,(y) = (kyC~l)fig(y) for y in
E and note that |gj(y)| < fi < 1/2. Consider the Riesz product PA for A
an arbitrary finite subset of E with function gl. If y is in E we have

f J J - l ] s
X ( £ , y)ps < JT(B/J)S = JT[e(2BC)-l]

s=2 s=2 s=2

<2[e(2BC)~l]2 =

If y is in K - E then from Lemma 4.1 we have k~xRs{E, y) < {BC~X)S

and so

j ; l R s ( E , y)fis < j
s=0 s=2

Now applying the above inequality along with estimates (2.1) and (2.2) we
have

M i = PAM $ 1 +
s=2

and
\CA(y) - gt(y)\ < efiC'1 for y in E .

Now PA(y) = k~xCA{y) so for y in A

\kyPA(y)-k70C-lg(y)\<ef}C-1

or

and using (2.3) for y not in A U {1} , we obtain

or \PA(y)\<efiC-\
s=2
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By Alaoglu's theorem, the net {PA} in M+{K) has a weak-* cluster point v
in M+(K) such that

\\v\\ < 1 + efiC'1,

\v(y) - fig(y)\ < e^C"1 for y in E,

\v(y)\ < efiC'1 for y not in £U {1} .

Finally, let fi = Cfi~lv .

THEOREM 4.3. Let E be a bounded symmetric Stechkin set with 1 not in
E. Then there is a constant a with the following property. If 0 < e < 1, g
is hermitian on E, and if WgW^ < 1, then there exists fi in M+{K) such
that

\\fi\\ <e + ae~l,

\U(y) - g(r)\ < « M all y in E,

and
<fi for y not in E u {1}.

PROOF. Use Lemma 4.2 and imitate the argument in [11, 2.18].
We are now able to establish the following corollaries.

COROLLARY 4.4. Every bounded Stechkin set in a compact abelian hyper-
group is a Sidon set.

PROOF. Apply Theorem 4.3 and [22, 2.5].

COROLLARY 4.5. Every bounded infinite subset of K contains an infinite
Sidon set which is also a A-set.

PROOF. This follows easily from Theorem 3.2, Corollary 4.4 and [22, 3.5].
In order to remove the hypothesis of boundedness used above we will

require a greater degree of independence for E. The next theorem is a hy-
pergroup version of Kronecker's theorem for locally compact abelian groups
(compare with [21, 5.13]).

THEOREM 4.6. Suppose K is a compact abelian strong hypergroup and
let F = {J>J , . . . , yk} be a finite subset of an independent set E in K. If
(yt) = Ft and <f>l e Ft then there exists x in K such that

yi{x) = <t>i{yi) fori=l,2,...,k.
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PROOF. Since E is independent, Proposition 3.1 shows that each y/ in
(F) can be written uniquely in the form {yx} * {y/2} * • • • * {yk} • Define a
function h on (F) by

Given y = Y\i=l y, and a = n,=i ai m (-F) w e have

xe(F) \i=i

Applying Proposition 2.1 we have

=n ( E (̂̂ )\.

Hence h is a character on AT. Since K is a strong hypergroup (K) ~ Â
so the points of K separate K thus they also separate the elements of (F).
Thus there is an x in K such that y/{x) = h(y/) for all y/ in (F). In
particular, we have

We are now in a position to show that independent subsets of K are
Sidon sets under the assumption that AT is a strong hypergroup. The proof
is similar to the proof of [14, 4.1].

THEOREM 4.7. If K is a compact abelian strong hypergroup with E
independent subset of K then E is a Sidon set.

an
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PROOF. L e t / e Tri%E(K) where / = YlyeF kyayy and F is a finite subset
of E. Select a complex number 6 such that 04 = 1 and a subset A of F
such that

^ = { y e F : Re(0fly) > 0}

and

Let P = {y € FV4 : I m ^ ) > 0} and N = {y e F\A : Im(day) < 0} .
For each y in A select <f>y to be the trivial character in (y). If y is in
P then the orthogonality condition JKydm = 0 implies Re(y(x)) < 0 for
some x in K. If Im(y(A:)) > 0 let y = x, otherwise let y = x. Select
^ = y in (y)~. Similarly, for y in JV select y so that Re(y(y)) < 0 and
lm(y(y)) > 0 and set <t>y = y in (y)~. Now we apply Theorem 4.6 to find
an x in K such that y(x) = <f>y(y) for all y in F . Thus

ll/IL>|/WI>Re(0/W) = Re

Thus E is a Sidon set with Sidon constant at most 4, by [22, 2.2].

5. A necessary condition for Sidonicity

The previous section provided two distinct sets of sufficient conditions
to ensure a subset of K is a Sidon set. In this short section we provide a
necessary condition which must be satisfied by any infinite Sidon set. Note
that in this section we do not require that K is a hypergroup.

THEOREM 5.1. Let K be a compact abelian hypergroup and E an infinite
subset of K. If E is a Sidon set then {x e K:SX $ co(E)} is not a finite
subhypergroup of K.

PROOF. Suppose H = {x e K: 8X $ co(E)} is a finite subhypergroup.
This will lead to a contradiction. Each y e E, when restricted to H, is in
the finite set H so there must be an infinite number of y in E which agree
on H. Let P denote this infinite subset of E. We will in fact show that P
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is not a Sidon set, contradicting the assumption that £ is a Sidon set. Let
H € M(K) and consider Ji{y) for each y in P. Then

V-(y)= I yd/i+ / yd/u.
JH JK\H

However, for t e K\H, we have dt e co{P) and each y in P restricts to
the same element of H so there is a constant B such that

K\H

Therefore, there is no measure /a in M(K) with Ji taking arbitrary values
±1 on P so P is not a Sidon set by [22, 2.5].

The above proof is a generalization of a proof given by Rider [19, Theorem
9]. The above theorem is also similar to a necessary condition for Helson
sets on K (see [23, 4.3]). Any compact abelian hypergroup which is n-
fold absolutely continuous (see [20] for more details on such hypergroups)
and has finite center does not satisfy the necessary condition provided in
the previous theorem. Hence, Theorem 5.1 generalizes [23, 3.2] without the
additional assumption that K is a hypergroup.

6. Compact lacunarity for groups

In this section we make explicit a result which appears implicitly in the
important paper of Pisier [16]. In an earlier paper [15], Pisier showed the
equivalence of Sidon sets and A sets for compact abelian groups. In the
hope of using commutative techniques so study the compact nonabelian case,
Parker [14] introduced the notion of central Sidon sets and this was followed
by a discussion of central A sets by Benke [1]. The appropriate definitions
for central lacunary sets are found by replacing the function spaces given in
the definition of Sidon or A sets by their respective centers. Rider [19] has
shown there are central Sidon sets which are not central A sets.

Pisier [16] establishes the surprising result that Sidonicity for a compact
group can be determined strictly in terms of central functions. Specifically,
he establishes the equivalence of the following two statements for P c G,
where G is a compact group:

(i) P is a Sidon set;
(ii) there exists a constant C such that, for all {o,)x€p € 12(P),o,)x€p

X€P
• axX
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where y/2(t) = / - 1 and \\f\\^ = inf{c > 0 : JG yt(f/c) dm < 1} .
The above result easily implies the equivalence of Sidon sets and central

A sets for compact groups, as the following theorem establishes.

THEOREM 5.1. Let G be a compact group and P c G. The following are
equivalent:

(i) P is a Sidon set;
(ii) P is a A set;

(iii) P is a central A set.

PROOF. If P is a Sidon set then P is a A set [7, 37.25], and so (i) implies
(ii). Clearly (ii) implies (iii). Next, we assume P is central A. Suppose /
has Fourier series ^xePax% where Y,X£p(a

x)
2 < oo. Then / is a central

function on G. By [12, 5.2.11] we have

n>\

where AT is a constant and N2(f) = inf{c > 0: / e{f/c) dm < 2}. Thus
\\f\\¥i < A"supn>, 1/vWll, ,- But P is central A so

ll/ll, < Ly/p\\f\\2

for some constant L and all p > 2. Thus

Kp-i/2\\f\\p<KL\\f\\2

for all p > 2. Since G is compact, we have ||/| |p < ||/| |2 for all 1 < p < 2,
so

K sup I/Jp\\f\\p<KL\\f\\2

and hence ||/|| < A"L||/||2 . This implies P is a Sidon set by Pisier's result.
As a consequence of the above, lacunarity on compact groups can be stud-

ied by examining central lacunarity on compact groups. In Section 7 we
will place these remarks in the context of compact abelian hypergroups and
use results from earlier sections to provide information about lacunarity on
compact groups.

7. Applications to lacunarity on compact groups

Since central Sidon (central A, central Ap ) on a compact (not necessarily
abelian) group G is equivalent to Sidon (A,Ap) on the corresponding com-
pact abelian hypergroup of conjugacy classes of G (see [22, 2.93]), written
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Gj, we may apply hypergroup results to provide information about central
lacunarity on compact groups. Furthermore, Theorem 6.1 shows that G{

retains enough structure of G to decide some lacunary questions about G.
We have the advantage of using abelian techniques when studying G7 but of
course there is the added complexity of the more general hypergroup struc-
ture. We will illustrate some of these ideas in this section.

REMARK 7.1. We begin by discussing some questions posed by Parker [14].
Parker generalized the notion of independence on compact abelian hyper-
groups with the notion of /-sets on the dual of a compact group. He asked
whether a better definition then /-set could be devised. The definition of
independence given in Section 3 completely agrees with the definition of in-
dependence on compact abelian groups, and the proof of Theorem 4.7 shows
that every independent set is an /-set in the sense of Parker. Theorem 4.7
also provides a generalization of [14, 4.2], which says that any infinite direct
product of compact groups admits an infinite central Sidon set.

REMARK 7.2. Parker also asked whether any additional hypothesis on a
central Sidon set would be enough to ensure it is a Sidon set. It has apparently
been known for some time that boundedness and central Sidon is enough to
imply Sidon but as far as the author knows this has never appeared in the
literature. We may use Theorem 6.1 and [22, 3.5] to see that boundedness
is sufficient for central Sidon to imply Sidon. He also asked whether an
infinite bounded subset of the dual object must contain an infinite Sidon set.
An affirmative answer is provided by an application of Corollary 4.5 and
Theorem 6.1 or follows from results in Hutchinson [8].

REMARK 7.3. Parker also asked whether there are any nonabelian infinite
compact groups such that every central Sidon set is a Sidon set. An affirmative
answer was provided to this question by Rider [19, Theorem 9] when he
showed that compact connected semi-simple Lie groups admit only finite
central Sidon sets. The next theorem provides a complete characterization
of compact connected groups with this property.

THEOREM 7.4. Let G be a compact connected group. Every central Sidon
set for G is a Sidon set if and only if G is a Lie group.

PROOF. Without loss of generality, we may assume G is 2nd countable
and write G = GJN where

and where the Sn are compact connected simple Lie groups, A is a compact
connected abelian group and N is a closed normal subgroup of Go with

https://doi.org/10.1017/S1446788700032663 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032663


[15] Hypergroups 185

NnA = NnSn = {e} (see, for example, [19]). First, we assume G is
a Lie group, that is, that / is finite. Let E C G be a central Sidon set.
From Remark 7.2, it suffices to show E is bounded. Let S = \[neI Sn so
that GJA ~ S and (Go/A)~ ~ S" (as hypergroups). The characters in A
are group characters, that is, 1-dimensional, so on each of the cosets a A,
a € GQ the representations have a fixed degree. If E is not bounded then
the members of E would lie in an infinite number of distinct cosets of S
and would then in turn form an infinite central Sidon set for 5", contrary
to Rider's result [19, Theorem 9] that compact connected semi-simple Lie
groups admit no infinite central Sidon sets. Thus E is bounded, which
implies E is also a Sidon set.

Next, we assume G is not a Lie group, in which case / is infinite. Then
there is a closed normal subgroup H of G such that G/H = YlneI(Sn/Zn),
where ZN is the center of Sn. Each of the groups Sn/Zn is a compact
connected simple Lie group so a result of Cecchini [4] implies that for each
n = 1 , 2 , . . . , (Sn/Zn)~ contains no infinite local central A4 sets. In
particular, in (Sn/Zn)^ we may select an so that \\xa ||4 > n\\xa ||2 • If
nn denotes the natural projection of G/H then the set E = {xn : n e 1}
where xn = n

n%o 1S a c e n t r a l Sidon set by either [14, 6.11] or Theorem 4.7.
However, the construction of E implies E is not a local central A4 set so
that E is not a Sidon set. Thus E is a central Sidon set which is not a Sidon
set.

The setting of compact connected groups seems to be particularly well
suited to analysis in terms of the associated conjugacy class hypergroup as
evidenced by recent work of McMullen [13].

As already noted in Section 6, Pisier has shown that Sidon and A sets
are equivalent for compact abelian groups. However, central Sidon does
not (in general) imply central A. We may rephrase the previous theorem to
characterize among compact connected groups G, all the compact connected
conjugacy class hypergroups G7 for which Sidon and A are equivalent.

COROLLARY 7.5. Let G be a compact connected group and Gt its conju-
gacy class hypergroup. The following are equivalent:

(i) Sidon sets and A sets are equivalent for Gt;
(ii) G is a Lie group;

(iii) Gj is finitely generated.

REMARK 7.6. Hutchinson [8, 2.4] has shown that if G is a compact group
with E C G a Rider set, and da = n (fixed) for all a in E, then E is a
Sidon set. In fact, E is a uniformly approximable Sidon set, from a result
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of Dunkl and Ramirez [5]. Combining Theorem 4.3 and Theorem 6.1, we
have a complete generalization of Hutchinson's result. Hutchinson called a
compact group G tall if no infinite subsets of G are bounded. He then
goes on to show that every compact group which is not tall admits an infinite
Sidon set. This result also follows easily from Corollary 4.5 and Theorem
6.1. It should be noted that Cartwright and McMullen [3] have characterized
those compact connected groups which admit infinite Sidon sets.

REMARK 7.7. An important open question in the area of lacunarity on
compact abelian groups is whether every Sidon set can be written as a finite
union of quasi-independent sets (see [17]). The situation for compact groups
is considerably more complicated. For example, not every quasi-independent
set in a compact group is necessarily central Sidon, let alone Sidon. This can
be seen easily by considering an infinite connected semi-simple Lie group
G. Then G{ and hence G contain an infinite number of quasi-independent
sets, by Theorem 3.2, but G admits no infinite central Sidon sets as already
discussed. Wilson [24, 5.8] has shown that every Sidon set for a compact
connected group can be written as the union of a bounded Sidon set and a
finite union of quasi-independent sets.

REMARK 7.8. Theorem 6.1 can be used to show that the union of two
Sidon sets for a compact group is again a Sidon set (since the union of two
central A sets is a central A set). This fact has also been established by
Wilson [24, 4.3] for compact connected groups and is easily seen to follow
from Pisier's characterization of Sidon sets for compact groups (see Section
6). Rider has shown [19, Example 8] that the union of two central Sidon sets
need not be central Sidon.

REMARK 7.9. Hewitt and Ross [7, 36.1] consider the compact group G =
n , e / U{Ht), where U{Ht) is the set of unitary operators on the Hilbert space
Hi. For each i, let nt denote the projection of G onto U{Ht). Hewitt and
Ross shown in [7, 36.2] that P is a A set. They go on to prove directly
in [7, 37.5] that P is also a Sidon set. By Theorem 6.1, this result follows
immediately from the fact that P is a A set.

8. Examples

EXAMPLE 8.1. We first consider the family of countable compact hyper-
groups introduced by Dunkl and Ramirez [6]. Let K = {0, 1, 2, . . . , oo}
be the 1 point compactification of the nonnegative integers and K. = {xt :
/ = 0, 1 , 2 , . . . } . The characters %i are real functions and xnXm = Xm

for n < m [6, 3.7]. It follows easily that K\{%0} is a quasi-independent
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set which is not independent. In fact, K contains no infinite independent
sets. Dunkl and Ramirez [5, 10.5] show that K admits no infinite Helson
or Sidon sets. This also follows easily from [23, 4.3] and Theorem 5.1 by
observing 8 6 cJK) for all x in A:\{oo}. Note that k = (1 - a)a~" ,

where 0 < a < 1/2, so K has no bounded infinite subsets.
EXAMPLE 8.2. This example involves the interesting Jacobi polynomial

hypergroups introduced by Lasser [10]. Given real parameters a, 0 satis-
fying a> 0 > -1, a + 0 + 1 > 0 and either 0 > - 1 / 2 or a + 0 > 0,
Lasser constructs strong hypergroups K(a, 0) = [ - 1 , 1] with K(a, /?)" =
{ 0 , 1 , 2 , . . . } such that the characters in K(a, /?)" are the Jacobi polyno-
mials associated with a and 0. In particular, K(-l/2, - 1 / 2 ) " consists of
the Tchebichef polynomials of the first kind, K(0, 0)" gives the Legendre
polynomials and K(l/2, 1/2)" the Tchebichef polynomials of the second
kind. For the Tchebichef polynomials of the first kind we have kn = 2
for all n e K(-l/2, - 1 / 2 ) " , so every subset of the dual hypergroup is
bounded. We may apply Corollary 4.5 to conclude that every infinite subset
of K(-l/2, - 1 / 2 ) " contains an infinite Sidon set which is also a A-set.
However, for the Legendre polynomials and the Tchebichef polynomials of
the second kind we have kn = 2n+l and kn = (n + 1)2 respectively. In these
cases, no infinite subset of the dual is bounded. Moreover, if x e ( - 1 , 1)
then limn_>x> Pn(x) = 0 where {Pn}^L{ is either the collection of Legendre
polynomials or the Tchebichef polynomials of the second kind. Restating this
in terms of the hypergroup structure, we have Sx e co(K) for all x e K\ZK
where K is either K(0, 0) or K(l/2, 1/2). Therefore, we may conclude
from Theorem 5.1 that neither K(0, 0) nor K(l/2, 1/2) admit an infinite
Sidon set. Indeed, neither do they admit any infinite Helson sets, by [23,
4.3].
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