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Abstract. This paper is concerned with representations of split orthogonal and quasi-split unitary
groups over a nonarchimedean local field which are not generic, but which support a unique model of

a different kind, the generalized Bessel model. The properties of the Bessel models under induction
are studied, and an analogue of Rodier’s theorem concerning the induction of Whittaker models is
proved for Bessel models which are minimal in a suitable sense. The holomorphicity in the induction
parameter of the Bessel functional is established. Local coefficients are defined for each irreducible
supercuspidal representation which carries a Bessel functional and also for a certain component
of each representation parabolically induced from such a supercuspidal. The local coefficients are
related to the Plancherel measures, and their zeroes are shown to be among the poles of the standard
intertwining operators.
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Introduction

L-functions are a central object of study in representation theory and number theory.
Over a global field, one has the Langlands Conjectures, which assert in particular
the meromorphic continuation and functional equation of a class of Euler products.
Over a local field one has additional conjectures due to Langlands, expressing the
Plancherel measure arithmetically as the ratio of certain Ibedahctions and root
numbers.

In many cases these conjectures have been established by Shahidi [Shab, Shac,
Shad], following a path laid out by Langlands [Lana]. The framework for Shahidi’s
work is the study of Eisenstein series or their local analogues, induced represent-
ations. One knows the continuation of these Eisenstein series due to Langlands
[Lanb]. Langlands also showed that the constant coefficients of the Eisenstein
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series may be expressed in terms of local intertwining operators which are almost
everywhere quotients of certalrfunctions. It remains to study these intertwining
operators for the finite set of ‘bad’ places. If the inducing data is generic, that is,
admits a Whittaker model, then Shahidi has succeeded in relating them to local
L-functions. Thus the careful study of the Eisenstein series, both local and global,
affords a proof of certain of the Langlands conjectures for tlieenctions.

The aim of this work is to suggest that the Langlands—Shahidi method may be
extended beyond the generic spectrum by the use of other models. The Whittaker
model is unique (an irreducible admissible representation admits at most one such
model up to scalars). In this paper we study the properties of local representations
of split orthogonal groups and quasi-split unitary groups which are not generic, but
which support a unique model of a different kind, the generalized Bessel model.
These models involve a character of a proper subgroup of the unipotent radical
of a Borel subgroup, but transform under a reductive group of some, in general
non-zero, rank. The uniqueness of the models has been proved by S. Rallis [Ral] in
the orthogonal case, but as the argument has not yet been written out in full detail
in the unitary case we make it a hypothesis throughout the paper.

We first study the properties of Bessel models under induction, and prove
an analogue of Rodier’s Theorem [Rodb] concerning the induction of Whittaker
models. Our analogue, Theorem 2.1, states that if one parabolically induces a
representation with a Bessel model of minimal rank, or more generally one which
is minimal in the sense of Definition 1.5 below, then the induced representation has
a unique Bessel model of the same rank and compatible type. In the case of rank O,
we recover Rodier's theorem. To carry out the proof we use Bruhat's extension [Bru]
of Mackey theory and investigate precisely which double cosets of the appropriate
type may support a functional with the desired equivariance property. We show
that there is a unique such double coset by an extensive combinatorial argument.

Next, we establish the holomorphicity of the Bessel functional which arises from
one which is minimal by parabolic induction of the underlying representation. Our
approachis based on Bernstein’s theorem [Ber], which uses uniquenessto conclude
meromorphicity under some regularity hypotheses, and Banks’s extension [Ban],
which allows one to prove holomorphicity as well. We show in Theorem 3.6 that
there is a non-zero Bessel functiondl, ), attached to an irreducible admissible
representationr of the Levi subgroup/ and a parameter in the complexified
dual of the Lie algebra of the split componentiaf, which is holomorphic inv.

If 7 is supercuspidal and has a Bessel model, or more generatlysifirre-
ducible and carries a Bessel model corresponding to a minimal Bessel model of
the supercuspidal from which it is induced, these results allow us to establish the
existence of a local coefficient. In the generic case, such a local coefficient was
crucial for Shahidi's study of the intertwining operators and of the relation between
Plancherel measures aidfunctions; see Shahidi [Shad]. Ldt(v, r, w) denote
the standard intertwining operator attached to inducing dataand Wey!l group
element representative (see (3.4) below). We shall prove (cf. Theorem 3.8):
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THEOREM.Letw be an irreducible representation 8f which is a component of
the representation parabolically induced from an irreducible supercusigtiab
admissiblgrepresentatiom of a parabolic subgroup af/. Suppose that carries
a Bessel model correspondiig the sense of Theorenl) to a minimal Bessel
model ofp. For eachw in the Weyl group, choose a representativéor w. Then
there is a complex numbér(v, w, w) so that

Av,m) = C(v,m,w)A(wv, wr)A(v, T, w).

Moreover, the functiom — C(v, 7, w) is meromorphic and depends only on the
class ofr and the choice of the representative

We callC (v, 7, w) thelocal coefficienattached tar, v, andw. We then establish
properties of these local coefficients. In Corollary 3.9 we show that the local
coefficients behave as expected with respect to the Langlands decomposition of
the intertwining operators. This generalizes a property of the local coefficients
introduced by Shahidi [Shaa] in the generic case. Then we prove results on the
relation between the local coefficient&v, 7, w) and the Plancherel measures
wu(v,m, w) (cf. Proposition 3.10 and Equation 3.7). Finally, we show that the local
coefficients can be used to normalize the intertwining operat@rsr, w) and that
the zeroes o (v, 7, w) are among the poles of(v, m, w).

1. Preliminaries on Bessel Models

In this section we recall the notion of a Bessel model following [Ral] and [GPR],
and review some properties of such models. Eebe a non-Archimedean local
field of characteristic zero. L& be one of the classical groups $¢1, U+ 1, Uz,
or SO, defined ovelF. We assume that the orthogonal groups are split, and that
the unitary groups are quasi-split, and split over a quadratic exterfisidn Let
ro = 2r if G = Uy, or SOy, andrg = 2r + 1 otherwise. Denote bg = TU
the Borel subgroup d&, whereT contains the maximal split subtorus of diagonal
elements, andl) is the subgroup of upper triangular unipotent matrice& inVe
useG to denote thd -rational points ofG, and use this notational convention for
other algebraic groups defined ovér

Denote by®(G, T) the root system o5 with respect toT. We choose the
ordering on the roots corresponding to our choice of Borel subgroupiiLet
W (G, T,) be the Weyl group o6 with respect to the maximal split subtortig
of T. Thus,W = Ng(T4)/T. Then,

S,z if G#SOy,
W r—1
S, x 751 if G=SOy,.

(See [Gola, Golb] for a more explicit descriptionoind!.) Here we will denote
all elements ofV as permutations om letters. Thus, the permutatidiy) € S,
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corresponds to the permutati¢iy)(ro + 1 — jro + 1 — %) in S,,. Similarly, the
sign change; which generates thath copy ofZ, corresponds to the permutation
(tro+1—1i)in Sy,

Fix an/ < r and letly = ro — 2¢. Let U, be the subgroup df) consisting of
matrices whose middig x £y block is the identity matrix. For X i < £, letvy; be a
non-trivial additive character df if G is orthogonal, and let; be the composition
of such a character withr - if G is unitary. We lea = (a1, az, .. ., ag,) € Fto
if G is orthogonal, and led € E% if G is unitary. Then defingy o, by e q; (z) =
Y¢(ajz). Now define a character @f, by

-1 £
X ((uig)) = H Vi(Uiit1) H (ry (te,045)-
=1 j=1

Let
I
M, = g eG
I
Note thatM, C Ng(Uy). If g € My, then definex9 by x9(u) = x(g~tug). We
let M, = {g € M;|x? = x}. Let R, = M, U,. Suppose thav is an irreducible

admissible representation 81, . (We will denote this byw € £(M,).) Letw, =
w ® x be the associated representationyn

DEFINITION 1.1. We say that two characteys and y, of U, defined as above
areequivalenif x; = xJ for someg € N¢(Uy).

The following result is a consequence of Witt's Theorem.
LEMMA 1.2. Any charactery of U, which is defined as above, is equivalent to one
for whicha = (4,0,0...,1), for somes.

From now on we assume for convenience th& given as in Lemma 1.2.

We letl; = [¢p/2] =r — ¢.

DEFINITION 1.3. Suppose that is an admissible representation 6f We
say thatr has anw,-Bessel mode{or a Bessel model with respect i@, ) if
Homg(7,Ind% (wy)) # O. If x is a character of/,, and/; is defined as above,
then we say that has a rank,; Bessel model.

Remarks(1) By Frobenius reciprocity [BeZ], we have
Homg (T, Indgx (wy)) = Homuy, (T, wy ),

wherery,  is the x-twisted Jacquet module efwith respect tdJ, [BeZ]. Thus,
the non-vanishing ofy,  , for somel andy, would imply thatr has a rank’y
Bessel model with respect to somg.
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(2) A Whittaker model [Roda, Rodb] is a rank zero Bessel model.

(3) One can make these definitions for any choice of Borel subgroup. We choose
the standard one for convenience, but we will need to use others in the sequel.

(4) WhenG = SO,,41, Rallis has shown that every irreducible admissible
representation oG(F') has a Bessel model for some choiceyofand w. For
G = SO, as well as other groups (such as symplectic groups) some, but not
necessarily all, representations admit Bessel models.

(5) Suppose that is irreduciblew € £(M, ), and\:V; — V,, =V, satisfies
A7 (z)v) = 5Rx(x)1/2wx(x))\(v), forall z € R, andv € V;. (Such a\ is
called a Bessel functional.) Lete V. and setB,(g) = \(7(g)v). Then the map
v +— B, realizes an intertwining betweerand In(ﬁx (wy). Conversely, if there is

an embedding’ of 7 into Indﬁx (wy), then setting\(v) = [T'(v)](e), we getamap
A Vr — V,, with the property specified above. Thushas anv, -Bessel model if
and only if a Bessel functional exists.

In this paper we shall make use of the following basic uniqueness principle.

THEOREM/CONJECTURE 1.4.etr € £(G). Then for a fixed and x, we have
dime Homg (T, Indgx (wy)) < 1. Thatis, a Bessel model is unique for irreducible
representations O

Uniqueness for Whittaker models is well-known. For rank one Bessel models,
Theorem 1.4 was proved, for both orthogonal and unitary groups, by Novodvorsky
[Nov]. For Bessel models of arbitrary rank, Theorem 1.4 has been proved when
G is an orthogonal group by S. Rallis ([Ral]). Though the argument in the unitary
case should be similar, it has not yet been written down in full detail.

In the remainder of this paper we study those Bessel models for which the
uniqueness principle above is valid. Thus we assume that Theorem/Conjedture
is true hencefortiOur results are therefore complete for split orthogonal groups and
for rank one Bessel models on quasi-split unitary groups, while they are contingent
upon the truth of Theorem/Conjecture 1.4 for higher rank Bessel models in the
unitary case.

To conclude this section we introduce the notion of a minimal Bessel model for
an admissible representatiorof G. This will be a key notion in what follows.

DEFINITION 1.5. Suppose thathas anv, -Bessel model which is of rank > 2.
We say that this model isinimalif 7 has no Bessel model of radk — 1 with
respectto a representatime, obtained as followsy’ is a character ob/;, 1 such
thatx’ = x on the simple roots o/, (this implies that)M,, C M, ), andw’ is a
component oiu|MX,. We say thaeveryw, -Bessel model of rank 1 is minimal.

This condition is used in our proof of Proposition 2.4 below; see the discussion
following the proof of Lemma 2.10.
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If 7 has a Bessel model, we denote Bf-) the smallest non-negative integer
/1 such thatr has a Bessel model of ramk. For exampler is generic if and only
if B(7) = 0. Then any Bessel model forof rank 3(7) is clearly a minimal Bessel
model in the sense of Definition 1.5. In particular, any representation which has a
Bessel model has a minimal Bessel model.

2. Induction of Bessel Models

In this section we study the behavior of minimal Bessel models under induction
and prove an analogue of Rodier's Theorem [Rodb] for such models.
Suppose tha® = MN is an arbitrary parabolic subgroup@f Then

M ~ GL,, x --- x GL,, x G(m) (2.1)
if G is orthogonal, and

M ~ Re$(GL,,) x --- x Re€(GL,,) x G(m) (2.2)
if G is unitary, where

SC)Zerl if G= S()ZrJrl;
SOy, if G=3S0,;
Usnyr it G=Uzyy;
UZm if G= UZra

G(m) =

and we take the convention that §© {1}. Here,r = nj + - -+ 4+ n; + m.
Letw € £(M). Then

T=01Q - Q0o QT, (2-3)

wheres; € £(GL,,, (F')) or€(GL,, (E)), accordingly, and € £(G(m)). Suppose
thatT has a Bessel model. We lé&t be the rank of a minimal Bessel model for

lo =201+ 19— 2r,and?’ = m — (1. LetB’ = T'U' = BN G(m), andU), be the
subgroup olU’ consisting of matrices whose middig x /o block is the identity.
Choose a charactey; of U, andw € &(M,,) for which 7 has arw,,-Bessel
model which is minimal. Let = r — ¢;, and lety be a character df, of the form

X = Xo® x1, Wherexg is a generic character on each GL block corresponding to a
fixed non-trivial additive character of F. (We call this they-genericcharacter of

the GL component.) Leiip be the longest element &F (G, Ag) /W (M, Ap) and

fix a representativesg for wp. Our first main result is the following.

THEOREM 2.1.Letk = F'if G is orthogonal and¥ if G is unitary. LetP = MN

be a parabolic subgroup d&, with M as in(2.1) or (2.2). Letw be as in(2.3)

with eacho; generic. Further, suppose thathas a Bessel model, and thgi is
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a character ofU, N G(m) which gives rise to aw,,-Bessel model for which is
minimal. Lety be a character ot/; such thaty|;, g, (k) is ¥-generic for each

i and such thal|y,nam) = xa- ThenInd%(r) has a uniquev)°-Bessel model.
Conversely, if any of the; are non-generic, or ifr has no Bessel model, then
Ind% () has no Bessel model

The remainder of this section will be devoted to the proof of Theorem 2.1. (One
step, the existence of a non-zero Bessel model fdf (nd), is deferred to Section
3 below.) The first step is to reduce the theorem to the case of a maximal proper
parabolic subgroup. To do this, suppose Theorem 2.1 holds for maximal proper
parabolic subgroups and IBt= MN be an arbitrary parabolic. TheM is of the
form (2.1) or (2.2). LetP; = M1N; be the standard maximal proper parabolic
with My = GL,_,, x G(m) or M; = Re€(GL,_,,) x G(m) which contains
M. Letp = Ind%ﬁMl(w). Thenp = p1 ® 7, wherep; is the representation of
GL,_.,(k) parabolically induced frons; ® - -- ® o¢. Since eacly; is generic,
Rodier's Theorem implies that has a unique generic constituent. Now for each
irreducible constituent; of p;, the representation; ® 7 satisfies the hypothesis
of the Theorem. Then, by assumption, fi{et) = Ind (Indp?,,. () ® 1x;) will
have a unique Bessel model of the desired type.

Now suppose thaP = MN is a maximal proper parabolic subgroup Gf
Then for somen, 1 < n < r, andm = r — n we haveM ~ GL,, x G(m) if G is
orthogonal,an¥l ~ Reg;/r(GL,,) xG(m) if Gis unitary. Letr = o1 € £(M),
whereo € £(GL,(k)) andr € £(G(m)). Suppose that has anv,,-Bessel model
ofrank¢; > 0, and itis minimal. Assume that; is of the form givenin Lemma 1.2.
Let/ = r — /1. Note that/; < m implies/ > n. Let/’ = ¢ —n = m — £1. Then
x1 is a character of/;,, whereU;, = Uy N G(m). Let xo be the generic character
of the upper triangular unipotent subgroup of GL,, given by a fixed additive
character). Now define the charactgron U, by x = xo ® x1 ® 1y+, whereU’
is the complement oy x Uy, in U,. Note that), = M, ,. We will examine the
space ofv, -Bessel functionals for Irff(o 7).

In order to carry out our computation, we have to give a description of the
R, — P double cosets ii=. We present a set of elemerftsC G such that every
double coset has at least one representative fom

LetWy = W(M,T,). Then

Sp X (Smx Z5Y) if G # SOy,
WM = m—1 ;
Sy X (Sm x Z5'77) otherwise

Note thatf W /Wy | = 2" (;) Letwp denote the longest elementidf/ Wy . Then
wo = (1rg)(2rg — 1) ... (nro +1—n),
unlessG = SO,, andn is odd, in which case

wo = (Irg)(2ro — 1) ... (nro + 1 —n)(rr + 1).
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We now give a list of coset representativesifiof 17y, . We will say that a permuta-
tion s € S,, ‘appears’ inw if w = w's, for somew’ which is disjoint froms. We
will also use the convention thatifd ¢ < r, theni’ = rg + 1 — .

LEMMA 2.2. Suppose thab € W.

(@) If G # SOy, thenthere is an element of W so thatw = w1 (modVyy ) with
wy a product of disjoint transpositions ifi,,. More precisely, we may choose
wy of the formw}w!, with w} = TI¥_1(a; a}), for some{a;} C {1,...,n},
andw] = [[7_;(bi ¢;) (¢, b)), with {b;} C {1,...,n}, and{c;} C {n+1,n+
2,...,ro—n}. Furthermore, we may assume that the transpositions appearing
in wj andw?/ are all disjoint

(b) If G = SO, thenw = wiw,, wherew, is of the form given in parta), and
eitherwy = 1, wp = (dodp), for somen + 1 < do < r, or wz = (ig j§ g jo)s
for somel < ig < n < jo < r. In each casev; andw; are disjoint

Proof. We first writew = cs, with s € S, andc € Z5. Sincec acts on the
cycles ofs independently, we may assume thas a pair of ‘companion’ cycles,
(a1az...a¢)(ald, ... a}). If s = 1, or the length of each of the two companion
cycles ins is two, then the claim is trivially true, so we assume that the length
of each of the cycles is greater than two. Suppose that the claim holds whenever
the length of the two cycles inis less thart. Without loss of generality, we may
assume thai; < n. If, for somei, we haveu;, a;11 < n, then

w = w(ajair1)(azaq, )

= c(a1...a;-10iGi42. .. a)(ay ... a;_1a5a;, 5. .. ay),

and the claim holds by induction. Similarly, we may assume that it n, then
a;+1 < n. This argument also shows that we may assumettisgaeven. Now we
see that

w = cs- (arar_1ai-3...a3)(ara}_qa;_3. .. aj5)
= c(aras)(azaz) . .. (ar_1a¢—2)(atay)(azab) . .. (ar_qa;_5).
Now write ¢ = (by b)) (b2 b5) ... (bs b)), with b; # b;, for i # j.
If, for a fixed eveni > 2, {a;, ai+1} C {bj};_, then the product
(aia)(ai+1a;,1) (@iv10:)(@j1107) = (aiaiyq)(air10;)

appears in the reduced product forThe same is true a1, a:} C {b;}7_4, i.e.,
(a1ay)(aray) appears inv. If i > 2 is even anda;, a;11} N {b;}5-, = 0, thene
commutes with(a;a;11)(aja; 4 ), and so this product of transpositions appears in
w. Similarly, if {a1,a:} N {b;}5_4 = 0, then(aia;)(aya;) appears inv.

Suppose > 2 is even and that exactly one element{af, a;;1} belongs to
{bj}3_1. Then, ifG # SO, we can replace by w(a;a;), and we see that either
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(aip1a;)(aza;,q) oOr (aiy10;7)(a;a;, 1) appears inv(a;a;), depending on whether
aj+1 Or a; 1S in {bj}jzl. If G = SO, andw either fixes somely > n, or
interchanges soméy anddg, then we can instead multiply by (a;a})(dodp),
which shows that one dfa;1a;)(aja;, 1) or (a;y1a;)(asaj, ) appears. We see
that the above considerations apply equally well to the faira, }. By fixing the
elemently before starting the above process, we can guarantee that, when we have
concludedw; = 1 orwy = (dodp).

Finally suppose that no sudp exists. Thusw(d) # d,d' foralln+1 < d < r.
So we may now assume thdte {a;}, for eachd, n + 1 < d < r. Suppose
that the number of for whichd = a; € {b;} with a;1 ¢ {b;} is even. (Here we
are including{as, a;:} as one possible pair.) Then we see that w [[(dd),
where the product is over precisely thage= a; for which a;11 ¢ {b;}, is of
the formw, as claimed. Finally if{n + 1 < d < r|de {b;}}| is odd, then we
fix some suchdy. Without loss of generality, assume thé&t = a;. Multiplying
on the right by the elementgld’), for the other suchi, we see that we have a
factor of (a;a})(a1a:)(aya}) remaining to be dealt with. But this product is indeed
wy = (a1ajaiar), as claimed. O

If G = SOy, andw, is of this final form, then there is some flexibility as to
the indices appearing im,. That is, we may choose, fdgp, any of thea; > n for
which (a;a;) appears i, but (a;41a;, ;) does not. We will need this below.

Recall thatlg = g — 2¢. Let s = {p — 2. Suppos& = (z1,...,x5) € F*if G
is orthogonal anat € E¢ if G is unitary. Let

I
1 21 ... x4 *
1 O —Tg
n(x) = .0 ;
1 -7
1

I

whereZ is the Galois conjugate af if G is unitary, and it if G is orthogonal.
Here and for the rest of this section, we pass between a Weyl group element and
its coset representative without changing the notation.

PROPOSITION 2.3. (a)letg € GG. Then for somey € W and somex € F*if G
is orthogonalrespx € E? if G is unitary) we haveR, gP = R, n(x)wP. Clearly
we can choos& up to Wy, i.e., we may assume = w; is of the form given in
Lemma2.2.

(b) Denote byj|x|| the standard length of € F** or E* accordingly. If||x|| =
[|x1]|, thenR,n(x)wP = R, n(x1)wP, for all w.

Proof.To prove part (a), we make use of the Bruhat decomposition. This implies
that every element off lies in some double cosétw P with w € W. But every
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elementu € U is of the formu = rn(x) for somer € R, andx € F*, resp.

E* (G orthogonal resp. unitary). Thus every double caBeyP is of the form

Ry n(x)wP, as desired. The proof of part (b) is immediate from Witt's Extension
Theorem, since the isometry from the space spannedbyhe space spanned by
X1 may be extended to an orthogonal (resp. unitary) transformatidiyin, and
M1 C MX C RX' O

If H c G, we will use ind(7) to denote the representation @Gfcompactly
induced fromr [BeZ, Cas]. Recall that Irfg(7) = ind%(7), by the lwasawa
decomposition. I/ is a complex vector space, €t°(G, V') denote the space of
locally constant/-valued functions oz, and letC2°(G, V') denote the subspace
of elements of”>°(G, V') with compact support. L&D(G, V) = C(G, V)* be
the space of/-distributions onG.

LetV, be the space af, V. be the space af, andV, the space af (and hence
the space o, ). We letV; = V,, ® V.. Denote byl the vector spac&, ® V;,
whereV/,, is the space of the smooth contragrediemf w.

We wish to analyze the space Heiiindf (), Indf (w,)). Dualizing, and
using Theorem 2.4.2 of [Casg], this is isomorphic to the spaceé{dnd%x (@y),
Ind%(¢ ® 7)). This space, in turn, is isomorphic to the space of intertwining

forms on in(ﬁx (@y) ® Ind% () [Har, Lem. 4]. Now by Bruhat's thesis (see [Rodb,
Thm. 4]) this Is isomorphic to the spaceW@fdistributionsT on G satisfying

e(r) * Txe(p™) = 052 (p)T o [@y(r) @ 7(p), (2.4)

forall » € R, andp € P. Heree(x) is the Dirac distribution at ando indicates
composition.

The analysis of this space of distributions will make use of the following
proposition. Its proof requires a combinatorial argument, and will be given in
several steps later in this section.

PROPOSITION 2.4If there is a non-zerd -distributionT" satisfying(2.4)for all
r € R, andp € P whichis supported o®,n(x)wP, thenR, n(X)wP = R,woP
ando is generic

LEMMA 2.5. Suppose thdl” satisfieg2.4). ThenT is completely determined by
its restriction toR, wo P.

Proof.First note that a straightforward matrix computation showsifatwy =
won(x), for any x. Thus Ry woP = Uy Ryn(X)woP = PuwoP, is open. There-
fore C = G\ R,woP is closed. Therefore, we have the exact sequence [BeZ,
Sect. 1.7]

0 — C°(RywoP) — C2*(G) — C°(C) — .
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Then, by tensoring with’, the above exact sequence yields the exact sequence
0— CX(RywoP,V) = CX(G,V) = CZ(C,V) — 0.

Dualizing, we get the exact sequence
0—D(C,V) —D(G,V) = D(RywoP,V) — 0.

Let Dy p be the subspace of distributions satisfying (2.4). Then Proposition 2.4
implies that ifT" € D(G,V)g, . p andT'(f) = 0for all f € C°(R,woP, V), then
T = 0. Thus, the above sequencetellsush@at, V) g, . p — D(R,woP, V), p,
which completes the proof of the Lemma. a

Let RY® = wqy 1Rxwo, and denote by° the representation dty° defined by

wyo(r) = w, (worwgy ). Recall thatP = MN is the Levi decomposition d®.

LEMMA 2.6. There exists an isomorphism between the vector Spaég, woP,
V)r,.p and the vector space of distributions ™(U,) @ D(P,V) of the form

x(u) du ® 65 (m) dQ(m) dn, whereQ € D(M, V) satisfies
e(r)*Qxe(m™) = Qo [W¥°(r) @ w(m)], (2.5)
forallr € RY°N M, m € M.

Proof. Define a projectiorP: C°(U;) @ C°(P,V) — CX(UywoP, V) by
specifying that for allfy € C°(Uy) and f, € C°(P, V'), one has

P19 fo) wwop) = | | Falu) fa(wg Yuy Muwop) duy.

UpNwoPwy
Then it follows from [Sil, Lem. 1.2.1] thaP is onto. Letl" € D(RywoP, V)r, p.

For f1, f2as above, defin€’ € D(Uy) @D(P, V) by T'(f1® f2) = T(P(f1® f2)).
Then one sees easily that (2.4) implies the equality

e(u) * T" xe(p™) = &y (u)T o [x(p)] (2.6)

forallu € Uy, p € P (wherer acts on the second factor@j. As in [Sil, Sect. 1.8],
this implies thafl” is in fact a pure tensor of the form

x(u) du ® §p(m) Y2 dQ(m) dn, (2.7)
where@ € D(M, V). (Here we are using that(mn) = n(m).) It is a formal

consequence of the definitions that (2.6) implies Pate(m 1) = Q o [r(m)],
for all m € M. We claim that, more strongly, Equation (2.5) holds. To see this,
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write dQ(p) = 6p(m)~Y2dQ(m)dn. Let f1 € CX(Uy), f» € C=(P,V) and
r € R, NwoMuwy*. Then by (2.4) we have

[ ) ] 50) 120 6Q(p)

= f1(w)@y (1) f2(p) AT (u, p)

U[XP

= T(ox(r)P(f1® [2))

_ P(f1® f2)(ruwop) dT (uwop).
UpwoP

But ruwgp = (rur*l)wo(wglrwop), so this expression is equal to

| Alrur ™) fatwg ruo) 4T (u. )
Ugx P

= [ filrur=Yx(u) du/ fa(wg trwop) dQ(p)
P

Uy

~Ju, S1(u)x(u) du /P f2(p) d(e(wg *rwo) * Q)(p),

where in this last equality the defining propertiesiyf = M, U, have been used
to simplify the U, integral. Since this holds for ajf; € C2°(U,) one concludes
thate (wg 'rwo) * Q@ = Q o &, (r) forall r € R, NwoMuwg !, as desired.
Conversely, given a distributio satisfying Equation (2.5), one reverses the
above steps to arrive at a distributidhe D(U,) @ D(P, V) satisfying (2.6). Since
the mapP is onto, one may define a distributi@dhe D(U,woP, V') by the formula

T(P(f1® f2)) = T'(f1® f2)

provided one shows that #(>"; f1, ® f2;) = 0, thenT’(}"; f1; ® f2;) = O.
This follows as in [HeR, Thm. 15.24]. Sindd, C wy*Mwg andR,, = U, M, it
follows from (2.5) and (2.7) that thE so-obtained satisfies (2.4).

The mapd’ — Q, @ — T described above are clearly inverses. This completes

the proof of the Lemma. O

We now complete the proof that an -Bessel model for Inﬁ(w) is unique,
modulo the proof of Proposition 2.4. L& be as in the proof of Lemma 2.6. Then
by Bruhat's thesis once agaif}, corresponds to an element of

M

HomM(indR;uomM(JJ?O), TRT),

which, by duality gives an element of Hoatr, Ind%omM(w;’O)). SinceM =

G1 x G(m), where G is either GL,(F) or GL,(E), depending on whether
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G is orthogonal or unitary, we see that this last space is exactly the space of
Whittaker models for tensored with the space of°-Bessel models for. Thus

dim Hom;(Ind@ (), Ind%, (wy)) < 1. m

We defer the proof of the existence of a non-zegeBessel model for Ind(r)
to Section 3. In particular, Proposition 3.5 guarantees that such a model exists.

Proof of Proposition2.4. The remainder of the section will consist of a proof
of Proposition 2.4. This is carried out in several steps. We begin by showing that,
on many double cosets, the compatibility conditiefp) = wx(wpw_l) can not
be satisfied for somg € P with r = wpw™? € R,. By [Sil, Thm. 1.9.5], this is
sufficient to imply the Proposition.

Let>7 denote the set of positive rootshih Let A denote the simple roots 3f
in G which give rise to our choice of Borel subgroupalfe ®(G, T), then we let
X, be the corresponding element of a Chevalley basis for the Lie algelraof
U, asa is positive or negative, respectively. Let denote the root; — e;, 1, and
B=-er+ep1. LetX = {ag,ay, ..., a0 B}. ThenX is the set of roots where the
charactel is non-trivial. Fora € X we havey (I +tX,) = ¥4(t). Also, note that
XNYt = {a,}. We listthe elements aE;, for future reference. I6 = SO, 1,
then

If G = Uy, then
Y ={eitell<i<n<j<r}
U{ei+e|1<i<j<n}U{2;|1l<i<n}.
If G = U2r+1, then

Finally, if G = SOy, then
YSh={eite|l<i<n<j<riu{ei+e|l<i<j<n}.

We list the variousl + X, which generate the root subgroups of U. Let
E;; denote the elementary matrix whose only non-zero entry is a 1 injthe
entry. We recall the convention thét= ro + 1 — i. SupposeF’ = F(v), where
7 = —v, anda — a is the Galois automorphism di/F. If o = e; — ¢;, then
I+ Xa =71+ Eij — Ej’i’ if Gis orthogonal, and + Xa =1+ ")/Ez‘j — ')/Ej/i/ if
Gis unitary. Ifa = e; +¢j,thenl + X, = I + E;jy — Ej; if G is orthogonal,
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andl + X, = I +vE;y — vE;y if Gis unitary. Ifa = ¢;, thenl + X, =

I+ Ei,r+l — Er—f—l,i’ if G = SOZ7‘+17 andl + X, =1+ 7Ei,r+l - 7Er+l,i’ if

G = Uyp,41. Finally, if G is unitary andx = 2¢;, thenl + X, = I + vE;;r.
Suppose that, for some € ¥}, we haveo/ = wa € X. Choose some

t € F* for which ¢y (t) # 1. Now setp = I + tX,, which is in P. Then

r=wpw l=TI+tXy € Uy C R,.Notethatr(p) = 1 # w,(r) = 1, (t). Thus,

if w has the above properti, w P can support no distribution of the desired type.

LEMMA 2.7. LetG = SO,,. Suppose that, asin Lemr2&, w € W is equivalent
modiWy to wiwy, With we = (ig jgig jo), for somel < ig < n < jo < 7. Then
wyi N X # 0.

Proof. From the proof of Lemma 2.2, we may assume that for eaghl <
k < r, we havew(k) = i or i}, for some 1< i, < n. First suppose that
(int1n + 1)(i,,1(n 4+ 1)) appears inw. Consider first the case that for dll
n+ 1< k < ¢, we have a permutatiofi k) (i} k') appearing inv. Sincel + 1 =
w(ipy1) OF € + 1 = w(iy, ), we havew(e;, + e;,,,) = e¢ & epy1, Which will be
in X. So now we may suppose that eithigr< ¢, or (ixk’)(i},k) appears inw,
for somek with n + 1 < k& < /. Sincew changes an even number of signs, we
see that in the former case there must be séméth n + 1 < k£ < r, so that
(ixk") (i}, k) appears inu. Now we can multiply on the right byjojo) (kk'), to see
that, in fact, we may assume thf, ko) (i}, ko) is appearing, for somgy, with
n+ 1 < ko < £. Choosing the minimal sucky, we know thatkg = w(i%o), while
ko — 1= w(ig,—1). Thus,ag,-1 = wley, , +e;y ) € w¥F N X, and the Lemma
holds.

Thus, we may assume that eithéf1(n + 1)') (i, 1n + 1) appears inv, or
that (i, 11(n + 1)}, ,n + 1) does. In the former case, we may multiply on the
right by (n + 1(n + 1)")(Jojp), to get an equivalent for which the latter is true,
i.e, we may assume thaf = ¢, 1. First supposev(n) = n. Thenw(e,, + ¢;,) =
an € wEh N X and we are done. Suppose instead that) = n’, i.e., that(nn’)
appears inw. Let i be the smallest positive integer so thatn — i) # n — .
(By our assumption on the form af, such ani exists.) Them — i = i, for
somek > n + 1, andn — i = w(k) or w(k’). Thereforew,,_; is equal to either
w(ep—i+1 — ex) ortow(e,—14+1 + €x). In either caseg,,—; € wE,J{ N X. Finally,
we may suppose that either= ig or that one ofnk)(n'k’) or (nk")(n’k) appears
inw, forsomek, n+1 < k < r. If (nk)(n'k") appears inv, then we may multiply
on the right by((n + 1)k)((n + 1)'k")(ion) (ign’), to replacew by an equivalent
element withig = n. Similarly, if (nk’)(n’'k) appears inv, then we may multiply
on the right by

(n+ 1k)((n + 1)'K") (ion) (ign’) (kK" ) (n + 1(n + 1)"),

to see that we may assume thigt= n. We are thus reduced to the case where

(n(n + 1)'n'n + 1) appears inv. In this casew(e, + en11) = a, € W N X,

Thus, in all cases, the Lemma holds. O
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Remark For future use we make note of the following fact.«fis as in
Lemma 2.7, and ifv 1o, € £F, then the proof of Lemma 2.7 shows that either
wlay = e; + e, for somei, j < n, or thatwXi N X # {ay}.

We now describe those which have the property that>} N X = (). By
Lemmas 2.2 and 2.7, we may assume th& a product of disjoint transpositions.

LEMMA 2.8. Suppose that) € W is a representative for a class iv/WWy, and
w is in the form specified by Lemr@a2. Further suppose that, for att € 7, we
havewa ¢ X. Then the following hold

(a) Forall k withn +1 < k < ¢, we havew(k) > n.
(b) Forall ¢ with 1 < @ < n, we havew(i) # i.

Proof. (a) First suppose that(¢) < n. If w(¢ + 1) < n, thenw(p) € 7,
contradicting our choice af. If w(¢+1) = ¢+ 1, then agaim(3) € S . Finally,
if w(¢ + 1) > n’, thenw(ay) € IF. So we must havey(£) > n.

Now suppose that for some n + 1 < k < ¢ — 1, we havew(k) < n. If
w(k+1) =k+1,0orw(k+1) >n, thenw(az) € X5, which is a contradiction.
Therefore,w(k + 1) < n. However, this implies, by induction, that(¢) < n,
which we have already seen is impossible. Therefo(é) > n.

(b) Suppose thab (i) =i forsomei, 1 <i <n— 1. If w(i + 1) # ¢+ 1, then
w(i+1) > n,and sow(a;) € 3. Since this contradicts our choice®f we have
w(i + 1) = i + 1. We may thus suppose thatfixesn. Now by part (a), we have
w(n + 1) > n + 1, and thereforewa,, € 3. This again is a contradiction, so
cannot fixn. Thereforeuw fixes none of the integers 2, ... | n. O

LEMMA 2.9. Suppose that is as in Lemm&.8 and assume thai(n) # n'.
Thenforn + 1 < k < ¢, we havew(k) = k.

Proof. By Lemma 2.8(a) it is enough to show that it is impossible th@t) > »’
for any suchk. Suppose to the contrary that there is sdmeithn+1 < k < ¢, for
whichw(k) > n’. Thenthere some< n,forwhichk = w(i'). If w(k—1) = k—1,
thenay_1 = w(e; +ep_1) € wE,J{ N X. Since this contradicts our choicewof we
musthavev(k—1) > n’. Therefore, by (downwards) induction(n+1) > n’. Set
w(n+ 1) = 4. Sincew(n) # n, and, by assumptiony(n) # n/, eitherw(n) = k
orw(n) = k' for somek, with n + 1 < k < n’ — 1. Thereforep,, = w(e; + ex)
or a,, = w(e; — eg). Either one of these possibilities contradicts our assumption
onw. Thusw(n + 1) < n’, which then implies the result of the Lemma. O

LEMMA 2.10. Suppose that is as in Lemma&.8. Suppose that there is some
2 < i < n, for whichw(i) = 4. Thenw(i — 1) = (i — 1)".

Proof. Supposeuv(i — 1) # (i — 1)’. By Lemma 2.8(b), we can choogewith
n+1<k<rsothatw(i—1)=korw(i—1) =k.Nowa;_1 = w(e; —ex) Or
a;—1 = w(e; +ex). Since this contradicts our choiceofwe concludev(i — 1) =
(1 —1). O
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Thus, ifw is chosen as in Lemma 2.2 with™.} N X = () andw(n) = n’, then
w = wo. If wSE N X =0, andw(n) # n', then by Lemma 2.9w(¢) = ¢. If
w(l + 1) # ¢+ 1, then eithery, or 3 would be of the formwa for somea € .
Consequentlyy(¢+1) = ¢+1,and thereforev(a) = afora € {ap41. .., a0, 5}
If ¢ = r — 1, the rank one case, there is no sucltcompatible with Lemma 2.2
and Lemma 2.8(b), and we are donef K r — 1, then we conclude that for some
ip < n,and some numbers € {{ + 2,..., (¢ + 2)'} forip < i < n, one has

w = (17“0)(27“0 — 1) - (2016)(20 + 1ai0+1)((z'0 + 1)/CL§O+1) .
(nay)(n'al). (2.8)

Leta = a, if a, < r, anda = a], otherwise. Thenva,, = +e, — e, 1. Let
X1 = {ant1...,ap B, wa,}. Note thatX; = w({an, any1..., a0, 0}), and
is thus a linearly independent subset of the root syské@(m), T'), where we
recall thafT’ = T N G(m). We extendX; \ {3} to a set of simple roots fd&(m).
SetB’ = T,U” to be the corresponding Borel subgroup®fm), and suppose
that Uy , is the subgroup ob” which is conjugate tdJ,, ; and generated by
the elements of;. (Recall thatl;, is the subgroup supporting the character
which gives rise to the model far). Now let x’ be the character df;_ , so that
X' (I +tXa) = a(t), for a € Xq\ {ar}, andx/(I +tX,,) = ¢q,(0t). (Here
dis asinLemma 2.1.) Let/,, be the corresponding normalizer id, 1. Note
that M,, C M,. Suppose thatn’ € M, . If the distributionT satisfies (2.4),
thene(m’) x T = T o w(m'). So for some component’ of w(y;,, we have
e(r)xTxe(h) = Tolw,,(r)®@7(h)],forallh € G(m),andr € Ry» = MUy, 4.
If T is non-zero, this now implies thathas a Bessel model with respectifd,
x’ andw’. However, sincd//, ; is isomorphic tdJ,. 1, this is a rank/; — 1 Bessel
model forr. This contradicts the minimality of the, ,-Bessel model for. Hence,
no suchl" exists.

Note that this argument shows that fi{d-) cannot have any Bessel model of
rank less tha8(7) supported o, wP.

Finally, suppose that = wyq. Letu € U N GL,,(F). Setr = wgy “uwo. Then
r € Uy, andy(r) = xp°(u). Since

e(r)«T =To[xy(u)] =T xe(u) =T o [o(u)],

we see thatr must be generic if” is non-zero [Rodb]. This completes the proof of
Proposition 2.4 for the cosef$, wP, with w € W/Wy.

We now examine the double cosets representedyv, wherex = (z1, ..., zs)
is a vector. Recall that
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I
1 Ts *
0 1 O —Ts
n(x) = 0 ;
0O 0 ... 1 -
0O 0 O 1
Iy

wherez is the Galois conjugate af if G is unitary, andt = z if G is orthogonal.

We assume that is of the form given in Lemma 2.2. First note thabife X \
{a}, thenn(X) (I +tX,)n(X)"t = I +tX,. Suppose that =4 N (X \ {ay}) # 0.
Chooser’ € BF with wa/ = a € X \ {a,}, andt for which ¢, (t) # 1. Setting
p = I +tX,, we haven(X)wpw=in(x)~! = I +tX, € R,. Furthermore
wy(x) = Yo (t) # 1, while 7(p) = 1. Thus,R, n(x)wP supports no distributions
satisfying (2.4).

Now suppose that~4 N X = {a,}. First suppose that ~1a, = e; + e;, with
i,7 < n. Without loss of generality, assume thati) = ¢, andw(j) = (¢ + 1)'.
Suppose that+2 < k < r. If w(k) =i, < nthenwY(es+ex) = e;+ei, € Sp.
If insteadw(k) = ), for somei;, < n, then wl(ep —ep) = e; + e;,- Finally,
if w(k) = k, thenw (e, £ e;) = e; £ e, € L. Choosesy < s for which
x5, # 0. Lety = z,,. Choosekg with the property that eithew=1(e, + ey,) or
wL(ey — ey, ) is an element oES . Denote the root, =+ ey, asao, with + chosen
so thatw=tag € £ . We may also assume that,, has—1 as its(r + 1, £ + so)
entry (see Lemma 2.3). Now note that

RO + X (X)L = (I + tXo0) (I + ytX ).

Thus, if e, (yt) # 0, andp = I +tX,,-1,, € N, thenw(p) = 1, while w, (n(x)
wpw~In(X)71) = 9u,(yt) # 1. ConsequentlyR, n(X)wP cannot support & -
distribution of the desired form.

We are left with the cases™i N X = {a,}, butwta, # e; + ¢; for all
i,j < n,or wzg N X = (. For the second of these two cases, the fornwadé
given by (2.8). In order to complete the proof we will determine the forrm arf
the first case. To do so we need a few lemmas.

LEMMA 2.11. Suppose thatr>5 N X = {ay}, butw™ta, # e; + e , for all
i,7 < n. Thenw(?) = ¢.

Proof.If w=1(¢) = j' for somej < n, thenwta, ¢ B4, which is a contradic-
tion. Suppose~1(¢) = j < n. If w(l+1) = (+1,themv=1(3) = ej+err1 € X7,
contradicting our choice of. If w(¢ + 1) = i < n, thenw o, ¢ ¥4, which
also contradicts our choice af. Finally, if w=1(¢ + 1) = ¢’ for somei < n, then
w~tay = e; + ¢;, which is again a contradiction. Thus(¢) = ¢. O

LEMMA 2.12. If w is as in Lemm&.11], then forn + 1 < k < £ — 1, we have
w (k) > n.
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Proof. Suppose thatv=1(k) = j < n. If w(k +1) = k + 1, thenw oy, =
ej — err1 € B If w(k + 1) = ¢ for somei < n, thenw™ay, = e; + ¢;. Either
case contradicts our hypotheses. Thereforé(k + 1) < n. Now by induction,
w™l(¢ — 1) < n. On the other hand, by Lemma 2.1&(¢) = ¢. Therefore
w™tay_q1 € BF, contradicting our choice af. Consequentlyw=1(k) >n. O

LEMMA 2.13. Suppose thab is as in Lemm&.11 Thenw(n) # n.

Proof. Suppose that(n) = n. If w(n + 1) = n + 1, thenw fixes«,,, which
is in the intersection of andX7. If w=Y(n + 1) = ;' for some; < n, then
wla, = e, + e;. Both of these possibilities contradict our choicewof By
Lemma 2.12w~Y(n+ 1) > n, and so these are the only two choicesifgr + 1).

Since each leads to a contradictiar(yz) # n. O

LEMMA 2.14. Suppose thab is as in Lemm&.11.

(a) For all i < n we havew(i) # i.
(b) If w(ig) = ig, for someip < n thenw(i) = ¢’ for all i < .

Proof. (a) Suppose that(i) = ¢ for somei < n. Choose the maximal such
i. By Lemma 2.13; < n. Suppose thatv(i + 1) = (i + 1)". Thenw™la; =
e + €11 € E,;*. Thus in this case we have a contradictionuifi + 1) = k or
w(i + 1) = k' for somen + 1 < k < r, thenw™la; = e; + ¢, € B3, This is also
a contradiction, and hence ne< n can be fixed byw.

(b) Suppose that(i) = i, for somei < n. If w(i — 1) = k or k¥’ for some
n+1<k<rthenw o, 1 =e; +e, € 35 Butby part (@uw(i — 1) # i — 1,
so the only remaining possibility is(i — 1) = (i — 1)’. This gives the claim by
induction. O

COROLLARY 2.15.If w is as in Lemm&.11, thenw(n) = ko or w(n) = kj for
somen+ 1< kyg<r. O

LEMMA 2.16. Suppose thab is as in Lemm&.11 Thenw(k) = k for all k& with
n+1l<k</l-—1

Proof.Suppose thab~1(n + 1) = j/ for somej < n. Then, by Corollary 2.15,
wla,, = e; £ e, € X3, contradicting our choice ab. Thus, by Lemma 2.12,
wn+1)=n+1

Now supposer—t(k) = Ji. for somek with n + 2 < k < ¢ — 1, and some
g < n lfwk —1) = k-1 thenwla,_; € X}, which is a contradiction.
Therefore, by Lemma 2.124—1(/% —1) = j;._,, for somej,_1 < n. By induction,
this givesw(n + 1) # n + 1, while we have just shown that(n + 1) = n + 1.
Thereforew(k) = k. O

LEMMA 2.17. Suppose thab is as in Lemm&.11.
(a) Suppose thaB # SO,,.. Then, for some, with 0 < n1 < n, and some
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{kjll<j<n—m}Cc{{+1,0+2,...,(0+1)},
we have
w = (1rg)(2ro—1) ... (nlnll)(nl + 1k1)(k’1(n1 + 1)/) ..
(nkTLZ)(k;zzn,)

Heren = ny + no. Furthermoref; = (¢ + 1)’ for some;.
(b) If G = SOy, and we writew = wywy as in Lemma2.2, thenw, = 1 or
wp = (dd’), for somef + 2 < d < r. Furthermorew; is of the form

w1 = (17“0)(27“0 - 1) ... (nlnll)(nl + 1]{:1)(]{:,1(711 + 1)/) ...

(nkn,) (kp,m),
withn = n1+ny, and the integers; are as in part(a). Moreoverk; = (¢(+1)’
for some;.

Proof. First note that ifG = SOy,, andw = wywy, then Lemma 2.16 and the
remark following Lemma 2.7 imply that; is not of the form(i ;' ¢’ j), for some
1<i<n<j<r Moreover, sincav tay, € ¥4, Lemmas 2.16 and 2.11 imply
that if wy = (dd'), thenl + 2 < d < r. If G # SOy, letwy = 1.

By Lemma 2.14(a)w(i) # i for all i < n. By Lemma 2.11, Corollary 2.15,
and Lemma 2.16w(n) = k or £/, for somel + 1 < k < r. Let n; be the
largest nonnegative integer for whiehh < n andw(ni) = nj. If ng > 0,
then by Lemma 2.14(by = (1r)(2r¢ — 1)... (nany)wow’, wherew'(i) = i
for all i < ny, andw;, andw’ are disjoint. Noww'(i) # ¢ andw’(i) # ¢ for
n1+ 1 < i < n,andtherefores + 1 < w'(i) < n’ — 1. However, by Lemma 2.16,
l+1<w' (i) < (£+1). Thus,

w' = (n1+ 1k1)(kiny — 1) ... (nky,)(k,,n'),

as claimed. Finally, Lemma 2.11 implieg¢ + 1) # ¢ + 1, and so we must have
(W)t + 1) =w (¢ +1) =7, for somej < n. 0

We now finish the proof of Proposition 2.4.udf = wo, thenn(x)wo = won(X),
and sincen(x) € P, we haveR, woP = Ryn(X)woP. If wSE N X = {a,}, or
wYFNX = (), then Lemma 2.16 and Equation (2.8) show that, +e,) = eptex,
for somek, with £ +2 < k < r. Leta = w(e, + €/), and denotd + tX. .., by
p. As before, choosgg so thatR, n(xo)wP = R,n(X)wP, and such thaxy has
a non-zero entry with w, (n(X)wpw1n(x)~1) = ¥, (yt). Note thatr(p) = 1.
Choosingt for which ¢, (yt) # 1, we see thatR,n(Xx)wP cannot support a
V-distribution of the desired form. O

From the argument above, it is apparent thatdlfit) cannot have a Bessel
model of rank less thaBi(7). Hence, we obtain the following Corollary.
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COROLLARY 2.18.Let the notation be as in Theorexl Suppose that the, -
Bessel model for is ofrankB(7). Then thev°-Bessel model fand% () is also
minimal, and ofank5(7).

The proof of Theorem 2.1 also gives the following result.

COROLLARY 2.19.For anyo, 7, ¢, x, andw, the support of the twisted Jacquet
functorny, , is a finite number of double cosets O

3. Holomorphicity and Local Coefficients

In this section we prove the existence and holomorphicity of the Bessel functional
and the existence of a local coefficient. To do so, we first adapt the argument used
by Banks [Ban] to prove the holomorphicity of Whittaker functions for metaplectic
covers of Gl,. Banks's result is an extension of Bernstein’'s Theorem, which estab-
lishes the meromorphicity under uniqueness and regularity hypotheses. We show
that the desired regularity holds in the case of Bessel functionals. We then use an
argument similar to Harish-Chandra’s and to Shahidi’s in the generic case to estab-
lish the existence of the local coefficient under certain conditions (Theorem 3.8).
Corollary 3.9 shows that the local coefficient factors in a manner analogous to the
generic case. Then Proposition 3.10 through Theorem 3.15 relate the local coeffi-
cients to Plancherel measures and to the irreducibility of induced representations.
Let G be as in Section 1. We use the conventions found in [Cas, Sect. 1,
Shaa] for subsets of simple roots, Weyl groups, and arbitrary parabolic subgroups.
Suppose thaf\ is the collection of simple roots corresponding to our choice of
Borel subgroup. Lef C A be a collection of simple roots and $&& Py. ThenP
has Levi decompositioR = MgNy, withM = My ~ GL,,, x - -- x GL,,, x G(m),
for somen;, m such thatr = ny + - - - + ni + m. We abbreviate this by writing
M ~ G; x G(m). We also writeN = Ny.
Let A = Ay be the split component &fl . Denote by = (ay){ the complexi-
fied dual of the real Lie algebra &f, ¢ the residual characteristic 6 and denote
by Hp the Harish-Chandra homomorphism [Har, Shaa]. Supposethaf (G1)
andr € £(G(m)), and letr = o ® 7. Forv € af, let I(v,7,0) denote the

induced representation Iﬁc(w ® q}’”HP(») and letV (v, 7, 0) denote the space

of associated functions. We also U$gto denote the representatié(v, =, 6).

Assume that is generic and that has anv,.-Bessel model which is minimal
and of rank/y. Let x be the character df, whose restriction té/; N G(m) is x’
and whose restriction @1 (F') N Uy is ay-generic charactey;. We will construct
a non-zero functional, (v, 7,0) on X, = I(v,7,0) ® V,, so that, for a certain
charactep of M,

Ay (v, 0) (L (mu) (f, ©0)) = 6(m)x(w) Ay (v, 7, 0)(f, © D(m™H)0),
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for all choices off, ® v € X, andmu € R,. Then we will show in Theorem 3.6
that the functionv — A(v,7,0)(x,) is holomorphic, for a holomorphic section
V= Ty

Let K = G(Op), whereOp is the ring of integers inF. Then K is a good
maximal compact subgroup 6f[Cas]. LetK,,, be the correspondingth principal
congruence subgroup. Then edch, is normal inK. LetT',,, be a complete set of
coset representatives féYN K\ K/ K,,,. Note thatT",, is of finite cardinality. Let

Y ={f e C¥(K,Vx)| f(pk) = n(p)f(k), V€ PN K, k € K}.

ThenF — F|g is aK-isomorphism froni/ (v, 7, §) to Y, by the Iwasawa decom-
position of G. We will define a certain functional o¥i, and use this realization to
define an associated functional & . Let

Yo, ={fe€eY|f(kk1) = f(k),Vk € K, k1 € K;,,}.

Thus,Y,,, is the set of<,,,-fixed vectors olt” under the action ok’. Furthermore, the
Iwasawa decomposition allows us to realiZe, =, 6) onY for eachv. Denote by
Vx.m the subspace df;. consisting ofP N K,,,-fixed vectors. Since is admissible,
Vi.m is finite dimensional.

The next three results are standard. We include the proof of the first two for
completeness. The third is a straightforward consequence of the lwasawa decom-
position.

LEMMA 3.1. Y, has a basig f;} which satisfies the following properties

(1) If v € Ty, then the non-zero vectors amofif () } are a basis foll. ..
(2) If f; is fixed, thenf; () # Ofor somey € I',,,.

Proof. Suppose thaft € Y,,. Then f(pkk1) = n(p)f(k), forallp € PN K,
k € K, andk;, € K,,,. Thus, f is completely determined by its values Bp,. Fix
v €Ty, and letp € P N K,,. Sincey 1K,y = K,,, we havey 1py € K,,.

Therefore,f(7) = f(yy 'py) = f(pv) = 7(p)f(y). This says thaif(v) is an
element ofl . ,,,. Fix a basis{vy, ;} of V ,,. Let f,, ;: K — V. ,,, be given by

£ i(k) = 7(p)vm,i I k=pyky, forsomep e PNK, ki € K,
TR0 otherwise

Thenitis immediate thaf, ; is a well-defined element f,,. We claim that{ f, ; }

is a basis foty;,,.

Supposef € Y,,. If v/ € T,,,,p € PN K, andk € K,,, then f(py'k) =
w(p)f(). Sincef(y') € Vam, f(7') = 2; ¢y,ivm,i- This implies that

f(p’y'k) = Z C’y’,iﬂ(p)vm,i = Z C'y/,if'y/,i(p'/k)-
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Now, taking the collectioc, ;} for all v € T,,,, and noting thatf, ;(py'k) = 0
fory # 9/, f(pv'k) = 32, ; ¢yifyi(py'k), which says thaf £, ;} spansy;,.

On the other hand, suppose that, ; c, i f,; = 0. Then, for anyy’ € T'),, we
have}_, ; c,.ify.i(7') = 0,whichimpliesthal®; ¢, ; fi(v') = 32; ¢y ivm,i = 0.
But, since thev,,; are linearly independent,,; = O, for eachy’ and:. Thus,
{f,,i} are also linearly independent. The collectipyy clearly has properties (1)
and (2). O

Denote byX the spac&” @ V. For eachv € o let X, = V (v, ,0) @ V...
For f € Y denote byf, the unique element of (v, 7, 0) satisfying f,|x = f
Then{f, ® T|f € Y,v € V,} spansX,. Recall thatll, can be realized on
Y viaIl,(9)f = [IL.(9)f.] |x- This gives the context in which we discuss the
holomorphicity of the map — 1I,,(g) f,, for a fixed choice ofy and f.

LEMMA 3.2. Fix g € G, f € Y andd € V. Then the functiow — II,,(g)f ® &
is a regular function fromi¢. to X.

Proof. Chooseng so thatf € Y,,,, and choosen > mg satisfyingg~1K,,g C
K, Thenf € Y, and, for allv € of andk € K,,,

I, (k)L (9) f,)(x) = fu (x99 kg) = fu(zg) =11, (9) f,(x),

which says thatll,(¢)f € Y, for all v. Now, by Lemma 3.1I1,(g)f =
> ¢vi(v) fy for a unique choice ot ;(v) € C. It suffices to show that
¢yt af — Cis holomorphic. Fixy’ € T',,. Theny'g = py"k, for somep € P,
~" e Ty, andk € K,,. Then

M, (g)f () = q}”’HP(p»5113/2(p)7r(p)f(v”k)

H 12
:qg,/ P / ZC'Yﬁi

setc, (v) = qi P52 (p)ey i(v). Thena(p)f(+") = 5, ey i(v)uy, for
all v. Since the left hand side in the equation above is mdependenanﬂ thew;
are linearly independent, , ,(v) is constant for each This implies that., ;(v)
is holomorphic. 7 O

From now on we need to distinguish between a Weyl group elermert
W (G, A), for some torusA, and a representative € Ng(A) for w. Let wy =
wy,AWye, Wherew; a is the longest element of the Weyl grodig (G, T), and
wyp is the longest element diV (G, Ay). Fix a representativeug for wy with

wy € K. Note thatwy(6) C A. Now letM’ = M ~ To(0) = w9M9w9 ThenM’ is
a standard Levi subgroup &. Let N’ be the standard unipotent subgroupJofo
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thatP’ = M’N’ is a standard parabolic subgroup®f SinceM’ ~ M, we have
Uy, D N’.

LEMMA 3.3. For eachm > 0, we havew, *N' N Pw, 'K, is compact

Form € M,, let 6(m) = (5131/25p/)(m). Let Xr, .0 be the subspace
spanned by functions of the fori, (mu)f ® v — d(m)x(u)f ® &(m~1), for
m € M,,u € Uy, f € Y,andv € V. Then a non-zero functional on X is

a (dwy)-Bessel functional foll, if and only if Alx, ., = 0. By the results
of Section 2 the space of such functionals is at most one-dimensional. Once we
establish the existence of a non-zero functional of this type, we will know that
X/XR, w0 is one-dimensional.

The construction of this functional will be obtained by taking a direct limit of
functionals given by integrating over compact subsety ofWe show that such a
limit exists and is not identically zero. Moreover, we show that there is a function
in X which is a complement t&, ., ..o for all v. This will give the regularity
condition necessaryto apply Bernstein's Theorem and to obtain the holomorphicity
of the functional.

Now let us fix a Whittaker functional fos and a Bessel functional fap.
(Actually, for notational convenience, we twistby 6§i/2.) That is, suppose that

A\ Ve ® V, — C satisfies
M((o(u1) ® T(mug))(v1 ® v2 ® D)
= x1(u1)x (u2) A\ (v1 ® v2 @ B(m~1)D),
forallu; € U,NG1,up € UNG(m), andm € M, . Let() be a compact subgroup
of N'. Define a functional oX by

22, (] ©7) = /A u) fu(e) © B)x(u) " du. (3.1)

This functional depends on the choice of the representatjfer wy.

Since N’ is exhausted by compact subgroups, the compact subgroulys of
form a directed set. The following Lemma was suggested to the authors by Prof.
Steve Rallis.

LEMMA 3.4. For everyf ® v € X, the limit I|m A9 o(f ®0) exists, where the

limit is the direct limit taken over all compact subgroupsl‘ﬂf.
Proof. This is proved as in [Cas], Corollary 2.3. For every compact open sub-
group$2 ¢ N' and¢ € X, define a projection operator 0%y, by

= [ AL () (w) ™ du

Then giveny € X, there exists a compact open subgrélgpc N’ such that the
function Pf]ﬁ #(g) has support in the big celk,wyP. To see this, write5 as a
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disjoint union of R — P double coset& = URg; P, and letc; be the characteristic
function of the cellkRg; P. Then¢ = >_ ¢¢;. But the arguments in Section 2 show
that there is a subse€ly such thatfo, Ay (IL,(u)dc; (9))x(u)~tdu = 0, for all ¢;
representing cells other than the big cell. Interchanging integration and sum, one
sees thaf)y has the desired property. But then fpof the formg = wyn’ with

n’ € N/, the integraIPl%(b(g) is nonzero only ifn’ € Q. The existence of the
direct limit follows. O

Define a functional o by
A(v.m,0)(f @) =lim X7, o(f ©70). (3.2)
Again, this functional depends on the choicef

PROPOSITION 3.5Let A, (v, 7, ) be defined as if3.2), and extend\, to X,
by the sectiory ® v — f, ® v. ThenA, (v, w, ) defines a non-zeréw, -Bessel
functional forII,,.

Remark By takingr = —2py we get a non-zera, -Bessel model of Inf(r),
which completes the proof of Theorem 2.1.

Proof. Suppose that; € U,. SinceU, C P’, we can writeu; = mynz, with
my € M’ NU,, andn; € N’'. Suppose first that; = n, € N’. SinceN’ is
exhausted by compact subgroups, we can ché@seompact withn, € Qq. If
Qo C Q, then

Aoy (na) f ©70)

= [ Aol ums) @ 7))

= [ Aol ) © 9 Hunrh) du = x(n)AD, ol © 9).

Therefore A, (v, m, 0)(I1, (n1) f ® ) = x(n1)Ay (v, 7, 0)(f ® V).
If w =mq € UyN M, then sincex|q,nu, is ¢-generic,x?(m1) = x(ma).
Thus,

Aoy (ma) f © 0)

= [ Aty ums) @ 5w d
= /Q)\X(f,,(we_lmlwgwe_lml_luml) @ 0)x () du

— /Q)\X(W(we_lmlwg)fy(we_lmfluml) ® 0)x " H(u) du
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=xm) [ A (fulwg ) © D) du

mflﬂml

=x(m)Az e (f©0).

Therefore A, (v, 7,0)(I1,(m1) f ® ) = x(m1)Ay(v,7,0)(f ® v). Similarly, if
m € M, C M’, then

Aoy (m) f ©70)
= /Q)\X(f,,(we_lum) ® U)X H(u) du
= /Q)\X(71'(w;lmwg)(ﬁ,/z(w;lmwg)f,,(wglm_lum) ® U)X Y(u) du

= 5%,/2(w971mw9) / )\X(f,,(wglm_lum) ® Cj(m_l)ﬁ)x_l(u) du

m~10m

= 5;1/25p/(m) / M (fo(wytu) @ @(m™1)d)xH(mum ™) du

m~—10m

= S(m)AZ, S (f @ B(m ™).

Taking the limit onQ2 on the right and left sides of the above equation completes the

proofthatA, (v, 7, §) is a Bessel functional fdil, with respect to the representation
d(m)wy.

It remains to showthat, (v, 7, #) is notidentically zero. Le®’ be the parabolic
opposite toP’. ThenP’ = wnge‘l. By Lemma 3.4,P'K,, is compact, and if
pwy k € Pwy*K,, N N, thenin factp € PN K,,. Choose & € V; andv € V,
such that\, (v ® v) # 0. Choosem > 0 such thatv € V;,, and such that
x| NN P'K,, = 1. Consider the function iy” defined by
w(p)v if k :pwglkl, pePNK, k1 € Ky,

) (3.3)
0 otherwise

Jo(k) = {
Then
Mmoo = [ (w5t 9 ) d

= M\ (v ®7D) [N NP'Kp| #0.

Thus,A, (v, 7, 0) is non-zero, angy is a complementtXg, ., forallv. O

Suppose = mu € R,, f € Y, andv € V,,. Define anX-valued function on
ac by

r.15,0(V) = I (r)(f) © T — 6(m)x(u)(f @ &(m ™))
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THEOREM 3.6.The functiorv — A, (v, 7, )(x) is holomorphic for each € X.
Proof. We will apply Banks’s extension of Bernstein’s Theorem. Let

R={(r,f®v)|reR,,feY,veVz}U{x}

Fora = (r,f ® 0) € R, we letz,(v) = 2, r5,0(v) in X and lete,(v) = 0.
Fix m, v, v, and fp as in (3.3). Forx = x, we setz,(v) = fo® v ande.(v) =
IN' N P'Kp, | A\ (v @ 0). Now for everyv € af, we consider the systems of
equations inX x C given byZE(v) = {(zq(v),ca(v)) |« € R}. By Lemma 3.2,
the functionv — z,(v) is holomorphic for eacla of the form(r, f ® v). For

a = %, the functionz,(v) = fo ® v is constant om. Note that each, is
constant, hence holomorphic as well.

Now, for eachv the functionalA, (v, m,#) is a solution to the systerB(v).
Moreover, such a solution is unique by the results of Section 2. Thus, Banks’s
extension of Bernstein’s theorem [Ban] implies that— A(v, 7, 6)(f ® v) is
holomorphic for all choices of andv. O

We turn to the question of local coefficients. ket W, and fix a representative
wforwwithw € K. ldentifyv € af with a complex vector in the standard way. We
recall that the intertwining operatet(v, 7, w): V (v, 7, 0) — V(w(v), wr, w(0))
is defined forv with the real part of each coordinate sufficiently large by

Av.mw)f(g) = [ 1w ng)dn, (3.4)

whereN; = U N wNw™1, andN is the unipotent radical opposite &. Then
A(v, 7, w)is defined on all o&{ by analytic continuation. Note that the intertwining
operator depends on the choiceuofepresentingo.

We also recall the Langlands decomposition of the intertwining operator, de-
scribed in Lemma 2.1.2 of [Shaa]. For the convenience of the reader, let us
restate this here. For two associate subgetsd 6’ of A, we let W (0,6") =
{weW|wd=20.

LEMMA 3.7 (Langlands (see [Shaa, Lem. 2.1.2Buppose thaf,#’ C A are

associate. Lefb € W (6,6’). Then there exists a famib}, 6, . .. ,0,, C A so that

(1) 61 =0 andb,, = 0,

(2) Foreachl < i < nthereisarooty; € A\ 6; so thatd, ;1 is the conjugate of
0;inA; =6, U {Oéi};

(3) For eachl < i < n — 1, we letw; = wya,Wep, iIN W(6;,0,41). Then
w :ﬁnfl...ﬁil;

(4) Setw, = @, and@),, = ww; " for 1 < i < n— 1 Thend, = 1 and
ngy = ng, & Ad(w; Hngy

Heren is the Lie algebra oN.

comp4205.tex; 12/03/1999; 15:16; v.7; p.26

https://doi.org/10.1023/A:1000723719451 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000723719451

ON LOCAL COEFFICIENTS FOR NON-GENERIC REPRESENTATIONS 159

Let ., C 6 and letp be an irreducible supercuspidal representatiof/gf. If
p is generic, then Rodier's Theorem implies that there is a unique constitugnt
Ind%* (p) which is generic with compatible character. For this constituent, Shahidi
proved that there is a complex numlsgy(v, r, #, w) which satisfies

A (v,7,0) = Cy (v, 7,0, w)A\ (wv, wr, wh) A(v, T, w),

whereA,, is the Whittaker functional. Moreover, the function— C, (v, 7,6, w)
is @ meromorphic function ofuy):. The value of the local coefficient depends on
the choice of representativefor w.

Now suppose thatis any irreducible supercuspidal which has a minimal Bessel
model of a particular type. Then we prove a similar result for the constituent
of Indﬁ‘f(9 (p) which has a Bessel model of compatible type; such a constituent is
unique by Theorem 2.1, and exists by earlier results in this section.

THEOREM 3.8Letf and#’ be associate subsetsff Letd, C 6 and letp be an
irreducible supercuspidal representationia, . Suppose that has anw, -Bessel
model which is minimal. Let be the constituent dﬁd%* (p) such thatr has an
wy>-Bessel model, as in Theorelrl For eachw € W (6, 0') fix a representative
w for w. Then there is a complex numb@y (v, 7, 6, w) so that

Ay (v,7,0) = Cy (v, 7,0, w)A\ (wv, wr, wh) A(v, 7, w). (3.5)

Moreover, the functiow — C, (v, 7,60, w) is meromorphic omg, and depends
only on the class of and the choice ofv.

Proof. We first show how to defin€, (7, r,0,,w) for v € (ap, ). By [SIl,
Thm. 5.4.3.7] the representatiditv, p, 0,.) is irreducible unless the Plancherel
measure:(v, p) = 0 and(v, p) is fixed by a nontrivial element of the Weyl group
Wy, (i.e., is singular). Thus, on an open dense subsétf: the representation
I(v, p,6,) is irreducible, and sa\, (wv, wp, wh,)A(7, p, w) defines a non-zero
Bessel functional o/ (7, p,.) ® V. By the uniqueness of such a functional
(Theorem/Conijecture 1.4), we get the existence€'gfv, p, 6., w) satisfying

A (T, p, 05) = Cy (7, p, O, w) Ay (WD, Wp, Wl ) A(T, p, w)

on the open dense subset. Moreover, it is holomorphic there sincAbilv, wp,

wh,) and A(v, p,w) are holomorphic there. Thus;, (v, p, 6., w) extends to a
meromorphic function or{ag,)&. Now, write w = w,_1...w1 as in Lemma
3.7. SinceC, (7, p, 04, w) is now defined, it admits a factorization compatible
with the decomposition of the intertwining operators given in Lemma 3.7. (See
Corollary 3.9.) This implies that on an open dense subset ©f(ay){, the loc-

al coefficientC, (v, p, 6., w) may be defined by the equati@n, (v, p, 6, w) =

Cy (7, p, 0, w), wherev is the restriction ob to (ag, )c. Suppose that, for some
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v in this open dense subset, (wv, wr, wd)A(v, ™, w) was the zero function-

al. Then, by inducing in stages and using the discussion preceding this Theor-
em, we would conclude that, (wv, wp, wd,)A(v, p,w) is also zero. However,
since Cy (7, p, 04, w) is defined there, this would be a contradiction. Thus we
may defineC, (v, m, 0, w) by the relation (3.5) on this open dense subset, and
we haveC, (v, ,0,w) = C\ (7, p, b, w). Since A(v, 7,w) has a meromorphic
continuation to(ay)¢, andA, (wv, wr, w#) is holomorphic or(ay)¢, the function

v — Cy (v, 7,6, w) must have a meromorphic continuation. O

COROLLARY 3.9.Let the notation be as in Lemn&7 and TheorenB.8. Let
m = m, andyy, = v. Foreachi, 2 < i < n— 1, setm;, = w;m_1,v; = Wy;_1.
Then the local coefficient factors 8§ (v, 7,0, w) = H?:‘ll Cy (74,0, w;).

Proof.Let f1 = f € V(v,m,0) and for 2< ¢ <n — 1, let f; = A(vi—1, mi—1,
wi_l)fl-_l. Then

Ay (Vi i, 0:) fi = Cy(vi, m3, 05, w3 ) Ay (Vig1, Tig1, 0ig1) X
X A(v;, i, w;) fi,

for each 1< i < n — 1. The corollary now follows immediately from Lemma 3.7
and iteration of the above equality. O

We now establish results analogous to those developed by Shahidi in [Shaa]
for the local coefficients attached to generic representations. First, let us refine our
notation slightly. To this end, we now denote thg-Bessel model on the induced
representation by, ., instead of\, . Similarly, we now denote the local coefficient
defined above by, , instead ofC, .

Suppose that is an irreducible admissible unitary representationbfwith
a minimalw, -Bessel model. Choos&. C ¢, an irreducible supercuspidal rep-
resentationog of My, , andvp € (aj )c SO thatw is a subrepresentation of

IndY, (co® g7 O)) Let ju(v, 0o, w) be the Plancherel measure attached to

00, andw, and let the constant, (G/Py-) be defined as in [Shaa, p. 318]. Recall
thatu(v, oo) = p(v, oo, we, ). Letv be defined as in the proof of Theorem 3.8, i.e.,
v is the restriction of to (ag, ).

PROPOSITION 3.10With 7, og andrg as above we have
Cyw(wv, wm, wh, w_l)C'Xvw(V, 0, w)
= Y (G /Py, ) (¥ + vo, 00, w), (3.6)
forall v € (aj)c.
Proof. From Harish-Chandra’s theory of intertwining operators and Plancherel
measures [Sil], we have

Y2 (G Py ) (T + 10, 00, w) A(wr, wr, w™ ) Ay, m,w) = 1.
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Using this identity we see that
Cyw v, m,0,w)Cy o, (wr, wr, wh, wil)Axw(l/, m,0)
= Y0y 2(G/ Py, ) iV + v0, 00, w) Cy s (v, 0,0, 0) x
X [Cy o (wr, wr, wh, w A (v, 7, 0) A(wr, wr, w™ 1) A(v, 7, w)
= Y2 2(G/ Py, ) (7 + v0, 00, w) Cy s (v, 0,0, 0) %
XAy o (Wv, wr, wh) A(v, m, w)
= Y (G/ Py, ) (¥ + 10,00, w) Ay (v, T, 6).
Thus, we have the desired equality. O

If (w,V) is a representation aff, then we letj:V — V be the map that
conjugates the complex structure ¥f i.e., j(cv) = ¢j(v) for all ¢ € C. Then
definem onV by 7(g)jv = j(m(g)v).

Assume thatr be as in Theorem 3.8. We Id® be the unique irreducible
subquotient of (v, 7, #) which has aw, -Bessel model. Identify3 with its Bessel
modelB(v) = B(v, 7,0, x,w) C Indj (w,). Denote byB(v)* the dual of B(v)
with respect to the pairing, ) given in [Shaa, Sect. 2].

LEMMA 3.11. B(v)* = B(—7,7,0,x,®).

Proof. We use the notation of Section 2 of [Shaa]. Denotd life left regular
representation. Recall thatif € V(pg,1,0) (see [Shaa, p. 302]), then one can
choosep € C°(G) satisfying

h(g) = / o(mng)q‘ =200 1P (M) dp, din.
Mg Ng

This gives rise to a relatively bounded linear functiopatiefined byu(h) =
Je ¢(g) dg. In keeping with the notation in [Shaa, Sect. 2], we also wiitg) =

$: h(g) du(g).
Suppose: € Uy. Let f* € B(v)*. Given f € B(v), the pairing(, ) is defined

by
(L) = §(F0), 1" (ug) o).
Choosep € C2(G) with
9 (7). £ wa) = [ plmng)a ) dm e,

as in [Shaa] (we suppress the dependenceaf u). Then

U LY ) = /G olg) dg = /G o(u~tg) dg
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= § (). £(a) dule) = (L)1 1)

= x(u ) ) = x@){f, 15 = (f, x () f7).

Thus,B(v)* C Indge(x).
Let B, be an irreducibleV/, -subquotient of3(v). Set

B ={f*e Bw)"|(f, f*) #0 forsome f € B1}.

ThenBj is an irreduciblel/, -subquotient o3 (v)*. We claim that each sudB; is
isomorphic tao. Letw; be (the class of) th&/, representation of;. We suppress

the isomorphism of3; with w and use the same argument as above. Namely, for
anymj € M,, f* € Bf,andf € By, we have

(For(m)f7) = (£ Lmi ) = ¢ (£(9). £ (mag)) dulg).

G

Choosingy so that

(F(9), f*(mag)) = /MN o(mng)g =2 1) dm dn
we have

(frwi(ma) f) = /G o(g) dg = /G p(mytg)dg

_ 72 (f(myYg), *(g)) duulg) = (L(ma)f, f*)
= (w(mMf, £7).

Now, letj*: Bf — Bj be the conjugation map. The pairifig)’ : B1 x B given
by (w, w*) = (w, j*w*) is bilinear. Therefore,

(w,@(ma)w*) = (w(my Hw,w) = (wm; Hw, j*w*)
= (w,w1(ma)j w") = (w, j* (@1 (m1)w"))
= (w,w1(m1)w*).
Thereforew, ~ @, as claimed. O
The following is an analogue of Proposition 3.1.3 of [Shaa].

PROPOSITION 3.12For all v € (a})c we have

Cyw(wv, wr, wh, w_l) =C, (-7, 0,w).
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Proof. First we assume thatis purely imaginary, i.e., that € iaj. Let B(v)
andB(v)* beasinLemma3.11. Since— C, ., (v, 7,6, w) is meromorphic, there
is an open dense subsetiaj on whichC, (v, m, 0, w) is holomorphic. On such
a subset, the relation (3.5) shows tl#&tr) cannot be contained in the kernel of
A(v,m,w). But A(v, 7, w) induces a scalar isomorphisty ., (v, 7,6, w) between
B(v, 7,0, x,w) and B(wv, wr, wd, x,w). Therefore, its adjoinC,, (v, 7, 6, w)
with respect to the pairing , ) is the map induced ol (»)* by the adjoint of
A(v, 7, w), which is A(—wz, wr, w™1) [Shaa, Prop. 2.4.2]. But now this last map
is the scala”, ;(—wv, wr, wh, w™t). Therefore,

C, 5(—wv, wr, wh, w ) = Cy (v, m,0,w).
The Proposition now follows by taking complex conjugates and using analytic
continuation. O

COROLLARY 3.13.Supposev is unitary,r is supercuspidal, and7 = v. Then
the functionv — C, ., (v, 7,6, wy) is holomorphic. Furthermore, if is not among
the poles ofd(v, 7, wy), thenC,, ., (v, 7, 8, wy) is non-zero.

Proof. If w is unitary, thenv ~ &, and so if—7 = v, then Proposition 3.12
implies C,, ., (wgv, wgﬂ,wge,we_l) = Cyw(v,m 0,wp). Then Proposition 3.10
implies that

| O (v, 0,w5) | = 7 2(G/ Pp) (v, ). (3.7)

Moreover,u(v, m) is holomorphic on the set of satisfying—7 = v, and therefore
Cyw(v,m,0,wg) is holomorphic there. Now from Proposition 2.4.1 of [Shaa] and
the discussion that follows it, we have

|CX,UJ(V’ T, 9’ ?,U@) |2A(_va , w@)*A(Va , ?,Ug) =1

Butif —7 = v, then A(—7, 7, wy)* = A(v,m,wp)*. Consequently, the poles of
the two operatorsl (v, 7, wy) andA(v, m,wy)* are the same. Thus, away from the
poles of A(v, 7, wy) the local coefficienC,, ., (v, 7, 6, wg) # 0. a

We now normalize the intertwining operatotév, 7, w) by the local coefficient.
If 7 is unitary and has a minimal, -Bessel model, then we set

A, m,w) = Cy (v, 7,0, w)A(v, T, w).

PROPOSITION 3.14The operatorsd (v, 7, w) satisfy

(@) A(wv, wr, w Ay, m,w) = 1.
(b) If w is unitary, thenA(v, 7, w)* = A(—w?, wr,w™?t).
(c) If wis unitary and—7v = v, then A(v, 7, w) is a unitary operator
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Proof. By Proposition 3.10 and Proposition 2.4.2 of [Shaa], we see that (a)
holds. Part (b) then follows from Proposition 2.4.2 of [Shaa] and Proposition 3.12
above. Then part (c) is a consequence of (a) and (b). O

THEOREM 3.15.Suppose that is an irreducible unitary supercuspidal repres-
entation ofMy. Assume thatr has a minimakv,-Bessel model, withy unitary.
Suppose thaig € (aj)c and suppose that @ ¢tH#e0) is non-singular, i.e., if
w € Wy andw(r @ ¢ o)) ~ 1 @ ¢totsO) thenw = 1. ThenI (v, 7, 0)

is irreducible if and only if bottC,, , (v, 7, 8, wg) and Cy ., (wev, wem, web, wy )
are holomorphic ai = vy.

Proof. By Corollary 5.4.2.2 of [Sil], each of the rank onrefunctions, and
therefore each rank one intertwining operator is holomorphie at 1. Thus,
A(v, 7, wp), which is a product of these rank one operators, is defined=aty.

Suppose thak(vg, 7, 0) isirreducible. TheB (v, 7, 0, x,w) = I (v, 0),and
A(vo, m,wg)I(vo,m,0) = B(wyrg, wem, web, x,w). Therefore, A, ., (wpv, wer,
wyb) A, m,wy) is defined and non-zero at= 1. Consequently, (v, .6,
wy) is holomorphic atv = 1. Replacing the paifvg, 7) by (wgro, we), we see
Oy w(wev, wom, weh, wy *) is also holomorphic at = vy.

Conversely, suppose that, ., (v, 7,8, wy) andC, ., (wev, wgﬂ',wg@,we_l) are
both holomorphic atr = 1. Sincer is supercuspidal, Proposition 3.10 implies
that

Cly w(wov, wom, web, w;l)CXM(V, m,0,wg) = (G, 0)u(v, ),

with ¢(G, 6) a positive constant. Thereforér, 7) is holomorphic av = v, and
hence by Theorem 5.4.3.7 of [Sill (v, 7, 0) is irreducible. O

COROLLARY 3.16.Suppose that andvq are as in Theoren3.15above. If the
local coefficientC,, ., (v, 7,0, wy) has a pole atv = vp, thenI(wgro, wem, weh)
is reducible and the image of(v, 7, wy) has zero intersection witB (wyrg, we,
wpb, X, w).

Proof. Sincer @ ¢oH60) is nonsingularA(v, w,wy) is defined aty = 1.
SinceC, ., (v, 7,0,wg) has a pole av = vg andv — A, (v, 7, 0) is holo-
morphic and non-vanishing, we see thgt,, (wgro, wem, wel) A(vo, 7, we) Must
be zero. This implies thaB (wyro, wem, web, x,w) has zero intersection with the
image of A(vg, 7, wy). Since B(wgro, wem, wel, x,w) IS non-zero, we see that
I(wgro, wem, weh) must be reducible. a

PROPOSITION 3.17Suppose that is an irreducible unitary supercuspidal rep-
resentation ofMy with a minimalw,-Bessel model. Further suppose thatis
unitary.

(@) Let A(v, m,w) be the normalized intertwining operator. Then the image of

A(v, m,w) is alwaysw, -Bessel

(b) The zeroes of’, (v, 7,6, w) are among the poles of (v, 7, w).
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Proof. These both follow immediately from the above. O

RemarkShahidi and Casselman have recently shown that, in the generic case, if
7 is a discrete series representation, then the zeraés(ef =, 6, w) are exactly the
same as the poles of the intertwining operatdr, 7, w). It would be interesting
to know if this extends to the Bessel case.
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