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Abstract. This paper is concerned with representations of split orthogonal and quasi-split unitary
groups over a nonarchimedean local field which are not generic, but which support a unique model of
a different kind, the generalized Bessel model. The properties of the Bessel models under induction
are studied, and an analogue of Rodier’s theorem concerning the induction of Whittaker models is
proved for Bessel models which are minimal in a suitable sense. The holomorphicity in the induction
parameter of the Bessel functional is established. Local coefficients are defined for each irreducible
supercuspidal representation which carries a Bessel functional and also for a certain component
of each representation parabolically induced from such a supercuspidal. The local coefficients are
related to the Plancherel measures, and their zeroes are shown to be among the poles of the standard
intertwining operators.
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Introduction

L-functions are a central object of study in representation theory and number theory.
Over a global field, one has the Langlands Conjectures, which assert in particular
the meromorphic continuation and functional equation of a class of Euler products.
Over a local field one has additional conjectures due to Langlands, expressing the
Plancherel measure arithmetically as the ratio of certain localL-functions and root
numbers.

In many cases these conjectures have been established by Shahidi [Shab, Shac,
Shad], following a path laid out by Langlands [Lana]. The framework for Shahidi’s
work is the study of Eisenstein series or their local analogues, induced represent-
ations. One knows the continuation of these Eisenstein series due to Langlands
[Lanb]. Langlands also showed that the constant coefficients of the Eisenstein
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134 SOLOMON FRIEDBERG AND DAVID GOLDBERG

series may be expressed in terms of local intertwining operators which are almost
everywhere quotients of certainL-functions. It remains to study these intertwining
operators for the finite set of ‘bad’ places. If the inducing data is generic, that is,
admits a Whittaker model, then Shahidi has succeeded in relating them to local
L-functions. Thus the careful study of the Eisenstein series, both local and global,
affords a proof of certain of the Langlands conjectures for theseL-functions.

The aim of this work is to suggest that the Langlands–Shahidi method may be
extended beyond the generic spectrum by the use of other models. The Whittaker
model is unique (an irreducible admissible representation admits at most one such
model up to scalars). In this paper we study the properties of local representations
of split orthogonal groups and quasi-split unitary groups which are not generic, but
which support a unique model of a different kind, the generalized Bessel model.
These models involve a character of a proper subgroup of the unipotent radical
of a Borel subgroup, but transform under a reductive group of some, in general
non-zero, rank. The uniqueness of the models has been proved by S. Rallis [Ral] in
the orthogonal case, but as the argument has not yet been written out in full detail
in the unitary case we make it a hypothesis throughout the paper.

We first study the properties of Bessel models under induction, and prove
an analogue of Rodier’s Theorem [Rodb] concerning the induction of Whittaker
models. Our analogue, Theorem 2.1, states that if one parabolically induces a
representation with a Bessel model of minimal rank, or more generally one which
is minimal in the sense of Definition 1.5 below, then the induced representation has
a unique Bessel model of the same rank and compatible type. In the case of rank 0,
we recover Rodier’s theorem. To carry out the proof we use Bruhat’s extension [Bru]
of Mackey theory and investigate precisely which double cosets of the appropriate
type may support a functional with the desired equivariance property. We show
that there is a unique such double coset by an extensive combinatorial argument.

Next, we establish the holomorphicity of the Bessel functional which arises from
one which is minimal by parabolic induction of the underlying representation. Our
approach is based on Bernstein’s theorem [Ber], which uses uniqueness to conclude
meromorphicity under some regularity hypotheses, and Banks’s extension [Ban],
which allows one to prove holomorphicity as well. We show in Theorem 3.6 that
there is a non-zero Bessel functionalΛ(ν, π), attached to an irreducible admissible
representationπ of the Levi subgroupM and a parameterν in the complexified
dual of the Lie algebra of the split component ofM , which is holomorphic inν.

If π is supercuspidal and has a Bessel model, or more generally ifπ is irre-
ducible and carries a Bessel model corresponding to a minimal Bessel model of
the supercuspidal from which it is induced, these results allow us to establish the
existence of a local coefficient. In the generic case, such a local coefficient was
crucial for Shahidi’s study of the intertwining operators and of the relation between
Plancherel measures andL-functions; see Shahidi [Shad]. LetA(ν, π,w) denote
the standard intertwining operator attached to inducing dataν, π and Weyl group
element representativew (see (3.4) below). We shall prove (cf. Theorem 3.8):
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THEOREM.Letπ be an irreducible representation ofM which is a component of
the representation parabolically induced from an irreducible supercuspidal(thus
admissible) representationρ of a parabolic subgroup ofM. Suppose thatπ carries
a Bessel model corresponding(in the sense of Theorem2.1) to a minimal Bessel
model ofρ. For eachw̃ in the Weyl group, choose a representativew for w̃. Then
there is a complex numberC(ν, π,w) so that

Λ(ν, π) = C(ν, π,w)Λ(w̃ν, w̃π)A(ν, π,w).

Moreover, the functionν 7→ C(ν, π,w) is meromorphic and depends only on the
class ofπ and the choice of the representativew.

We callC(ν, π,w) thelocal coefficientattached toπ,ν, andw. We then establish
properties of these local coefficients. In Corollary 3.9 we show that the local
coefficients behave as expected with respect to the Langlands decomposition of
the intertwining operators. This generalizes a property of the local coefficients
introduced by Shahidi [Shaa] in the generic case. Then we prove results on the
relation between the local coefficientsC(ν, π,w) and the Plancherel measures
µ(ν, π,w) (cf. Proposition 3.10 and Equation 3.7). Finally, we show that the local
coefficients can be used to normalize the intertwining operatorsA(ν, π,w) and that
the zeroes ofC(ν, π,w) are among the poles ofA(ν, π,w).

1. Preliminaries on Bessel Models

In this section we recall the notion of a Bessel model following [Ral] and [GPR],
and review some properties of such models. LetF be a non-Archimedean local
field of characteristic zero. LetG be one of the classical groups SO2r+1, U2r+1, U2r,
or SO2r, defined overF. We assume that the orthogonal groups are split, and that
the unitary groups are quasi-split, and split over a quadratic extensionE/F. Let
r0 = 2r if G = U2r or SO2r, andr0 = 2r + 1 otherwise. Denote byB = TU
the Borel subgroup ofG, whereT contains the maximal split subtorus of diagonal
elements, andU is the subgroup of upper triangular unipotent matrices inG. We
useG to denote theF -rational points ofG, and use this notational convention for
other algebraic groups defined overF.

Denote byΦ(G,T) the root system ofG with respect toT. We choose the
ordering on the roots corresponding to our choice of Borel subgroup. LetW =
W (G,Td) be the Weyl group ofG with respect to the maximal split subtorusTd
of T. Thus,W = NG(Td)/T. Then,

W '
{
Sr n Zr2 if G 6= SO2r,

Sr n Zr−1
2 if G = SO2r.

(See [Gola, Golb] for a more explicit description ofT andW.) Here we will denote
all elements ofW as permutations onr0 letters. Thus, the permutation(ij) ∈ Sr
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136 SOLOMON FRIEDBERG AND DAVID GOLDBERG

corresponds to the permutation(ij)(r0 + 1− j r0 + 1− i) in Sr0. Similarly, the
sign changeci which generates thatith copy ofZ2 corresponds to the permutation
(i r0 + 1− i) in Sr0.

Fix an` < r and let`0 = r0 − 2`. Let U` be the subgroup ofU consisting of
matrices whose middlè0×`0 block is the identity matrix. For 16 i 6 `, letψi be a
non-trivial additive character ofF if G is orthogonal, and letψi be the composition
of such a character withTrE/F if G is unitary. We leta = (a1, a2, . . . , a`0) ∈ F `0

if G is orthogonal, and leta ∈ E`0 if G is unitary. Then defineψ`,aj byψ`,aj (x) =
ψ`(ajx). Now define a character ofU` by

χ
((
uij
))

=
`−1∏
i=1

ψi(ui,i+1)
`0∏
j=1

ψ`,aj (u`,`+j).

Let

M ` =


 I` g

I`

 ∈ G

 .
Note thatM ` ⊂ NG(U`). If g ∈ M`, then defineχg by χg(u) = χ(g−1ug). We
letMχ = {g ∈M` |χg = χ} . LetRχ = MχU`. Suppose thatω is an irreducible
admissible representation ofMχ. (We will denote this byω ∈ E(Mχ).) Let ωχ =
ω ⊗ χ be the associated representation onRχ.

DEFINITION 1.1. We say that two charactersχ1 andχ2 of U` defined as above
areequivalentif χ1 = χg2 for someg ∈ NG(U`).

The following result is a consequence of Witt’s Theorem.

LEMMA 1.2. Any characterχ ofU` which is defined as above, is equivalent to one
for whicha = (δ,0,0 . . . ,1), for someδ.

From now on we assume for convenience thatχ is given as in Lemma 1.2.
We let`1 = [`0/2] = r − `.

DEFINITION 1.3. Suppose thatτ is an admissible representation ofG. We
say thatτ has anωχ-Bessel model(or a Bessel model with respect toωχ) if
HomG(τ, IndGRχ(ωχ)) 6= 0. If χ is a character ofU`, and`1 is defined as above,
then we say thatτ has a rank̀1 Bessel model.

Remarks. (1) By Frobenius reciprocity [BeZ], we have

HomG(τ, IndGRχ(ωχ)) ' HomMχ(τU`,χ , ωχ),

whereτU`,χ is theχ-twisted Jacquet module ofτ with respect toU` [BeZ]. Thus,
the non-vanishing ofτU`,χ , for some` andχ, would imply thatτ has a rank̀ 1

Bessel model with respect to someωχ.

comp4205.tex; 12/03/1999; 15:16; v.7; p.4

https://doi.org/10.1023/A:1000723719451 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000723719451


ON LOCAL COEFFICIENTS FOR NON-GENERIC REPRESENTATIONS 137

(2) A Whittaker model [Roda, Rodb] is a rank zero Bessel model.
(3) One can make these definitions for any choice of Borel subgroup. We choose

the standard one for convenience, but we will need to use others in the sequel.
(4) WhenG = SO2r+1, Rallis has shown that every irreducible admissible

representation ofG(F ) has a Bessel model for some choice ofχ andω. For
G = SO2r as well as other groups (such as symplectic groups) some, but not
necessarily all, representations admit Bessel models.

(5) Suppose thatτ is irreducible,ω ∈ E(Mχ), andλ:Vτ →Vω = Vωχ satisfies
λ(τ(x)v) = δRχ(x)1/2ωχ(x)λ(v), for all x ∈ Rχ and v ∈ Vτ . (Such aλ is
called a Bessel functional.) Letv ∈ Vτ and setBv(g) = λ(τ(g)v). Then the map
v 7→ Bv realizes an intertwining betweenτ and IndGRχ(ωχ). Conversely, if there is

an embeddingT of τ into IndGRχ(ωχ), then settingλ(v) = [T (v)](e), we get a map
λ:Vτ →Vω with the property specified above. Thus,τ has anωχ-Bessel model if
and only if a Bessel functionalλ exists.

In this paper we shall make use of the following basic uniqueness principle.

THEOREM/CONJECTURE 1.4.Letτ ∈ E(G). Then for a fixedω andχ, we have
dimCHomG(τ, IndGRχ(ωχ)) 6 1. That is, a Bessel model is unique for irreducible
representations. 2

Uniqueness for Whittaker models is well-known. For rank one Bessel models,
Theorem 1.4 was proved, for both orthogonal and unitary groups, by Novodvorsky
[Nov]. For Bessel models of arbitrary rank, Theorem 1.4 has been proved when
G is an orthogonal group by S. Rallis ([Ral]). Though the argument in the unitary
case should be similar, it has not yet been written down in full detail.

In the remainder of this paper we study those Bessel models for which the
uniqueness principle above is valid. Thus we assume that Theorem/Conjecture1.4
is true henceforth.Our results are therefore complete for split orthogonal groups and
for rank one Bessel models on quasi-split unitary groups, while they are contingent
upon the truth of Theorem/Conjecture 1.4 for higher rank Bessel models in the
unitary case.

To conclude this section we introduce the notion of a minimal Bessel model for
an admissible representationτ of G. This will be a key notion in what follows.

DEFINITION 1.5. Suppose thatτ has anωχ-Bessel model which is of rank̀1 > 2.
We say that this model isminimal if τ has no Bessel model of rank`1 − 1 with
respect to a representationω′χ′ obtained as follows:χ′ is a character ofU`+1 such
thatχ′ = χ on the simple roots ofU` (this implies thatMχ′ ⊂ Mχ), andω′ is a
component ofω|Mχ′ . We say thateveryωχ-Bessel model of rank6 1 is minimal.

This condition is used in our proof of Proposition 2.4 below; see the discussion
following the proof of Lemma 2.10.
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138 SOLOMON FRIEDBERG AND DAVID GOLDBERG

If τ has a Bessel model, we denote byB(τ) the smallest non-negative integer
`1 such thatτ has a Bessel model of rank`1. For example,τ is generic if and only
if B(τ) = 0. Then any Bessel model forτ of rankB(τ) is clearly a minimal Bessel
model in the sense of Definition 1.5. In particular, any representation which has a
Bessel model has a minimal Bessel model.

2. Induction of Bessel Models

In this section we study the behavior of minimal Bessel models under induction
and prove an analogue of Rodier’s Theorem [Rodb] for such models.

Suppose thatP = MN is an arbitrary parabolic subgroup ofG. Then

M ' GLn1 × · · · ×GLnt ×G(m) (2.1)

if G is orthogonal, and

M ' ResEF (GLn1)× · · · × ResEF (GLnt)×G(m) (2.2)

if G is unitary, where

G(m) =


SO2m+1 if G = SO2r+1;

SO2m if G = SO2r;

U2m+1 if G = U2r+1;

U2m if G = U2r,

and we take the convention that SO1 = {1}. Here,r = n1 + · · · + nt +m.
Let π ∈ E(M). Then

π = σ1⊗ · · · ⊗ σt ⊗ τ, (2.3)

whereσi ∈ E(GLni(F )) orE(GLni(E)), accordingly, andτ ∈ E(G(m)). Suppose
thatτ has a Bessel model. We let`1 be the rank of a minimal Bessel model forτ ,
`0 = 2`1 + r0− 2r, and`′ = m− `1. Let B′ = T′U′ = B ∩G(m), andU′`′ be the
subgroup ofU′ consisting of matrices whose middle`0 × `0 block is the identity.
Choose a characterχ1 of U ′`′ andω ∈ E(Mχ1) for which τ has anωχ1-Bessel
model which is minimal. Let̀ = r− `1, and letχ be a character ofU` of the form
χ = χ0⊗χ1,whereχ0 is a generic character on each GL block corresponding to a
fixed non-trivial additive characterψ of F. (We call this theψ-genericcharacter of
the GL component.) Let̃w0 be the longest element ofW (G,A0)/W (M ,A0) and
fix a representativew0 for w̃0. Our first main result is the following.

THEOREM 2.1.Let k = F if G is orthogonal andE if G is unitary. LetP = MN
be a parabolic subgroup ofG, with M as in (2.1) or (2.2). Let π be as in(2.3)
with eachσi generic. Further, suppose thatτ has a Bessel model, and thatχ1 is
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ON LOCAL COEFFICIENTS FOR NON-GENERIC REPRESENTATIONS 139

a character ofU` ∩G(m) which gives rise to anωχ1-Bessel model forτ which is
minimal. Letχ be a character ofU` such thatχ|U`∩GLni (k) is ψ-generic for each

i and such thatχ|U`∩G(m) = χ1. ThenIndGP (π) has a uniqueωw0
χ -Bessel model.

Conversely, if any of theσi are non-generic, or ifτ has no Bessel model, then
IndGP (π) has no Bessel model.

The remainder of this section will be devoted to the proof of Theorem 2.1. (One
step, the existence of a non-zero Bessel model for IndG

P (π), is deferred to Section
3 below.) The first step is to reduce the theorem to the case of a maximal proper
parabolic subgroup. To do this, suppose Theorem 2.1 holds for maximal proper
parabolic subgroups and letP = MN be an arbitrary parabolic. ThenM is of the
form (2.1) or (2.2). LetP1 = M1N1 be the standard maximal proper parabolic
with M1 = GLr−m × G(m) or M1 = ResEF (GLr−m) × G(m) which contains
M . Let ρ = IndM1

P∩M1
(π). Thenρ = ρ1 ⊗ τ, whereρ1 is the representation of

GLr−m(k) parabolically induced fromσ1 ⊗ · · · ⊗ σt. Since eachσi is generic,
Rodier’s Theorem implies thatρ1 has a unique generic constituent. Now for each
irreducible constituentπ1 of ρ1, the representationπ1⊗ τ satisfies the hypothesis
of the Theorem. Then, by assumption, IndG

P (π) = IndGP1
(IndM1

P∩M1
(π)⊗ 1N1) will

have a unique Bessel model of the desired type.
Now suppose thatP = MN is a maximal proper parabolic subgroup ofG.

Then for somen, 1 6 n 6 r, andm = r − n we haveM ' GLn ×G(m) if G is
orthogonal, andM ' ResE/F (GLn)×G(m) if G is unitary. Letπ = σ⊗τ ∈ E(M),
whereσ ∈ E(GLn(k)) andτ ∈ E(G(m)). Suppose thatτ has anωχ1-Bessel model
of rank`1 > 0, and it is minimal. Assume thatχ1 is of the form given in Lemma 1.2.
Let ` = r − `1. Note that̀ 1 6 m implies` > n. Let `′ = `− n = m − `1. Then
χ1 is a character ofU ′`′ , whereU′`′ = U`′ ∩G(m). Letχ0 be the generic character
of the upper triangular unipotent subgroupU0 of GLn given by a fixed additive
characterψ. Now define the characterχ onU` by χ = χ0 ⊗ χ1 ⊗ 1U ′ , whereU ′

is the complement ofU0 × U ′`′ in U`. Note thatMχ = Mχ1. We will examine the
space ofωχ-Bessel functionals for IndGP (σ ⊗ τ).

In order to carry out our computation, we have to give a description of the
Rχ − P double cosets inG. We present a set of elementsS ⊂ G such that every
double coset has at least one representative fromS.

LetWM = W (M ,Td). Then

WM '
{
Sn × (Sm n Zm2 ) if G 6= SO2r,

Sn × (Sm n Zm−1
2 ) otherwise.

Note that|W/WM | = 2n
(
r
n

)
. Letw0 denote the longest element ofW/WM . Then

w0 = (1r0)(2r0− 1) . . . (nr0 + 1− n),

unlessG = SO2r andn is odd, in which case

w0 = (1r0)(2r0− 1) . . . (nr0 + 1− n)(rr + 1).
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We now give a list of coset representatives forW/WM .We will say that a permuta-
tion s ∈ Sr0 ‘appears’ inw if w = w′s, for somew′ which is disjoint froms. We
will also use the convention that if 16 i 6 r, theni′ = r0 + 1− i.

LEMMA 2.2. Suppose thatw ∈W.
(a) If G 6= SO2r, then there is an elementw1 ofW so thatw ≡ w1(modWM ) with

w1 a product of disjoint transpositions inSr0. More precisely, we may choose
w1 of the formw′1w

′′
1 , with w′1 =

∏k
i=1(ai a′i), for some{ai} ⊂ {1, . . . , n},

andw′′1 =
∏j
i=1(bi ci)(c′i b

′
i), with {bi} ⊂ {1, . . . , n}, and{ci} ⊂ {n+ 1, n+

2, . . . , r0−n}.Furthermore, we may assume that the transpositions appearing
in w′1 andw′′1 are all disjoint.

(b) If G = SO2r, thenw ≡ w1w2, wherew1 is of the form given in part(a), and
eitherw2 = 1, w2 = (d0 d

′
0), for somen + 1 6 d0 6 r, or w2 = (i0 j′0 i

′
0 j0),

for some1 6 i0 6 n < j0 6 r. In each casew1 andw2 are disjoint.

Proof. We first writew = cs, with s ∈ Sr andc ∈ Zr2. Sincec acts on the
cycles ofs independently, we may assume thats is a pair of ‘companion’ cycles,
(a1a2 . . . at)(a′1a

′
2 . . . a

′
t). If s = 1, or the length of each of the two companion

cycles ins is two, then the claim is trivially true, so we assume that the length
of each of the cycles is greater than two. Suppose that the claim holds whenever
the length of the two cycles ins is less thant. Without loss of generality, we may
assume thata1 6 n. If, for somei, we haveai, ai+1 6 n, then

w ≡ w(aiai+1)(a′ia
′
i+1)

= c(a1 . . . ai−1aiai+2 . . . at)(a′1 . . . a
′
i−1a

′
ia
′
i+2 . . . a

′
t),

and the claim holds by induction. Similarly, we may assume that ifai > n, then
ai+1 6 n. This argument also shows that we may assume thatt is even. Now we
see that

w ≡ cs · (a1 at−1at−3 . . . a3)(a′1a
′
t−1a

′
t−3 . . . a

′
3)

= c(a1at)(a3a2) . . . (at−1at−2)(a′1a
′
t)(a

′
3a
′
2) . . . (a′t−1a

′
t−2).

Now write c = (b1 b
′
1)(b2 b

′
2) . . . (bs b′s), with bi 6= bj , for i 6= j.

If, for a fixed eveni > 2, {ai, ai+1} ⊂ {bj}sj=1, then the product

(aia′i)(ai+1a
′
i+1)(ai+1ai)(a′i+1a

′
i) = (aia′i+1)(ai+1a

′
i)

appears in the reduced product forw. The same is true if{a1, at} ⊂ {bj}sj=1, i.e.,
(a1a

′
t)(ata′1) appears inw. If i > 2 is even and{ai, ai+1} ∩ {bj}sj=1 = ∅, thenc

commutes with(aiai+1)(a′ia
′
i+1), and so this product of transpositions appears in

w. Similarly, if {a1, at} ∩ {bj}sj=1 = ∅, then(a1at)(a′1a
′
t) appears inw.

Supposei > 2 is even and that exactly one element of{ai, ai+1} belongs to
{bj}sj=1. Then, ifG 6= SO2r, we can replacew byw(aia′i), and we see that either
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(ai+1ai)(a′ia
′
i+1) or (ai+1a

′
i)(aia

′
i+1) appears inw(aia′i), depending on whether

ai+1 or ai is in {bj}sj=1. If G = SO2r andw either fixes somed0 > n, or
interchanges somed0 andd′0, then we can instead multiplyw by (aia′i)(d0d

′
0),

which shows that one of(ai+1ai)(a′ia
′
i+1) or (ai+1a

′
i)(aia

′
i+1) appears. We see

that the above considerations apply equally well to the pair{a1, at}. By fixing the
elementd0 before starting the above process, we can guarantee that, when we have
concluded,w2 = 1 orw2 = (d0d

′
0).

Finally suppose that no suchd0 exists. Thus,w(d) 6= d, d′ for all n+1 6 d 6 r.
So we may now assume thatd ∈ {ai}, for eachd, n + 1 6 d 6 r. Suppose
that the number ofd for which d = ai ∈{bj} with ai+1 6∈ {bj} is even. (Here we
are including{a1, at} as one possible pair.) Then we see thatw ≡ w

∏
(d d′),

where the product is over precisely thosed = ai for which ai+1 6∈ {bj}, is of
the formw1 as claimed. Finally if|{n + 1 6 d 6 r | d∈{bj}}| is odd, then we
fix some suchd0. Without loss of generality, assume thatd0 = at. Multiplying
on the right by the elements(dd′), for the other suchd, we see that we have a
factor of(ata′t)(a1at)(a′1a

′
t) remaining to be dealt with. But this product is indeed

w2 = (a1a
′
ta
′
1at), as claimed. 2

If G = SO2r, andw2 is of this final form, then there is some flexibility as to
the indices appearing inw2. That is, we may choose, ford0, any of theai > n for
which (aia′i) appears inc, but(ai+1a

′
i+1) does not. We will need this below.

Recall that̀ 0 = r0− 2`. Let s = `0− 2. Supposex = (x1, . . . , xs) ∈ F s if G
is orthogonal andx ∈ Es if G is unitary. Let

n(x) =



I`
1 x1 . . . xs ∗

1 0 . . . −xs
. . . 0

...
1 −x1

1
I`


,

wherex is the Galois conjugate ofx if G is unitary, and isx if G is orthogonal.
Here and for the rest of this section, we pass between a Weyl group element and

its coset representative without changing the notation.

PROPOSITION 2.3. (a)Let g ∈ G. Then for somew ∈ W and somex ∈ F s if G
is orthogonal(resp.x ∈ Es if G is unitary) we haveRχgP = Rχn(x)wP. Clearly
we can choosew up toWM , i.e., we may assumew = w1 is of the form given in
Lemma2.2.

(b) Denote by||x|| the standard length ofx ∈ F s or Es accordingly. If||x|| =
||x1||, thenRχn(x)wP = Rχn(x1)wP, for all w.

Proof.To prove part (a), we make use of the Bruhat decomposition. This implies
that every element ofG lies in some double cosetUwP with w ∈ W . But every
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elementu ∈ U is of the formu = rn(x) for somer ∈ Rχ andx ∈ F s, resp.
Es (G orthogonal resp. unitary). Thus every double cosetRχgP is of the form
Rχn(x)wP , as desired. The proof of part (b) is immediate from Witt’s Extension
Theorem, since the isometry from the space spanned byx to the space spanned by
x1 may be extended to an orthogonal (resp. unitary) transformation inM`+1, and
M`+1 ⊂Mχ ⊂ Rχ. 2

If H ⊂ G, we will use indGH(π) to denote the representation ofG compactly
induced fromπ [BeZ, Cas]. Recall that IndGP (π) = indGP (π), by the Iwasawa
decomposition. IfV is a complex vector space, letC∞(G,V ) denote the space of
locally constantV -valued functions onG, and letC∞c (G,V ) denote the subspace
of elements ofC∞(G,V ) with compact support. LetD(G,V ) = C∞c (G,V )∗ be
the space ofV -distributions onG.

LetVσ be the space ofσ, Vτ be the space ofτ, andVω the space ofω (and hence
the space ofωχ). We letVπ = Vσ ⊗ Vτ . Denote byV the vector spacẽVω ⊗ Vπ,
whereṼω is the space of the smooth contragredientω̃ of ω.

We wish to analyze the space HomG(IndGP (π), IndGRχ(ωχ)). Dualizing, and

using Theorem 2.4.2 of [Cas], this is isomorphic to the space HomG(indGRχ(ω̃χ),
IndGP (σ̃ ⊗ τ̃)). This space, in turn, is isomorphic to the space of intertwining
forms on indGRχ(ω̃χ)

⊗
IndGP (π) [Har, Lem. 4]. Now by Bruhat’s thesis (see [Rodb,

Thm. 4]) this is isomorphic to the space ofV -distributionsT onG satisfying

ε(r) ∗ T ∗ ε(p−1) = δ
1/2
P (p)T ◦ [ω̃χ(r)⊗ π(p)], (2.4)

for all r ∈ Rχ andp ∈ P. Hereε(x) is the Dirac distribution atx and◦ indicates
composition.

The analysis of this space of distributions will make use of the following
proposition. Its proof requires a combinatorial argument, and will be given in
several steps later in this section.

PROPOSITION 2.4.If there is a non-zeroV -distributionT satisfying(2.4) for all
r ∈ Rχ andp ∈ P which is supported onRχn(x)wP , thenRχn(x)wP = Rχw0P
andσ is generic.

LEMMA 2.5. Suppose thatT satisfies(2.4). ThenT is completely determined by
its restriction toRχw0P.

Proof.First note that a straightforward matrix computation shows thatn(x)w0 =
w0n(x), for any x. ThusRχw0P =

⋃
x Rχn(x)w0P = Pw0P, is open. There-

fore C = G \ Rχw0P is closed. Therefore, we have the exact sequence [BeZ,
Sect. 1.7]

0→ C∞c (Rχw0P )→ C∞c (G)→ C∞c (C)→ 0.
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Then, by tensoring withV , the above exact sequence yields the exact sequence

0→ C∞c (Rχw0P , V )→ C∞c (G,V )→ C∞c (C, V )→ 0.

Dualizing, we get the exact sequence

0→ D(C, V )→ D(G,V )→ D(Rχw0P, V )→ 0.

LetDRχ,P be the subspace of distributions satisfying (2.4). Then Proposition 2.4
implies that ifT ∈ D(G,V )Rχ,P andT (f) = 0 for all f ∈ C∞c (Rχw0P, V ), then
T = 0.Thus, the above sequence tells us thatD(G,V )Rχ,P ↪→ D(Rχw0P, V )Rχ,P ,
which completes the proof of the Lemma. 2

LetRw0
χ = w−1

0 Rχw0, and denote byωw0
χ the representation ofRw0

χ defined by
ωw0
χ (r) = ωχ(w0rw

−1
0 ). Recall thatP = MN is the Levi decomposition ofP.

LEMMA 2.6. There exists an isomorphism between the vector spaceD(Rχw0P,
V )Rχ,P and the vector space of distributions inD(U`) ⊗ D(P, V ) of the form

χ(u) du⊗ δ−1/2
P (m) dQ(m) dn, whereQ ∈ D(M,V ) satisfies

ε(r) ∗Q ∗ ε(m−1) = Q ◦ [ω̃w0
χ (r)⊗ π(m)], (2.5)

for all r ∈ Rw0
χ ∩M, m ∈M.

Proof. Define a projectionP:C∞c (U`) ⊗ C∞c (P, V ) → C∞c (U`w0P, V ) by
specifying that for allf1 ∈ C∞c (U`) andf2 ∈ C∞c (P, V ), one has

P(f1⊗ f2)(uw0p) =
∫
U`∩w0Pw

−1
0

f1(uu1)f2(w−1
0 u−1

1 w0p) du1.

Then it follows from [Sil, Lem. 1.2.1] thatP is onto. LetT ∈ D(Rχw0P, V )Rχ,P .
Forf1, f2 as above, defineT ′ ∈ D(U`)⊗D(P, V ) byT ′(f1⊗f2) = T (P(f1⊗f2)).
Then one sees easily that (2.4) implies the equality

ε(u) ∗ T ′ ∗ ε(p−1) = ω̃χ(u)T ◦ [π(p)] (2.6)

for all u ∈ U`, p ∈ P (whereπ acts on the second factor ofV ). As in [Sil, Sect. 1.8],
this implies thatT ′ is in fact a pure tensor of the form

χ(u) du⊗ δP (m)−1/2 dQ(m) dn, (2.7)

whereQ ∈ D(M,V ). (Here we are using thatπ(mn) = π(m).) It is a formal
consequence of the definitions that (2.6) implies thatQ ∗ ε(m−1) = Q ◦ [π(m)],
for all m ∈ M . We claim that, more strongly, Equation (2.5) holds. To see this,

comp4205.tex; 12/03/1999; 15:16; v.7; p.11

https://doi.org/10.1023/A:1000723719451 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000723719451


144 SOLOMON FRIEDBERG AND DAVID GOLDBERG

write dQ(p) = δP (m)−1/2 dQ(m) dn. Let f1 ∈ C∞c (U`), f2 ∈ C∞c (P, V ) and
r ∈ Rχ ∩w0Mw−1

0 . Then by (2.4) we have∫
U`

f1(u)χ(u) du
∫
P
ω̃χ(r)f2(p) dQ(p)

=
∫
U`×P

f1(u)ω̃χ(r)f2(p) dT ′(u, p)

= T (ω̃χ(r)P(f1⊗ f2))

=
∫
U`w0P

P(f1⊗ f2)(ruw0p) dT (uw0p).

But ruw0p = (rur−1)w0(w−1
0 rw0p), so this expression is equal to∫

U`×P
f1(rur−1)f2(w−1

0 rw0p) dT ′(u, p)

=
∫
U`

f1(rur−1)χ(u) du
∫
P
f2(w−1

0 rw0p) dQ(p)

=
∫
U`

f1(u)χ(u) du
∫
P
f2(p) d(ε(w−1

0 rw0) ∗Q)(p),

where in this last equality the defining properties ofRχ = MχU` have been used
to simplify theU` integral. Since this holds for allf1 ∈ C∞c (U`) one concludes
thatε(w−1

0 rw0) ∗Q = Q ◦ ω̃χ(r) for all r ∈ Rχ ∩ w0Mw−1
0 , as desired.

Conversely, given a distributionQ satisfying Equation (2.5), one reverses the
above steps to arrive at a distributionT ′ ∈ D(U`)⊗D(P, V ) satisfying (2.6). Since
the mapP is onto, one may define a distributionT ∈ D(U`w0P, V ) by the formula

T (P(f1⊗ f2)) = T ′(f1⊗ f2)

provided one shows that ifP(
∑
i f1,i ⊗ f2,i) = 0, thenT ′(

∑
i f1,i ⊗ f2,i) = 0.

This follows as in [HeR, Thm. 15.24]. SinceMχ ⊆ w−1
0 Mw0 andRχ = U`Mχ, it

follows from (2.5) and (2.7) that theT so-obtained satisfies (2.4).
The mapsT 7→ Q,Q 7→ T described above are clearly inverses. This completes

the proof of the Lemma. 2
We now complete the proof that anωχ-Bessel model for IndGP (π) is unique,

modulo the proof of Proposition 2.4. LetQ be as in the proof of Lemma 2.6. Then
by Bruhat’s thesis once again,Q corresponds to an element of

HomM (indM
R
w0
χ ∩M

(ω̃w0
χ ), σ̃ ⊗ τ̃),

which, by duality gives an element of HomM (π, IndM
R
w0
χ ∩M

(ωw0
χ )). SinceM =

G1 × G(m), whereG1 is either GLn(F ) or GLn(E), depending on whether

comp4205.tex; 12/03/1999; 15:16; v.7; p.12

https://doi.org/10.1023/A:1000723719451 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000723719451


ON LOCAL COEFFICIENTS FOR NON-GENERIC REPRESENTATIONS 145

G is orthogonal or unitary, we see that this last space is exactly the space of
Whittaker models forσ tensored with the space ofωw0

χ -Bessel models forτ. Thus
dim HomG(IndGP (π), IndGRχ(ωχ)) 6 1. 2

We defer the proof of the existence of a non-zeroωχ-Bessel model for IndGP (π)
to Section 3. In particular, Proposition 3.5 guarantees that such a model exists.

Proof of Proposition2.4. The remainder of the section will consist of a proof
of Proposition 2.4. This is carried out in several steps. We begin by showing that,
on many double cosets, the compatibility conditionπ(p) = ωχ(wpw−1) can not
be satisfied for somep ∈ P with r = wpw−1 ∈ Rχ. By [Sil, Thm. 1.9.5], this is
sufficient to imply the Proposition.

Let Σ+
P denote the set of positive roots inN. Let ∆ denote the simple roots ofT

in G which give rise to our choice of Borel subgroup. Ifα ∈ Φ(G,T), then we let
Xα be the corresponding element of a Chevalley basis for the Lie algebra ofU or
U, asα is positive or negative, respectively. Letαi denote the rootei − ei+1, and
β = e` + e`+1. LetX = {α1, α2, . . . , α`, β}. ThenX is the set of roots where the
characterχ is non-trivial. Forα ∈ X we haveχ(I+ tXα) = ψα(t). Also, note that
X ∩Σ+

P = {αn}.We list the elements ofΣ+
P , for future reference. IfG = SO2r+1,

then

Σ+
P = {ei ± ej |1 6 i 6 n < j 6 r}

∪ {ei + ej |1 6 i < j 6 n} ∪ {ei |1 6 i 6 n} .

If G = U2r, then

Σ+
P = {ei ± ej |1 6 i 6 n < j 6 r}

∪ {ei + ej |1 6 i < j 6 n} ∪ {2ei |1 6 i 6 n} .

If G = U2r+1, then

Σ+
P = {ei ± ej |1 6 i 6 n < j 6 r}

∪ {ei + ej |1 6 i < j 6 n} ∪ {ei,2ei |1 6 i 6 n} .

Finally, if G = SO2r, then

Σ+
P = {ei ± ej |1 6 i 6 n < j 6 r} ∪ {ei + ej |1 6 i < j 6 n} .

We list the variousI + Xα, which generate the root subgroupsUα of U. Let
Eij denote the elementary matrix whose only non-zero entry is a 1 in theijth
entry. We recall the convention thati′ = r0 + 1− i. SupposeE = F (γ), where
γ = −γ, anda 7→ a is the Galois automorphism ofE/F. If α = ei − ej , then
I +Xα = I +Eij −Ej′i′ if G is orthogonal, andI +Xα = I + γEij − γEj′i′ if
G is unitary. Ifα = ei + ej , thenI + Xα = I + Eij′ − Eji′ if G is orthogonal,
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and I + Xα = I + γEij′ − γEji′ if G is unitary. If α = ei, then I + Xα =
I + Ei,r+1 − Er+1,i′ if G = SO2r+1, andI + Xα = I + γEi,r+1 − γEr+1,i′ if
G = U2r+1. Finally, if G is unitary andα = 2ei, thenI +Xα = I + γEii′ .

Suppose that, for someα ∈ Σ+
P , we haveα′ = wα ∈ X. Choose some

t ∈ F× for which ψα′(t) 6= 1. Now setp = I + tXα, which is in P. Then
r = wpw−1 = I+ tXα′ ∈ U` ⊂ Rχ.Note thatπ(p) = 1 6= ωχ(r) = ψα(t). Thus,
if w has the above property,RχwP can support no distribution of the desired type.

LEMMA 2.7. LetG = SO2r. Suppose that, as in Lemma2.2,w ∈W is equivalent
modWM to w1w2, with w2 = (i0 j′0 i

′
0 j0), for some1 6 i0 6 n < j0 6 r. Then

wΣ+
P ∩X 6= ∅.
Proof. From the proof of Lemma 2.2, we may assume that for eachn + 1 6

k 6 r, we havew(k) = ik or i′k, for some 16 ik 6 n. First suppose that
(in+1n + 1)(i′n+1(n + 1)′) appears inw. Consider first the case that for allk,
n+ 1 6 k 6 `, we have a permutation(ikk)(i′kk

′) appearing inw. Since`+ 1 =
w(i`+1) or ` + 1 = w(i′`+1), we havew(ei` + ei`+1) = e` ± e`+1, which will be
in X. So now we may suppose that eitherj0 6 `, or (ikk′)(i′kk) appears inw,
for somek with n + 1 6 k 6 `. Sincew changes an even number of signs, we
see that in the former case there must be somek with n + 1 6 k 6 r, so that
(ikk′)(i′kk) appears inw. Now we can multiply on the right by(j0j′0)(kk′), to see
that, in fact, we may assume that(ik0k

′
0)(i′k0

k0) is appearing, for somek0, with
n+ 1 6 k0 6 `. Choosing the minimal suchk0, we know thatk0 = w(i′k0

), while
k0− 1 = w(ik0−1). Thus,αk0−1 = w(eik0−1 + eik0

) ∈ wΣ+
P ∩X, and the Lemma

holds.
Thus, we may assume that either(in+1(n + 1)′)(i′n+1n + 1) appears inw, or

that (in+1(n + 1)′i′n+1n + 1) does. In the former case, we may multiply on the
right by (n + 1(n + 1)′)(j0j′0), to get an equivalentw for which the latter is true,
i.e, we may assume thati0 = in+1. First supposew(n) = n. Thenw(en + ei0) =
αn ∈ wΣ+

P ∩X and we are done. Suppose instead thatw(n) = n′, i.e., that(nn′)
appears inw. Let i be the smallest positive integer so thatw(n − i) 6= n − i′.
(By our assumption on the form ofw, such ani exists.) Thenn − i = ik, for
somek > n + 1, andn − i = w(k) or w(k′). Therefore,αn−i is equal to either
w(en−i+1 − ek) or tow(en−1+1 + ek). In either case,αn−i ∈ wΣ+

P ∩X. Finally,
we may suppose that eithern = i0 or that one of(nk)(n′k′) or (nk′)(n′k) appears
inw, for somek, n+ 1 6 k 6 r. If (nk)(n′k′) appears inw, then we may multiply
on the right by((n + 1)k)((n + 1)′k′)(i0n)(i′0n

′), to replacew by an equivalent
element withi0 = n. Similarly, if (nk′)(n′k) appears inw, then we may multiply
on the right by

(n+ 1k)((n + 1)′k′)(i0n)(i′0n
′)(kk′)(n+ 1(n+ 1)′),

to see that we may assume thati0 = n. We are thus reduced to the case where
(n(n + 1)′n′n+ 1) appears inw. In this case,w(en + en+1) = αn ∈ wΣ+

P ∩X.
Thus, in all cases, the Lemma holds. 2
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Remark. For future use we make note of the following fact. Ifw is as in
Lemma 2.7, and ifw−1α` ∈ Σ+

P , then the proof of Lemma 2.7 shows that either
w−1α` = ei + ej , for somei, j 6 n, or thatwΣ+

P ∩X 6= {α`}.
We now describe thosew which have the property thatwΣ+

P ∩ X = ∅. By
Lemmas 2.2 and 2.7, we may assume thatw is a product of disjoint transpositions.

LEMMA 2.8. Suppose thatw ∈ W is a representative for a class inW/WM , and
w is in the form specified by Lemma2.2. Further suppose that, for allα ∈ Σ+

P , we
havewα 6∈ X. Then the following hold

(a) For all k with n+ 1 6 k 6 `, we havew(k) > n.

(b) For all i with 16 i 6 n, we havew(i) 6= i.

Proof. (a) First suppose thatw(`) 6 n. If w(` + 1) 6 n, thenw(β) ∈ Σ+
P ,

contradicting our choice ofw. If w(`+1) = `+1, then againw(β) ∈ Σ+
P . Finally,

if w(`+ 1) > n′, thenw(α`) ∈ Σ+
P . So we must havew(`) > n.

Now suppose that for somek, n + 1 6 k 6 ` − 1, we havew(k) 6 n. If
w(k + 1) = k+ 1, orw(k + 1) > n′, thenw(αk) ∈ Σ+

P , which is a contradiction.
Therefore,w(k + 1) 6 n. However, this implies, by induction, thatw(`) 6 n,
which we have already seen is impossible. Therefore,w(k) > n.

(b) Suppose thatw(i) = i for somei, 1 6 i 6 n− 1. If w(i+ 1) 6= i+ 1, then
w(i+ 1) > n, and sow(αi) ∈ Σ+

P . Since this contradicts our choice ofw, we have
w(i + 1) = i+ 1. We may thus suppose thatw fixesn. Now by part (a), we have
w(n + 1) > n + 1, and therefore,wαn ∈ Σ+

P . This again is a contradiction, sow
cannot fixn. Therefore,w fixes none of the integers 1,2, . . . , n. 2
LEMMA 2.9. Suppose thatw is as in Lemma2.8 and assume thatw(n) 6= n′.
Then forn+ 1 6 k 6 `, we havew(k) = k.

Proof. By Lemma 2.8(a) it is enough to show that it is impossible thatw(k) > n′
for any suchk.Suppose to the contrary that there is somek,with n+16 k 6 `, for
whichw(k) > n′.Then there somei 6 n, for whichk = w(i′). If w(k−1) = k−1,
thenαk−1 = w(ei + ek−1) ∈ wΣ+

P ∩X. Since this contradicts our choice ofw, we
must havew(k−1) > n′. Therefore, by (downwards) induction,w(n+1) > n′.Set
w(n+ 1) = i′. Sincew(n) 6= n, and, by assumption,w(n) 6= n′, eitherw(n) = k
orw(n) = k′ for somek, with n + 1 6 k 6 n′ − 1. Therefore,αn = w(ei + ek)
or αn = w(ei − ek). Either one of these possibilities contradicts our assumption
onw. Thusw(n + 1) < n′, which then implies the result of the Lemma. 2
LEMMA 2.10. Suppose thatw is as in Lemma2.8.Suppose that there is somei,
2 6 i 6 n, for whichw(i) = i′. Thenw(i − 1) = (i− 1)′.

Proof.Supposew(i− 1) 6= (i− 1)′. By Lemma 2.8(b), we can choosek, with
n+ 1 6 k 6 r so thatw(i− 1) = k orw(i− 1) = k′. Nowαi−1 = w(ei − ek) or
αi−1 = w(ei + ek). Since this contradicts our choice ofw we concludew(i−1) =
(i− 1)′. 2
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Thus, ifw is chosen as in Lemma 2.2 withwΣ+
P ∩X = ∅ andw(n) = n′, then

w = w0. If wΣ+
P ∩ X = ∅, andw(n) 6= n′, then by Lemma 2.9,w(`) = `. If

w(`+ 1) 6= `+ 1, then eitherα` or β would be of the formwα for someα ∈ Σ+
P .

Consequently,w(`+1) = `+1,and thereforew(α) = α forα ∈ {αn+1 . . . , α`, β}.
If ` = r − 1, the rank one case, there is no suchw compatible with Lemma 2.2
and Lemma 2.8(b), and we are done. If` < r − 1, then we conclude that for some
i0 < n, and some numbersai ∈ {`+ 2, . . . , (`+ 2)′} for i0 < i 6 n, one has

w = (1r0)(2r0− 1) . . . (i0i′0)(i0 + 1ai0+1)((i0 + 1)′a′i0+1) . . .

(nan)(n′a′n). (2.8)

Let a = an if an 6 r, anda = a′n otherwise. Thenwαn = ±ea − en+1. Let
X1 = {αn+1 . . . , α`, β, wαn}. Note thatX1 = w({αn, αn+1 . . . , α`, β}), and
is thus a linearly independent subset of the root systemΦ(G(m),T ′), where we
recall thatT′ = T ∩G(m). We extendX1 \ {β} to a set of simple roots forG(m).
SetB′ = T1U′′ to be the corresponding Borel subgroup ofG(m), and suppose
thatU ′′`′+1 is the subgroup ofU′′ which is conjugate toU′`′+1 and generated by
the elements ofX1. (Recall thatU ′`′ is the subgroup supporting the characterχ1

which gives rise to the model forτ ). Now letχ′ be the character ofU ′′`′+1 so that
χ′(I + tXα) = ψα(t), for α ∈ X1 \ {α`}, andχ′(I + tXα`) = ψα`(δt). (Here
δ is as in Lemma 2.1.) LetMχ′ be the corresponding normalizer inM`′+1. Note
thatMχ′ ⊂ Mχ. Suppose thatm′ ∈ Mχ′ . If the distributionT satisfies (2.4),
then ε(m′) ∗ T = T ◦ ω(m′). So for some componentω′ of ω|Mχ′ , we have
ε(r)∗T ∗ε(h) = T ◦ [ω̃′χ′(r)⊗τ(h)], for all h ∈ G(m), andr ∈ Rχ′ = Mχ′U

′′
`′+1.

If T is non-zero, this now implies thatτ has a Bessel model with respect toU ′′,
χ′ andω′. However, sinceU ′′`+1 is isomorphic toU`+1, this is a rank̀ 1− 1 Bessel
model forτ. This contradicts the minimality of theωχ1-Bessel model forτ . Hence,
no suchT exists.

Note that this argument shows that IndG
P (π) cannot have any Bessel model of

rank less thanB(τ) supported onRχwP .
Finally, suppose thatw = w0. Let u ∈ U ∩ GLn(F ). Setr = w−1

0 uw0. Then
r ∈ U`, andχ(r) = χw0

0 (u). Since

ε(r) ∗ T = T ◦ [χw0
0 (u)] = T ∗ ε(u) = T ◦ [σ(u)],

we see thatσ must be generic ifT is non-zero [Rodb]. This completes the proof of
Proposition 2.4 for the cosetsRχwP, with w ∈W/WM .

We now examine the double cosets represented byn(x)w,wherex = (x1, . . . , xs)
is a vector. Recall that
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n(x) =



I`
1 x1 . . . xs ∗
0 1 0 . . . −xs

. . . 0
0 0 . . . 1 −x1

0 0 0 . . . 1
I`


,

wherex is the Galois conjugate ofx if G is unitary, andx = x if G is orthogonal.
We assume thatw is of the form given in Lemma 2.2. First note that ifα ∈ X \

{α`}, thenn(x)(I+tXα)n(x)−1 = I+tXα.Suppose thatwΣ+
P ∩(X \{α`}) 6= ∅.

Chooseα′ ∈ Σ+
P with wα′ = α ∈ X \ {α`}, andt for whichψα(t) 6= 1. Setting

p = I + tXα′ , we haven(x)wpw−1n(x)−1 = I + tXα ∈ Rχ. Furthermore
ωχ(x) = ψα(t) 6= 1, while π(p) = 1. Thus,Rχn(x)wP supports no distributions
satisfying (2.4).

Now suppose thatwΣ+
P ∩X = {α`}. First suppose thatw−1α` = ei + ej, with

i, j 6 n. Without loss of generality, assume thatw(i) = `, andw(j) = (` + 1)′.
Suppose that̀+26 k 6 r. If w(k) = ik 6 n thenw−1(e`+ek) = ei+eik ∈ Σ+

P .
If insteadw(k) = i′k for someik 6 n, thenw−1(e` − ek) = ei + eik . Finally,
if w(k) = k, thenw−1(e` ± ek) = ei ± ek ∈ Σ+

P . Chooses0 6 s for which
xs0 6= 0. Let y = xs0. Choosek0 with the property that eitherw−1(e` + ek0) or
w−1(e` − ek0) is an element ofΣ+

P . Denote the roote` ± ek0 asα0, with ± chosen
so thatw−1α0 ∈ Σ+

P . We may also assume thatXα0 has−1 as its(r + `1, `+ s0)
entry (see Lemma 2.3). Now note that

n(x)(I + tXα0)n(x)−1 = (I + tXα0)(I + ytXβ).

Thus, ifψα0(yt) 6= 0, andp = I + tXw−1α0
∈ N, thenπ(p) = 1, while ωχ(n(x)

wpw−1n(x)−1) = ψα0(yt) 6= 1. Consequently,Rχn(x)wP cannot support aV -
distribution of the desired form.

We are left with the caseswΣ+
P ∩ X = {α`}, but w−1α` 6= ei + ej for all

i, j 6 n, or wΣ+
P ∩ X = ∅. For the second of these two cases, the form ofw is

given by (2.8). In order to complete the proof we will determine the form ofw in
the first case. To do so we need a few lemmas.

LEMMA 2.11. Suppose thatwΣ+
P ∩ X = {α`}, but w−1α` 6= ei + ej , for all

i, j 6 n. Thenw(`) = `.
Proof.If w−1(`) = j′ for somej 6 n, thenw−1α` 6∈ Σ+

P , which is a contradic-
tion. Supposew−1(`) = j 6 n. If w(`+1) = `+1, thenw−1(β) = ej+e`+1 ∈ Σ+

P ,
contradicting our choice ofw. If w(` + 1) = i 6 n, thenw−1α` 6∈ Σ+

P , which
also contradicts our choice ofw. Finally, if w−1(`+ 1) = i′ for somei 6 n, then
w−1α` = ej + ei, which is again a contradiction. Thus,w(`) = `. 2
LEMMA 2.12. If w is as in Lemma2.11, then forn + 1 6 k 6 ` − 1, we have
w−1(k) > n.
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Proof. Suppose thatw−1(k) = j 6 n. If w(k + 1) = k + 1, thenw−1αk =
ej − ek+1 ∈ Σ+

P . If w(k + 1) = i′ for somei 6 n, thenw−1αk = ej + ei. Either
case contradicts our hypotheses. Thereforew−1(k + 1) 6 n. Now by induction,
w−1(` − 1) 6 n. On the other hand, by Lemma 2.11,w(`) = `. Therefore
w−1α`−1 ∈ Σ+

P , contradicting our choice ofw. Consequently,w−1(k) > n. 2
LEMMA 2.13. Suppose thatw is as in Lemma2.11. Thenw(n) 6= n.

Proof.Suppose thatw(n) = n. If w(n + 1) = n + 1, thenw fixesαn, which
is in the intersection ofX andΣ+

P . If w−1(n + 1) = j′ for somej 6 n, then
w−1αn = en + ej. Both of these possibilities contradict our choice ofw. By
Lemma 2.12,w−1(n+ 1) > n, and so these are the only two choices forw(n+ 1).
Since each leads to a contradiction,w(n) 6= n. 2
LEMMA 2.14. Suppose thatw is as in Lemma2.11.

(a) For all i 6 n we havew(i) 6= i.

(b) If w(i0) = i′0, for somei0 6 n thenw(i) = i′ for all i 6 i0.
Proof. (a) Suppose thatw(i) = i for somei 6 n. Choose the maximal such

i. By Lemma 2.13,i < n. Suppose thatw(i + 1) = (i + 1)′. Thenw−1αi =
ei + ei+1 ∈ Σ+

P . Thus in this case we have a contradiction. Ifw(i + 1) = k or
w(i+ 1) = k′ for somen+ 1 6 k 6 r, thenw−1αi = ei ± ek ∈ Σ+

P . This is also
a contradiction, and hence noi 6 n can be fixed byw.

(b) Suppose thatw(i) = i′, for somei 6 n. If w(i − 1) = k or k′ for some
n+ 1 6 k 6 r, thenw−1αi−1 = ei ± ek ∈ Σ+

P . But by part (a),w(i− 1) 6= i− 1,
so the only remaining possibility isw(i − 1) = (i − 1)′. This gives the claim by
induction. 2
COROLLARY 2.15.If w is as in Lemma2.11, thenw(n) = k0 or w(n) = k′0 for
somen+ 1 6 k0 6 r. 2
LEMMA 2.16. Suppose thatw is as in Lemma2.11. Thenw(k) = k for all k with
n+ 1 6 k 6 `− 1.

Proof.Suppose thatw−1(n+ 1) = j′ for somej 6 n. Then, by Corollary 2.15,
w−1αn = ej ± ek0 ∈ Σ+

P , contradicting our choice ofw. Thus, by Lemma 2.12,
w(n+ 1) = n+ 1.

Now supposew−1(k) = j′k for somek with n + 2 6 k 6 ` − 1, and some
jk 6 n. If w(k − 1) = k − 1, thenw−1αk−1 ∈ Σ+

P , which is a contradiction.
Therefore, by Lemma 2.12,w−1(k−1) = j′k−1, for somejk−1 6 n. By induction,
this givesw(n + 1) 6= n + 1, while we have just shown thatw(n + 1) = n + 1.
Therefore,w(k) = k. 2
LEMMA 2.17. Suppose thatw is as in Lemma2.11.

(a) Suppose thatG 6= SO2r. Then, for somen1, with 0 6 n1 < n, and some
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{kj |1 6 j 6 n− n1} ⊂ {`+ 1, `+ 2, . . . , (`+ 1)′},
we have

w = (1r0)(2r0− 1) . . . (n1n
′
1)(n1 + 1k1)(k′1(n1 + 1)′) . . .

(nkn2)(k
′
n2
n′).

Heren = n1 + n2. Furthermore,kj = (`+ 1)′ for somej.
(b) If G = SO2r, and we writew = w1w2 as in Lemma2.2, thenw2 = 1 or

w2 = (dd′), for somè + 2 6 d 6 r. Furthermorew1 is of the form

w1 = (1r0)(2r0− 1) . . . (n1n
′
1)(n1 + 1k1)(k′1(n1 + 1)′) . . .

(nkn2)(k
′
n2
n′),

withn = n1+n2, and the integerskj are as in part(a). Moreover,kj = (`+1)′

for somej.

Proof.First note that ifG = SO2r, andw = w1w2, then Lemma 2.16 and the
remark following Lemma 2.7 imply thatw2 is not of the form(i j′ i′ j), for some
1 6 i 6 n < j 6 r. Moreover, sincew−1α` ∈ Σ+

P , Lemmas 2.16 and 2.11 imply
that ifw2 = (dd′), then`+ 26 d 6 r. If G 6= SO2r, letw2 = 1.

By Lemma 2.14(a),w(i) 6= i for all i 6 n. By Lemma 2.11, Corollary 2.15,
and Lemma 2.16,w(n) = k or k′, for some` + 1 6 k 6 r. Let n1 be the
largest nonnegative integer for whichn1 < n andw(n1) = n′1. If n1 > 0,
then by Lemma 2.14(b)w = (1r0)(2r0 − 1) . . . (n1n

′
1)w2w

′, wherew′(i) = i
for all i 6 n1, andw2 andw′ are disjoint. Noww′(i) 6= i andw′(i) 6= i′ for
n1 + 1 6 i 6 n, and thereforen+ 1 6 w′(i) 6 n′ − 1. However, by Lemma 2.16,
`+ 1 6 w′(i) 6 (`+ 1)′. Thus,

w′ = (n1 + 1k1)(k′1n
′
1− 1) . . . (nkn2)(k

′
n2
n′),

as claimed. Finally, Lemma 2.11 impliesw(` + 1) 6= `+ 1, and so we must have
(w′)−1(`+ 1) = w−1(`+ 1) = j′, for somej 6 n. 2

We now finish the proof of Proposition 2.4. Ifw = w0, thenn(x)w0 = w0n(x),
and sincen(x) ∈ P, we haveRχw0P = Rχn(x)w0P. If wΣ+

P ∩ X = {α`}, or
wΣ+

P∩X = ∅, then Lemma 2.16 and Equation (2.8) show thatw(en+e`) = e`±ek,
for somek, with `+ 2 6 k 6 r. Letα = w(en + e`), and denoteI + tXen+e` by
p. As before, choosex0 so thatRχn(x0)wP = Rχn(x)wP, and such thatx0 has
a non-zero entryy with ωχ(n(x)wpw−1n(x)−1) = ψα(yt). Note thatπ(p) = 1.
Choosingt for which ψα(yt) 6= 1, we see thatRχn(x)wP cannot support a
V -distribution of the desired form. 2

From the argument above, it is apparent that IndG
P (π) cannot have a Bessel

model of rank less thanB(τ). Hence, we obtain the following Corollary.
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COROLLARY 2.18.Let the notation be as in Theorem2.1. Suppose that theωχ-
Bessel model forτ is of rankB(τ). Then theωw0

χ -Bessel model forIndGP (π) is also
minimal, and ofrankB(τ).

The proof of Theorem 2.1 also gives the following result.

COROLLARY 2.19.For anyσ, τ , `, χ, andω, the support of the twisted Jacquet
functorπU`,χ is a finite number of double cosets. 2
3. Holomorphicity and Local Coefficients

In this section we prove the existence and holomorphicity of the Bessel functional
and the existence of a local coefficient. To do so, we first adapt the argument used
by Banks [Ban] to prove the holomorphicity of Whittaker functions for metaplectic
covers of GLn.Banks’s result is an extension of Bernstein’s Theorem, which estab-
lishes the meromorphicity under uniqueness and regularity hypotheses. We show
that the desired regularity holds in the case of Bessel functionals. We then use an
argument similar to Harish-Chandra’s and to Shahidi’s in the generic case to estab-
lish the existence of the local coefficient under certain conditions (Theorem 3.8).
Corollary 3.9 shows that the local coefficient factors in a manner analogous to the
generic case. Then Proposition 3.10 through Theorem 3.15 relate the local coeffi-
cients to Plancherel measures and to the irreducibility of induced representations.

Let G be as in Section 1. We use the conventions found in [Cas, Sect. 1,
Shaa] for subsets of simple roots, Weyl groups, and arbitrary parabolic subgroups.
Suppose that∆ is the collection of simple roots corresponding to our choice of
Borel subgroup. Letθ ⊂ ∆ be a collection of simple roots and setP = Pθ. ThenP
has Levi decompositionP = M θNθ,with M = M θ ' GLn1×· · ·×GLnk×G(m),
for someni, m such thatr = n1 + · · · + nk + m. We abbreviate this by writing
M ' G1×G(m). We also writeN = Nθ.

Let A = Aθ be the split component ofM . Denote bya∗C = (aθ)∗C the complexi-
fied dual of the real Lie algebra ofA, qF the residual characteristic ofF, and denote
byHP the Harish-Chandra homomorphism [Har, Shaa]. Suppose thatσ ∈ E(G1)
and τ ∈ E(G(m)), and letπ = σ ⊗ τ . For ν ∈ a∗C, let I(ν, π, θ) denote the

induced representation IndGP
(
π ⊗ q〈ν,HP ( )〉

F

)
and letV (ν, π, θ) denote the space

of associated functions. We also useΠν to denote the representationI(ν, π, θ).
Assume thatσ is generic and thatτ has anωχ′-Bessel model which is minimal

and of rank̀ 1. Let χ be the character ofU` whose restriction toU` ∩G(m) is χ′

and whose restriction toG1(F )∩U` is aψ-generic characterχ1.We will construct
a non-zero functionalΛχ(ν, π, θ) onXν = I(ν, π, θ) ⊗ Ṽω so that, for a certain
characterδ of Mχ,

Λχ(ν, π, θ)(Πν(mu)(fν ⊗ ṽ)) = δ(m)χ(u)−1Λχ(ν, π, θ)(fν ⊗ ω̃(m−1)ṽ),
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for all choices offν ⊗ ṽ ∈ Xν andmu ∈ Rχ. Then we will show in Theorem 3.6
that the functionν 7→ Λ(ν, π, θ)(xν) is holomorphic, for a holomorphic section
ν 7→ xν .

Let K = G(OF ), whereOF is the ring of integers inF. ThenK is a good
maximal compact subgroup ofG [Cas]. LetKm be the correspondingmth principal
congruence subgroup. Then eachKm is normal inK. Let Γm be a complete set of
coset representatives forP ∩K\K/Km. Note thatΓm is of finite cardinality. Let

Y = {f ∈ C∞(K,Vπ) | f(pk) = π(p)f(k), ∀p ∈ P ∩K, k ∈ K} .

ThenF 7→ F |K is aK-isomorphism fromV (ν, π, θ) toY, by the Iwasawa decom-
position ofG. We will define a certain functional onY, and use this realization to
define an associated functional onXν . Let

Ym = {f ∈ Y | f(kk1) = f(k), ∀k ∈ K, k1 ∈ Km} .

Thus,Ym is the set ofKm-fixed vectors ofY under the action ofK.Furthermore, the
Iwasawa decomposition allows us to realizeI(ν, π, θ) onY for eachν. Denote by
Vπ,m the subspace ofVπ consisting ofP ∩Km-fixed vectors. Sinceπ is admissible,
Vπ,m is finite dimensional.

The next three results are standard. We include the proof of the first two for
completeness. The third is a straightforward consequence of the Iwasawa decom-
position.

LEMMA 3.1. Ym has a basis{fj} which satisfies the following properties:

(1) If γ ∈ Γm, then the non-zero vectors among{fj(γ)} are a basis forVπ,m.
(2) If fj is fixed, thenfj(γ) 6= 0 for someγ ∈ Γm.

Proof. Suppose thatf ∈ Ym. Thenf(pkk1) = π(p)f(k), for all p ∈ P ∩ K,
k ∈ K, andk1 ∈ Km. Thus,f is completely determined by its values onΓm. Fix
γ ∈ Γm, and letp ∈ P ∩ Km. Sinceγ−1Kmγ = Km, we haveγ−1pγ ∈ Km.
Therefore,f(γ) = f(γγ−1pγ) = f(pγ) = π(p)f(γ). This says thatf(γ) is an
element ofVπ,m. Fix a basis{vm,i} of Vπ,m. Let fγ,i:K → Vπ,m be given by

fγ,i(k) =

{
π(p)vm,i if k = pγk1, for some p ∈ P ∩K,k1 ∈ Km,

0 otherwise.

Then it is immediate thatfγ,i is a well-defined element ofYm.We claim that{fγ,i}
is a basis forYm.

Supposef ∈ Ym. If γ′ ∈ Γm, p ∈ P ∩ K, andk ∈ Km, thenf(pγ′k) =
π(p)f(γ′). Sincef(γ′) ∈ Vπ,m, f(γ′) =

∑
i cγ′,ivm,i. This implies that

f(pγ′k) =
∑
i

cγ′,iπ(p)vm,i =
∑
i

cγ′,ifγ′,i(pγ′k).
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Now, taking the collection{cγ,i} for all γ ∈ Γm, and noting thatfγ,i(pγ′k) = 0
for γ 6= γ′, f(pγ′k) =

∑
γ,i cγ,ifγ,i(pγ

′k), which says that{fγ,i} spansYm.
On the other hand, suppose that

∑
γ,i cγ,ifγ,i = 0. Then, for anyγ′ ∈ Γm, we

have
∑
γ,i cγ,ifγ,i(γ

′) = 0,which implies that
∑
i cγ′,ifγ′,i(γ

′) =
∑
i cγ′,ivm,i = 0.

But, since thevm,i are linearly independent,cγ′,i = 0, for eachγ′ and i. Thus,
{fγ,i} are also linearly independent. The collectionfγ,i clearly has properties (1)
and (2). 2

Denote byX the spaceY ⊗ Ṽω. For eachν ∈ a∗C let Xν = V (ν, π, θ) ⊗ Ṽω.
For f ∈ Y denote byfν the unique element ofV (ν, π, θ) satisfyingfν |K = f.

Then {fν ⊗ ṽ | f ∈ Y, ṽ ∈ Ṽω} spansXν . Recall thatΠν can be realized on
Y via Πν(g)f =

[
Πν(g)fν

]
|K . This gives the context in which we discuss the

holomorphicity of the mapν 7→ Πν(g)fν for a fixed choice ofg andf.

LEMMA 3.2. Fix g ∈ G, f ∈ Y and ṽ ∈ Ṽω. Then the functionν 7→ Πν(g)f ⊗ ṽ
is a regular function froma∗C toX.

Proof.Choosem0 so thatf ∈ Ym0, and choosem > m0 satisfyingg−1Kmg ⊂
Km0. Thenf ∈ Ym and, for allν ∈ a∗C andk ∈ Km,

Πν(k)(Πν(g)fν)(x) = fν(xgg−1kg) = fν(xg) = Πν(g)fν(x),

which says thatΠν(g)f ∈ Ym for all ν. Now, by Lemma 3.1,Πν(g)f =∑
γ,i cγ,i(ν)fγ,i for a unique choice ofcγ,i(ν) ∈ C. It suffices to show that

cγ,i: a∗C → C is holomorphic. Fixγ′ ∈ Γm. Thenγ′g = pγ′′k, for somep ∈ P ,
γ′′ ∈ Γm, andk ∈ Km. Then

Πν(g)f(γ′) = q
〈ν,HP (p)〉
F δ

1/2
P (p)π(p)f(γ′′k)

= q
〈ν,HP (p)〉
F δ

1/2
P (p)π(p)

∑
γ,i

cγ,i(ν)fγ,i(γ′′)

= q
〈ν,HP (p)〉
F δ

1/2
P (p)π(p)

∑
i

cγ′′,i(ν)vi.

Setc′γ′′,i(ν) = q
〈−ν,Hp(p)〉
F δ

−1/2
P (p)cγ′′,i(ν). Thenπ(p)f(γ′′) =

∑
i cγ′′,i(ν)vi, for

all ν. Since the left hand side in the equation above is independent ofν and thevi
are linearly independent,c′γ′′,i(ν) is constant for eachi. This implies thatcγ′′,i(ν)
is holomorphic. 2

From now on we need to distinguish between a Weyl group elementw̃ ∈
W (G,A), for some torusA, and a representativew ∈ NG(A) for w̃. Let w̃θ =
w̃l,∆w̃l,θ, where w̃l,∆ is the longest element of the Weyl groupW (G,T), and
w̃l,θ is the longest element ofW (G,Aθ). Fix a representativewθ for w̃θ with
wθ ∈ K. Note thatw̃θ(θ) ⊂ ∆. Now let M ′ = M w̃θ(θ) = wθM θw

−1
θ . ThenM ′ is

a standard Levi subgroup ofG. Let N′ be the standard unipotent subgroup ofU so
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thatP′ = M ′N′ is a standard parabolic subgroup ofG. SinceM ′ ' M , we have
U` ⊃ N′.

LEMMA 3.3. For eachm > 0, we havew−1
θ N ′ ∩ Pw−1

θ Km is compact.

For m ∈ Mχ, let δ(m) = (δ−1/2
P δP ′)(m). Let XRχ,ω,ν,θ be the subspace

spanned by functions of the formΠν(mu)f ⊗ ṽ − δ(m)χ(u)f ⊗ ω̃(m−1)ṽ, for
m ∈ Mχ, u ∈ U`, f ∈ Y , andṽ ∈ Vω̃. Then a non-zero functionalΛ onX is
a (δωχ)-Bessel functional forΠν if and only if Λ|XRχ,ω,ν,θ ≡ 0. By the results
of Section 2 the space of such functionals is at most one-dimensional. Once we
establish the existence of a non-zero functional of this type, we will know that
X/XRχ,ω,ν,θ is one-dimensional.

The construction of this functional will be obtained by taking a direct limit of
functionals given by integrating over compact subsets ofN ′. We show that such a
limit exists and is not identically zero. Moreover, we show that there is a function
in X which is a complement toXRχ,ω,ν,θ for all ν. This will give the regularity
condition necessary to apply Bernstein’s Theorem and to obtain the holomorphicity
of the functional.

Now let us fix a Whittaker functional forσ and a Bessel functional forω.
(Actually, for notational convenience, we twistω by δ−1/2

Rχ .) That is, suppose that

λχ:Vπ ⊗ Ṽω → C satisfies

λχ((σ(u1)⊗ τ(mu2))(v1⊗ v2⊗ ṽ)

= χ1(u1)χ′(u2)λχ(v1⊗ v2⊗ ω̃(m−1)ṽ),

for all u1 ∈ U`∩G1, u2 ∈ U`∩G(m), andm ∈Mχ. Let Ω be a compact subgroup
of N ′. Define a functional onX by

λΩ
π,ν,θ(f ⊗ ṽ) =

∫
Ω
λχ(Πν(w−1

θ u)fν(e)⊗ ṽ)χ(u)−1 du. (3.1)

This functional depends on the choice of the representativewθ for w̃θ.
SinceN ′ is exhausted by compact subgroups, the compact subgroups ofN ′

form a directed set. The following Lemma was suggested to the authors by Prof.
Steve Rallis.

LEMMA 3.4. For everyf ⊗ ṽ ∈ X, the limit lim
Ω
λΩ
π,ν,θ(f ⊗ ṽ) exists, where the

limit is the direct limit taken over all compact subgroups ofN ′.
Proof.This is proved as in [Cas], Corollary 2.3. For every compact open sub-

groupΩ ⊂ N ′ andφ ∈ Xν , define a projection operator onXν by

PΩ
ν,θ φ(g) =

∫
Ω
λχ(Πν(u)φ(g))χ(u)−1 du.

Then givenφ ∈ Xν , there exists a compact open subgroupΩ0 ⊂ N ′ such that the
functionPΩ

ν,θ φ(g) has support in the big cellRχwθP . To see this, writeG as a
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disjoint union ofR−P double cosetsG = ∪RgiP , and letci be the characteristic
function of the cellRgiP . Thenφ =

∑
φci. But the arguments in Section 2 show

that there is a subsetΩ0 such that
∫
Ω0
λχ(Πν(u)φci(g))χ(u)−1 du = 0, for all ci

representing cells other than the big cell. Interchanging integration and sum, one
sees thatΩ0 has the desired property. But then forg of the formg = wθn

′ with
n′ ∈ N ′, the integralPΩ

ν,θφ(g) is nonzero only ifn′ ∈ Ω. The existence of the
direct limit follows. 2

Define a functional onX by

Λχ(ν, π, θ)(f ⊗ ṽ) = lim
Ω
λΩ
π,ν,θ(f ⊗ ṽ). (3.2)

Again, this functional depends on the choice ofwθ.

PROPOSITION 3.5.Let Λχ(ν, π, θ) be defined as in(3.2), and extendΛχ to Xν

by the sectionf ⊗ ṽ 7→ fν ⊗ ṽ. ThenΛχ(ν, π, θ) defines a non-zeroδωχ-Bessel
functional forΠν .

Remark. By takingν = −2ρθ we get a non-zeroωχ-Bessel model of IndGP (π),
which completes the proof of Theorem 2.1.

Proof. Suppose thatu1 ∈ U`. SinceU` ⊂ P ′, we can writeu1 = m1n1, with
m1 ∈ M ′ ∩ U`, andn1 ∈ N ′. Suppose first thatu1 = n1 ∈ N ′. SinceN ′ is
exhausted by compact subgroups, we can chooseΩ0 compact withn1 ∈ Ω0. If
Ω0 ⊂ Ω, then

λΩ
π,ν,θ(Πν(n1)f ⊗ ṽ)

=
∫

Ω
λχ(fν(w−1

θ un1)⊗ ṽ)χ−1(u) du

=
∫

Ω
λχ(fν(w−1

θ u)⊗ ṽ)χ−1(un−1
1 ) du = χ(n1)λΩ

π,ν,θ(f ⊗ ṽ).

Therefore,Λχ(ν, π, θ)(Πν(n1)f ⊗ ṽ) = χ(n1)Λχ(ν, π, θ)(f ⊗ ṽ).
If u = m1 ∈ U` ∩M ′, then sinceχ|G1∩U` is ψ-generic,χwθ(m1) = χ(m1).

Thus,

λΩ
π,ν,θ(Πν(m1)f ⊗ ṽ)

=
∫

Ω
λχ(fν(w−1

θ um1)⊗ ṽ)χ−1(u) du

=
∫

Ω
λχ(fν(w−1

θ m1wθw
−1
θ m−1

1 um1)⊗ ṽ)χ−1(u) du

=
∫

Ω
λχ(π(w−1

θ m1wθ)fν(w−1
θ m−1

1 um1)⊗ ṽ)χ−1(u) du
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= χ(m1)
∫
m−1

1 Ωm1

λχ(fν(w−1
θ u)⊗ ṽ)χ−1(u) du

= χ(m1)λ
m−1

1 Ωm1

π,ν,θ (f ⊗ ṽ).

Therefore,Λχ(ν, π, θ)(Πν(m1)f ⊗ ṽ) = χ(m1)Λχ(ν, π, θ)(f ⊗ ṽ). Similarly, if
m ∈Mχ ⊂M ′, then

λΩ
π,ν,θ(Πν(m)f ⊗ ṽ)

=
∫

Ω
λχ(fν(w−1

θ um)⊗ ṽ)χ−1(u) du

=
∫

Ω
λχ(π(w−1

θ mwθ)δ
1/2
P (w−1

θ mwθ)fν(w−1
θ m−1um)⊗ ṽ)χ−1(u) du

= δ
1/2
P (w−1

θ mwθ)
∫
m−1Ωm

λχ(fν(w−1
θ m−1um)⊗ ω̃(m−1)ṽ)χ−1(u) du

= δ
−1/2
P δP ′(m)

∫
m−1Ωm

λχ(fν(w−1
θ u)⊗ ω̃(m−1)ṽ)χ−1(mum−1) du

= δ(m)λm
−1Ωm

π,ν,θ (f ⊗ ω̃(m−1)ṽ).

Taking the limit onΩ on the right and left sides of the above equation completes the
proof thatΛχ(ν, π, θ) is a Bessel functional forΠν with respect to the representation
δ(m)ωχ.

It remains to show thatΛχ(ν, π, θ) is not identically zero. LetP ′ be the parabolic
opposite toP′. ThenP ′ = wθPw

−1
θ . By Lemma 3.4,P ′Km is compact, and if

pw−1
θ k ∈ Pw−1

θ Km ∩N ′, then in factp ∈ P ∩Km. Choose av ∈ Vπ andṽ ∈ Ṽω
such thatλχ(v ⊗ ṽ) 6= 0. Choosem � 0 such thatv ∈ Vπ,m and such that
χ |N ′ ∩ P ′Km ≡ 1. Consider the function inY defined by

f0(k) =

{
π(p)v if k = pw−1

θ k1, p ∈ P ∩K, k1 ∈ Km,

0 otherwise.
(3.3)

Then

Λχ(ν, π, θ)(f0⊗ ṽ) =
∫
N ′∩P̄ ′Km

λχ(fν(w−1
θ u)⊗ ṽ) du

= λχ(v ⊗ ṽ) |N ′ ∩ P ′Km| 6= 0.

Thus,Λχ(ν, π, θ) is non-zero, andf0 is a complement toXRχ,ω,ν,θ for all ν. 2
Supposer = mu ∈ Rχ, f ∈ Y , andṽ ∈ Ṽω. Define anX-valued function on

a∗C by

xr,f,ṽ,θ(ν) = Πν(r)(f)⊗ ṽ − δ(m)χ(u)(f ⊗ ω̃(m−1)ṽ).
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THEOREM 3.6.The functionν 7→ Λχ(ν, π, θ)(x) is holomorphic for eachx ∈ X.
Proof.We will apply Banks’s extension of Bernstein’s Theorem. Let

R = {(r, f ⊗ ṽ) | r ∈ Rχ, f ∈ Y, ṽ ∈ Vω̃} ∪ {∗}.

For α = (r, f ⊗ ṽ) ∈ R, we let xα(ν) = xr,f,ṽ,θ(ν) in X and letcα(ν) = 0.
Fix m, ṽ, v, andf0 as in (3.3). Forα = ∗, we setx∗(ν) = f0 ⊗ ṽ andc∗(ν) =
|N ′ ∩ P ′Km |λχ(v ⊗ ṽ). Now for everyν ∈ a∗C, we consider the systems of
equations inX × C given byΞ(ν) = {(xα(ν), cα(ν)) |α ∈ R}. By Lemma 3.2,
the functionν 7→ xα(ν) is holomorphic for eachα of the form (r, f ⊗ ṽ). For
α = ∗, the functionxα(ν) = f0 ⊗ ṽ is constant ona∗C. Note that eachcα is
constant, hence holomorphic as well.

Now, for eachν the functionalΛχ(ν, π, θ) is a solution to the systemΞ(ν).
Moreover, such a solution is unique by the results of Section 2. Thus, Banks’s
extension of Bernstein’s theorem [Ban] implies thatν 7→ Λ(ν, π, θ)(f ⊗ ṽ) is
holomorphic for all choices off andṽ. 2

We turn to the question of local coefficients. Letw̃ ∈W, and fix a representative
w for w̃withw ∈ K. Identifyν ∈ a∗Cwith a complex vector in the standard way. We
recall that the intertwining operatorA(ν, π,w): V (ν, π, θ)→ V (w̃(ν), w̃π, w̃(θ))
is defined forν with the real part of each coordinate sufficiently large by

A(ν, π,w)f(g) =
∫
Nw̃

f(w−1ng) dn, (3.4)

whereNw̃ = U ∩ wNw−1, andN is the unipotent radical opposite toN. Then
A(ν, π,w) is defined on all ofa∗C by analytic continuation. Note that the intertwining
operator depends on the choice ofw representing̃w.

We also recall the Langlands decomposition of the intertwining operator, de-
scribed in Lemma 2.1.2 of [Shaa]. For the convenience of the reader, let us
restate this here. For two associate subsetsθ and θ′ of ∆, we let W (θ, θ′) =
{w̃ ∈W | w̃θ = θ′}.

LEMMA 3.7 (Langlands (see [Shaa, Lem. 2.1.2])).Suppose thatθ, θ′ ⊂ ∆ are
associate. Let̃w ∈W (θ, θ′). Then there exists a familyθ1, θ2, . . . , θn ⊂ ∆ so that

(1) θ1 = θ andθn = θ′;
(2) For each16 i 6 n there is a rootαi ∈ ∆ \ θi so thatθi+1 is the conjugate of

θi in ∆i = θi ∪ {αi};
(3) For each1 6 i 6 n − 1, we let w̃i = w̃`,∆i

w̃`,θi in W (θi, θi+1). Then
w̃ = w̃n−1 . . . w̃1;

(4) Setw̃′1 = w̃, and w̃′i+1 = w̃′iw̃
−1
i for 1 6 i 6 n − 1. Thenw̃′n = 1 and

nw̃′i
= nw̃i ⊕ Ad(w−1

i )nw̃′i+1
.

Heren is the Lie algebra ofN.
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Let θ∗ ⊂ θ and letρ be an irreducible supercuspidal representation ofMθ∗ . If
ρ is generic, then Rodier’s Theorem implies that there is a unique constituentπ of
IndMPθ∗ (ρ) which is generic with compatible character. For this constituent, Shahidi
proved that there is a complex numberCχ(ν, π, θ, w) which satisfies

Λχ(ν, π, θ) = Cχ(ν, π, θ, w)Λχ(w̃ν, w̃π, w̃θ)A(ν, π,w),

whereΛχ is the Whittaker functional. Moreover, the functionν 7→ Cχ(ν, π, θ, w)
is a meromorphic function on(aθ)∗C. The value of the local coefficient depends on
the choice of representativew for w̃.

Now suppose thatρ is any irreducible supercuspidal which has a minimal Bessel
model of a particular type. Then we prove a similar result for the constituentπ
of IndMPθ∗ (ρ) which has a Bessel model of compatible type; such a constituent is
unique by Theorem 2.1, and exists by earlier results in this section.

THEOREM 3.8.Letθ andθ′ be associate subsets of∆. Letθ∗ ⊂ θ and letρ be an
irreducible supercuspidal representation ofMθ∗ . Suppose thatρ has anωχ-Bessel
model which is minimal. Letπ be the constituent ofIndMPθ∗ (ρ) such thatπ has an
ωw0
χ -Bessel model, as in Theorem2.1. For eachw̃ ∈ W (θ, θ′) fix a representative
w for w̃. Then there is a complex numberCχ(ν, π, θ, w) so that

Λχ(ν, π, θ) = Cχ(ν, π, θ, w)Λχ(w̃ν, w̃π, w̃θ)A(ν, π,w). (3.5)

Moreover, the functionν 7→ Cχ(ν, π, θ, w) is meromorphic ona∗C, and depends
only on the class ofπ and the choice ofw.

Proof. We first show how to defineCχ(ν̃, π, θ∗, w) for ν̃ ∈ (aθ∗)
∗
C. By [Sil,

Thm. 5.4.3.7] the representationI(ν̃, ρ, θ∗) is irreducible unless the Plancherel
measureµ(ν̃, ρ) = 0 and(ν̃, ρ) is fixed by a nontrivial element of the Weyl group
Wθ∗ (i.e., is singular). Thus, on an open dense subset of(aθ∗)

∗
C the representation

I(ν̃, ρ, θ∗) is irreducible, and soΛχ(w̃ν̃, w̃ρ, w̃θ∗)A(ν̃, ρ, w) defines a non-zero
Bessel functional onV (ν̃, ρ, θ∗) ⊗ Ṽω. By the uniqueness of such a functional
(Theorem/Conjecture 1.4), we get the existence ofCχ(ν̃, ρ, θ∗, w) satisfying

Λχ(ν̃, ρ, θ∗) = Cχ(ν̃, ρ, θ∗, w)Λχ(w̃ν̃, w̃ρ, w̃θ∗)A(ν̃, ρ, w)

on the open dense subset. Moreover, it is holomorphic there since bothΛχ(w̃ν̃, w̃ρ,
w̃θ∗) andA(ν̃, ρ, w) are holomorphic there. Thus,Cχ(ν̃, ρ, θ∗, w) extends to a
meromorphic function on(aθ∗)

∗
C. Now, write w̃ = w̃n−1 . . . w̃1 as in Lemma

3.7. SinceCχ(ν̃, ρ, θ∗, w) is now defined, it admits a factorization compatible
with the decomposition of the intertwining operators given in Lemma 3.7. (See
Corollary 3.9.) This implies that on an open dense subset ofν ∈ (aθ)∗C, the loc-
al coefficientCχ(ν, ρ, θ∗, w) may be defined by the equationCχ(ν, ρ, θ∗, w) =
Cχ(ν̃, ρ, θ∗, w), whereν̃ is the restriction ofν to (aθ∗)C. Suppose that, for some
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ν in this open dense subset,Λχ(w̃ν, w̃π, w̃θ)A(ν, π,w) was the zero function-
al. Then, by inducing in stages and using the discussion preceding this Theor-
em, we would conclude thatΛχ(w̃ν̃, w̃ρ, w̃θ∗)A(ν̃, ρ, w) is also zero. However,
sinceCχ(ν̃, ρ, θ∗, w) is defined there, this would be a contradiction. Thus we
may defineCχ(ν, π, θ, w) by the relation (3.5) on this open dense subset, and
we haveCχ(ν, π, θ, w) = Cχ(ν̃, ρ, θ∗, w). SinceA(ν, π,w) has a meromorphic
continuation to(aθ)∗C, andΛχ(w̃ν, w̃π, w̃θ) is holomorphic on(aθ)∗C, the function
ν 7→ Cχ(ν, π, θ, w) must have a meromorphic continuation. 2
COROLLARY 3.9.Let the notation be as in Lemma3.7 and Theorem3.8. Let
π1 = π, andν1 = ν. For eachi, 2 6 i 6 n − 1, setπi = w̃iπi−1, νi = w̃νi−1.
Then the local coefficient factors asCχ(ν, π, θ, w) =

∏n−1
i=1 Cχ(πi, θi, wi).

Proof.Let f1 = f ∈ V (ν, π, θ) and for 26 i 6 n − 1, let fi = A(νi−1, πi−1,
wi−1)fi−1. Then

Λχ(νi, πi, θi)fi = Cχ(νi, πi, θi, wi)Λχ(νi+1, πi+1, θi+1)×
×A(νi, πi, wi)fi,

for each 16 i 6 n− 1. The corollary now follows immediately from Lemma 3.7
and iteration of the above equality. 2

We now establish results analogous to those developed by Shahidi in [Shaa]
for the local coefficients attached to generic representations. First, let us refine our
notation slightly. To this end, we now denote theωχ-Bessel model on the induced
representation byΛχ,ω instead ofΛχ.Similarly, we now denote the local coefficient
defined above byCχ,ω instead ofCχ.

Suppose thatπ is an irreducible admissible unitary representation ofM with
a minimalωχ-Bessel model. Chooseθ∗ ⊂ θ, an irreducible supercuspidal rep-
resentationσ0 of Mθ∗ , and ν0 ∈ (a∗θ∗)C so thatπ is a subrepresentation of

IndMPθ∗ (σ0⊗ q〈ν0,HPθ∗
()〉). Letµ(ν, σ0, w) be the Plancherel measure attached toν,

σ0, andw, and let the constantγw(G/Pθ∗) be defined as in [Shaa, p. 318]. Recall
thatµ(ν, σ0) = µ(ν, σ0, wθ∗). Let ν̃ be defined as in the proof of Theorem 3.8, i.e.,
ν̃ is the restriction ofν to (aθ∗)

∗
C.

PROPOSITION 3.10.Withπ, σ0 andν0 as above we have

Cχ,ω(wν,wπ,wθ,w−1)Cχ,ω(ν, π, θ, w)

= γ−2
w (G/Pθ∗)µ(ν̃ + ν0, σ0, w), (3.6)

for all ν ∈ (a∗θ)C.
Proof.From Harish-Chandra’s theory of intertwining operators and Plancherel

measures [Sil], we have

γ−2
w (G/Pθ∗)µ(ν̃ + ν0, σ0, w)A(wν,wπ,w−1)A(ν, π,w) = 1.
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Using this identity we see that

Cχ,ω(ν, π, θ, w)Cχ,ω(wν,wπ,wθ,w−1)Λχ,ω(ν, π, θ)

= γ−2
w (G/Pθ∗)µ(ν̃ + ν0, σ0, w)Cχ,ω(ν, π, θ, w) ×

×[Cχ,ω(wν,wπ,wθ,w−1)Λχ,ω(ν, π, θ)A(wν,wπ,w−1)]A(ν, π,w)

= γ−2
w (G/Pθ∗)µ(ν̃ + ν0, σ0, w)Cχ,ω(ν, π, θ, w) ×
×Λχ,ω(w̃ν, w̃π,wθ)A(ν, π,w)

= γ−2
w (G/Pθ∗)µ(ν̃ + ν0, σ0, w)Λχ,ω(ν, π, θ).

Thus, we have the desired equality. 2
If (π, V ) is a representation ofG, then we letj:V → V be the map that

conjugates the complex structure ofV, i.e., j(cv) = cj(v) for all c ∈ C. Then
defineπ onV by π(g)jv = j(π(g)v).

Assume thatπ be as in Theorem 3.8. We letB be the unique irreducible
subquotient ofI(ν, π, θ) which has anωχ-Bessel model. IdentifyB with its Bessel
modelB(ν) = B(ν, π, θ, χ, ω) ⊂ IndGRχ(ωχ). Denote byB(ν)∗ the dual ofB(ν)
with respect to the pairing〈 , 〉 given in [Shaa, Sect. 2].

LEMMA 3.11.B(ν)∗ = B(−ν, π, θ, χ, ω̃).
Proof.We use the notation of Section 2 of [Shaa]. Denote byL the left regular

representation. Recall that ifh ∈ V (ρθ,1, θ) (see [Shaa, p. 302]), then one can
chooseϕ ∈ C∞c (G) satisfying

h(g) =
∫
MθNθ

ϕ(mng)q〈−2ρθ ,HPθ (m)〉 dmdn.

This gives rise to a relatively bounded linear functionalµ defined byµ(h) =∫
G ϕ(g) dg. In keeping with the notation in [Shaa, Sect. 2], we also writeµ(h) =∮
G h(g) dµ(g).

Supposeu ∈ U`. Let f∗ ∈ B(ν)∗. Givenf ∈ B(ν), the pairing〈 , 〉 is defined
by

〈f, L(u−1)f∗〉 =
∮
G

(f(g), f∗(ug)) dµ(g).

Chooseϕ ∈ C∞c (G) with

g 7→ (f(g), f∗(ug)) =
∫
MθNθ

ϕ(mng)q〈−2ρ,H(m)〉 dmdn,

as in [Shaa] (we suppress the dependence ofϕ onu). Then

〈f, L(u−1)f∗〉 =
∫
G
ϕ(g) dg =

∫
G
ϕ(u−1g) dg
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=
∮
G

(f(u−1g), f(g)) dµ(g) = 〈L(u)f, f∗〉

= χ(u−1)〈f, f∗〉 = χ(u)〈f, f∗〉 = 〈f, χ(u)f∗〉.

Thus,B(ν)∗ ⊂ IndGU`(χ).
LetB1 be an irreducibleMχ-subquotient ofB(ν). Set

B∗1 = {f∗ ∈ B(ν)∗ | 〈f, f∗〉 6= 0 for somef ∈ B1}.

ThenB∗1 is an irreducibleMχ-subquotient ofB(ν)∗.We claim that each suchB∗1 is
isomorphic tõω. Letω1 be (the class of) theMχ representation onB∗1.We suppress
the isomorphism ofB1 with ω and use the same argument as above. Namely, for
anym1 ∈Mχ, f

∗ ∈ B∗1, andf ∈ B1, we have

〈f, ω1(m1)f∗〉 = 〈f, L(m−1
1 )f∗〉 =

∮
G

(f(g), f∗(m1g)) dµ(g).

Choosingϕ so that

(f(g), f∗(m1g)) =
∫
MN

ϕ(mng)q〈−2ρ,H(m)〉 dmdn

we have

〈f, ω1(m1)f∗〉 =
∫
G
ϕ(g) dg =

∫
G
ϕ(m−1

1 g) dg

=
∮
G

(f(m−1
1 g), f∗(g)) dµ(g) = 〈L(m1)f, f∗〉

= 〈ω(m−1
1 )f, f∗〉.

Now, letj∗:B∗1 → B∗1 be the conjugation map. The pairing〈 , 〉′ : B1×B∗1 given
by 〈w,w∗〉′ = 〈w, j∗w∗〉 is bilinear. Therefore,

〈w, ω̃(m1)w∗〉′ = 〈ω(m−1
1 )w,w∗〉′ = 〈ω(m−1

1 )w, j∗w∗〉
= 〈w,ω1(m1)j∗w∗〉 = 〈w, j∗(ω1(m1)w∗)〉
= 〈w,ω1(m1)w∗〉′.

Therefore,ω1 ' ω̃, as claimed. 2
The following is an analogue of Proposition 3.1.3 of [Shaa].

PROPOSITION 3.12.For all ν ∈ (a∗θ)C we have

Cχ,ω(wν,wπ,wθ,w−1) = Cχ, ¯̃ω(−ν, π, θ, w).
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Proof. First we assume thatν is purely imaginary, i.e., thatν ∈ ia∗θ. LetB(ν)
andB(ν)∗ be as in Lemma 3.11. Sinceν 7→ Cχ,ω(ν, π, θ, w) is meromorphic, there
is an open dense subset ofia∗θ on whichCχ,ω(ν, π, θ, w) is holomorphic. On such
a subset, the relation (3.5) shows thatB(ν) cannot be contained in the kernel of
A(ν, π,w). ButA(ν, π,w) induces a scalar isomorphismCχ,ω(ν, π, θ, w) between
B(ν, π, θ, χ, ω) andB(wν,wπ,wθ, χ, ω). Therefore, its adjointCχ,ω(ν, π, θ, w)
with respect to the pairing〈 , 〉 is the map induced onB(ν)∗ by the adjoint of
A(ν, π,w), which isA(−wν,wπ,w−1) [Shaa, Prop. 2.4.2]. But now this last map
is the scalarCχ, ¯̃ω(−wν,wπ,wθ,w−1). Therefore,

Cχ, ¯̃ω(−wν,wπ,wθ,w−1) = Cχ,ω(ν, π, θ, w).

The Proposition now follows by taking complex conjugates and using analytic
continuation. 2
COROLLARY 3.13.Supposeω is unitary,π is supercuspidal, and−ν = ν. Then
the functionν 7→ Cχ,ω(ν, π, θ, wθ) is holomorphic. Furthermore, ifν is not among
the poles ofA(ν, π,wθ), thenCχ,ω(ν, π, θ, wθ) is non-zero.

Proof. If ω is unitary, thenω ' ω̃, and so if−ν = ν, then Proposition 3.12
implies Cχ,ω(wθν,wθπ,wθθ,w−1

θ ) = Cχ,ω(ν, π, θ, wθ). Then Proposition 3.10
implies that

|Cχ,ω(ν, π, θ, wθ)|2 = γ−2
wθ

(G/Pθ)µ(ν, π). (3.7)

Moreover,µ(ν, π) is holomorphic on the set ofν satisfying−ν = ν, and therefore
Cχ,ω(ν, π, θ, wθ) is holomorphic there. Now from Proposition 2.4.1 of [Shaa] and
the discussion that follows it, we have

|Cχ,ω(ν, π, θ, wθ)|2A(−ν, π,wθ)∗A(ν, π,wθ) = 1.

But if −ν = ν, thenA(−ν, π,wθ)∗ = A(ν, π,wθ)∗. Consequently, the poles of
the two operatorsA(ν, π,wθ) andA(ν, π,wθ)∗ are the same. Thus, away from the
poles ofA(ν, π,wθ) the local coefficientCχ,ω(ν, π, θ, wθ) 6= 0. 2

We now normalize the intertwining operatorsA(ν, π,w) by the local coefficient.
If π is unitary and has a minimalωχ-Bessel model, then we set

A(ν, π,w) = Cχ,ω(ν, π, θ, w)A(ν, π,w).

PROPOSITION 3.14.The operatorsA(ν, π,w) satisfy

(a) A(wν,wπ,w−1)A(ν, π,w) = 1.
(b) If ω is unitary, thenA(ν, π,w)∗ = A(−wν,wπ,w−1).
(c) If ω is unitary and−ν = ν, thenA(ν, π,w) is a unitary operator.
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Proof. By Proposition 3.10 and Proposition 2.4.2 of [Shaa], we see that (a)
holds. Part (b) then follows from Proposition 2.4.2 of [Shaa] and Proposition 3.12
above. Then part (c) is a consequence of (a) and (b). 2
THEOREM 3.15.Suppose thatπ is an irreducible unitary supercuspidal repres-
entation ofMθ. Assume thatπ has a minimalωχ-Bessel model, withω unitary.
Suppose thatν0 ∈ (a∗θ)C and suppose thatπ ⊗ q〈ν0,Hθ()〉 is non-singular, i.e., if
w ∈ Wθ andw(π ⊗ q〈ν0,Hθ( )〉) ' π ⊗ q〈ν0,Hθ( )〉, thenw̃ = 1. ThenI(ν0, π, θ)
is irreducible if and only if bothCχ,ω(ν, π, θ, wθ) andCχ,ω(wθν,wθπ,wθθ,w−1

θ )
are holomorphic atν = ν0.

Proof. By Corollary 5.4.2.2 of [Sil], each of the rank onec-functions, and
therefore each rank one intertwining operator is holomorphic atν = ν0. Thus,
A(ν, π,wθ), which is a product of these rank one operators, is defined atν = ν0.

Suppose thatI(ν0, π, θ) is irreducible. ThenB(ν0, π, θ, χ, ω) = I(ν0, π, θ), and
A(ν0, π, wθ)I(ν0, π, θ) = B(wθν0, wθπ,wθθ, χ, ω). Therefore,Λχ,ω(wθν,wθπ,
wθθ)A(ν0, π, wθ) is defined and non-zero atν = ν0. Consequently,Cχ,ω(ν, π, θ,
wθ) is holomorphic atν = ν0. Replacing the pair(ν0, π) by (wθν0, wθπ), we see
Cχ,ω(wθν,wθπ,wθθ,w−1

θ ) is also holomorphic atν = ν0.

Conversely, suppose thatCχ,ω(ν, π, θ, wθ) andCχ,ω(wθν,wθπ,wθθ,w−1
θ ) are

both holomorphic atν = ν0. Sinceπ is supercuspidal, Proposition 3.10 implies
that

Cχ,ω(wθν,wθπ,wθθ,w−1
θ )Cχ,ω(ν, π, θ, wθ) = c(G, θ)µ(ν, π),

with c(G, θ) a positive constant. Thereforeµ(ν, π) is holomorphic atν = ν0, and
hence by Theorem 5.4.3.7 of [Sil],I(ν0, π, θ) is irreducible. 2
COROLLARY 3.16.Suppose thatπ andν0 are as in Theorem3.15above. If the
local coefficientCχ,ω(ν, π, θ, wθ) has a pole atν = ν0, thenI(wθν0, wθπ,wθθ)
is reducible and the image ofA(ν, π,wθ) has zero intersection withB(wθν0, wθπ,
wθθ, χ, ω).

Proof. Sinceπ ⊗ q〈ν0,Hθ( )〉 is nonsingular,A(ν, π,wθ) is defined atν = ν0.
SinceCχ,ω(ν, π, θ, wθ) has a pole atν = ν0 and ν 7→ Λχ,ω(ν, π, θ) is holo-
morphic and non-vanishing, we see thatΛχ,ω(wθν0, wθπ,wθθ)A(ν0, π, wθ) must
be zero. This implies thatB(wθν0, wθπ,wθθ, χ, ω) has zero intersection with the
image ofA(ν0, π, wθ). SinceB(wθν0, wθπ,wθθ, χ, ω) is non-zero, we see that
I(wθν0, wθπ,wθθ) must be reducible. 2
PROPOSITION 3.17.Suppose thatπ is an irreducible unitary supercuspidal rep-
resentation ofMθ with a minimalωχ-Bessel model. Further suppose thatω is
unitary.

(a) Let A(ν, π,w) be the normalized intertwining operator. Then the image of
A(ν, π,w) is alwaysωχ-Bessel.

(b) The zeroes ofCχ,ω(ν, π, θ, w) are among the poles ofA(ν, π,w).
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Proof.These both follow immediately from the above. 2
Remark. Shahidi and Casselman have recently shown that, in the generic case, if

π is a discrete series representation, then the zeroes ofCχ(ν, π, θ, w) are exactly the
same as the poles of the intertwining operatorA(ν, π,w). It would be interesting
to know if this extends to the Bessel case.
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