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UNIQUENESS OF LIMIT CYCLES IN POLYNOMIAL SYSTEMS
WITH ALGEBRAIC INVARIANTS

ANDRE ZEGELING AND ROBERT E. KOOIJ

The uniqueness of limit cycles is proved for quadratic systems with an invariant
parabola and for cubic systems with four real line invariants. Also a new, simple
proof is given of the uniqueness of limit cycles occurring in unfoldings of certain
vector fields with codimension two singularities.

1. INTRODUCTION

Part of Hilbert's 16th problem [13] is to find an upper bound for the number of
limit cycles appearing in polynomial systems:

J n

CtX .

(1-1)

22f
i+j=0

where ( i , y ) 6 R ! , i 6 R , a,-,-, bij 6 R, n E N.
It is known that the existence of algebraic invariants in polynomial systems influ-

ences the number of limit cycles. For example, quadratic systems (that is (1.1) with
n = 2) with one line invariant can have at most one limit cycle [3, 4, 17, and 8]. The
usual procedure in these cases is to transform the system into a Lienard equation and
apply a uniqueness theorem. This paper follows the same direction for some unsolved
cases in polynomial systems. Since the algebraic invariants in our cases can be used to
simplify the Lienard equation (Lemmas 2.1, 2.2), it gives some evidence why algebraic
invariants in polynomial systems might reduce the number of limit cycles.

The paper is organised as follows. In Section 2 four lemmas for Lienard equations
are given. The first one helps to simplify a Lienard equation, given a solution (for
example an algebraic invariant). The second lemma concerns a class of differential
equations, related to Lienard equations, to which all systems studied in this paper
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belong. The third lemma is a known uniqueness theorem for limit cycles due to Zhang
Zhifen. The fourth lemma is an immediate consequence of the third lemma applied to
a special class of Lienard equations to which all the systems studied in this paper can
be transformed. These four lemmas are applied to polynomial systems with algebraic
invariants. In Section 3 quadratic systems with an invariant parabola are studied and
it is proved that any such system has at most one limit cycle. This finalises the proof of
the uniqueness of limit cycles in quadratic systems with algebraic invariants of degree
less than three. In Section 4 cubic systems (that is (1.1) with n = 3) with four real
line invariants are considered and the uniqueness of the limit cycle in these systems is
proved in a similar way to that used in Section 3. This result should be regarded as
an extension of some classical results for quadratic systems. It is well-known that a
quadratic system with two line invariants has no limit cycles [1] and that a quadratic
system with one line invariant has at most one limit cycle. In [11] it was proved that
cubic systems with five real line invariants have no limit cycles. The result of Section 4
therefore completes the analogous results of quadratic systems for cubic systems.

Finally in Section 5 a new approach is presented to the unfolding of vector fields
with codimension two singularities. This is a much studied problem that deals with
polynomial systems with line invariants [12]. A complete solution of the uniqueness of
limit cycles was given by [23, 24]. Another, simpler proof was presented in [5], but
according to [25], it contains some mistakes. In [23, 24] the main tool of investigation
was applying perturbation methods to integrable systems. Here we present a new,
simple proof using only the four lemmas of Section 2 involving Lienard equations.

2. FOUR PRELIMINARY LEMMAS

In order to investigate the systems mentioned in the introduction, we use four
lemmas involving generalised Lienard equations. The first lemma is a generalisation of
the method applied in [20].

LEMMA 2 . 1 . Let f(x), g(x) be continuous functions on the open interval
('"is 7*2) where r% < 0 < V2, and let y = ^(x) be a given orbit with ij>{0) ^ 0 of

the Lienard equation:
dx
-77 = y ,<21> L

Then (2.1) can be transformed into the equivalent generalised Lienard system
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where

/
*— '0(z) ~ ^(0)

/(T)dT = W) '

<p(y) = e» - 1 .

PROOF: Let z = j / — i/>(x) in (2.1), then the system becomes:

(2.3) *

where we used that y = ^(as) satisfies (2.1). Setting z = —^(Oje" and rescaling
time with dt/dr = —1/^(0) we obtain (2.2), after restoring the old variables u —» y,

T-«. D

REMARK 1. We restrict attention to the region z/ip(0) < 0, since it contains any
periodic orbit surrounding the origin which intersects the y-axis between the origin and
the orbit y — i}>(z).

REMARK 2. If V>(z) happens to be a factor of g(x), as will be the case in the next
sections, (2.2) shows that 5(1) will be simpler than g(x) in (2.1).

The systems discussed in this paper need to be transformed to the form of (2.1),
after which we can apply Lemma 2.1 to simplify the system. However, it appears that all
our systems have the same structure before the transformation to (2.1). It implies that
we can make a shortcut in the calculations by starting with this first type of equation,
instead of (2.1), and transform immediately to system (2.2). (This transformation was
pointed out to us by Coppel [10]):

LEMMA 2 . 2 . Let fo(x), f\(x), go(x), g\{x) 52(2) be continuously diSeientiable
functions on the open interval (r t ) r 2 ) , where ri < 0 < r2 and with /i(0) ^ 0, and let
y = ^(sc) be a given orbit with ^(0) ^ 0 of the system:

1
-£ = 9o(x) + gi(x)y + g2[x)y2.

Then (2.4) can be transformed into the equivalent generalised Lienard system:
^=<p(y)~ fli.r)dr,

(2.5) * *

£
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where

g(x) = [/i(*)fci(z)

7{») = lfo(x)fi(x)

Mx)rI>'(x))+g2(x)f0{x)}/f2
1{x)u>(x),

(0)^(0),= e" + 7> 7 = [-

and where w(z) satisfies:

(2-6)

PROOF: Let y = V>(*) + w(s)ez and df/dr = -l//i(a;)w(x) in (2.4). Then the
system becomes (2.5), after restoring the old variables z —* y, T —* t. U

REMARK 1. In applications one needs to ensure that z is real in the transformation
from (2.4) to (2.5). This can be achieved by choosing the sign of w(x) appropriately
in (2.6). Notice, however, that /(z)/7/(s), which is crucial in the next sections, is
independent of the choice of w(x) in (2.5). Therefore w(z) will not be specified in the
Sections 3 and 4; its explicit form is not needed in the application of Lemma 2.4 and it
is assumed that its sign is chosen correctly.

REMARK 2. In [16] it was shown how to transform (2.4) into a Lienard equation (2.1).
Lemma 2.2 can be regarded as a combination of this transformation, applied to (2.4),
followed by the application of Lemma 2.1.

The third lemma is a modification of a lemma by Zhang Zhifen [21, 22], see also
[7, 9, 18].

LEMMA 2 . 3 . Let f(x), g(x) be continuously differentiable functions on the open
interval (TI, T2), where r\ < 0 < r-i, and let <fi(y) be a continuously differentiable
function on R in:

(2.7)

such that

^=<p{y)~ f'f(r)dr,

dy
It

(ii) xg(x) > 0,for x ^ 0,
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Then system (2.7) has at most one limit cycle which if it exists, is hyperbolic.

Lemma 2.3 is sufficient for the proofs in the next sections, but it appears that all
systems under consideration have the same structure in <p(y), /(as), </(*) • Therefore
a shortcut can be made in the proofs by applying a theorem for this specific class of
Lienard equations, presented in [15].

LEMMA 2 . 4 . Let g(x) = (p(*))/(r(x)), /(*) = (q(x))/(r(x)) where p(x), q(x)
are polynomials of degree two or less, r(x) £ C°°, r(x) / 0 oa the open interval
(ri> r2)> where ri < 0 < r2, and let -£ > 0 in the generalised Lienard system

%=V(V)- ff(r)dr,
(2.8) dt Jo

§ = -<*>•
TJien system (2.8) has at most one Hmit cycle in the strip rj < x < r2 which, if it
exists, is hyperbolic.

The proof of Lemma 2.4 uses Lemma 2.3 together with Dulac's criterion. In Section
3 as an example of how this mechanism works, we shall prove the uniqueness of limit
cycles using Lemma 2.3 and Dulac functions only, although Lemma 2.4 could be applied.

3. QUADRATIC SYSTEMS WITH AN INVARIANT PARABOLA

In this section we discuss the number of limit cycles of quadratic systems with an
invariant parabola. The general quadratic system with an invariant parabola, and with
a limit cycle, can be brought to one of the following canonical forms [6]:

dx
— = ( -a - c)(y - x2) + (a + bx + cy) + xy,

(3.1) *
- | = -2(y - x2) + 2x(o + bx + cy) + 2y2,

-j7 = (« - c)(l/ - x2) + (a + bx + cy) + xy,
(3.2) *

-£ = 2(y - x2) + 2z(a + bx + cy) + 2y2,

where a > 0, 6, c € R.

In both systems y = x2 is the invariant parabola. In (3.1) [(3.2)] the only critical

point not lying on the parabola is (0, l)[(0, —1)] • The main result of this section is the

following theorem:

THEOREM 3 . 1 . A quadratic system with an invariant parabola has at most one

Hmit cycle which if it exists, is hyperbolic.
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REMARK. It was shown in [2] that a quadratic system with an invariant parabola can

have a limit cycle; to prove that the limit cycle is necessarily unique has been a well-

known problem.

Since all other cases of quadratic systems with invariant algebraic curves of degree

less than three already were dealt with [19], Theorem 3.1 implies:

THEOREM 3 . 2 . A quadratic system with an invariant algebraic curve of degree

less than three has at most one Hmit cycle which, if it exists, is hyperbolic.

PROOF OF THEOREM 3.1: We confine ourselves to the proof of the uniqueness of
the limit cycle for the system (3.1), since the system (3.2) can be treated in exactly the
same way. As mentioned in Section 2, we could apply Lemma 2.4 instead of Lemma 2.3
after transforming (3.1) to a generalised Lienard equation (3.5) and obtain uniqueness
of the limit cycle immediately, but we wish to illustrate here why Lemma 2.4 is valid.

The critical point at (0, 1) is the only critical point not on the parabola. A
necessary condition for having hmit cycles is therefore that (0, 1) be an antisaddle.
The Jacobian of the linearised system at (0, 1) needs to be positive:

(3.3) <r = 1 + ac + b + a2 > 0.

System (3.1) is of the form of system (2.4), with

/o(x) = o + 6z + (a-|-c)x2,

fi(x) = a-x,

(3.4) go(x) = 2x[a+(b+l)x],

gi(x) = -2 + 2cx,

g2(x) = 2.

Since y = x2 is an orbit of (3.1), according to Lemma 2.2 it can be transformed into
the generalised Lienard system:

(3.5) *

with

7(x) = [(3a + c)x2 + 2(6 + ac)x + a(b + 3)]/(l - ^)\a - x)\

Here we have chosen «(z) to be (1 — x/a) , satisfying (2.6). It is positive, because in

(3.1) the critical point (0, 1) lies above the parabola y = x2.
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[7] Polynomial systems with algebraic invariants 13

Next we show that system (3.5) satisfies the conditions of Lemma 2.3. The interval
('"li '"2) mentioned in the lemma is in this case (—00, a ) , where a > 0 according to
(3.1). Condition (i) is satisfied because ^ = ev > 0. Condition (ii) is also easily
verified using Tj(x) in (3.5) and condition (3.3). In order to be able to apply Lemma 2.3
we only have to check condition (iii). A necessary condition for the existence of limit
cycles can be found by applying Dulac's criterion [19] to system (3.5) with B(y) — eXy,
with A = -(b + ca)/<r,

(3.6) div(BP, BQ) = -[(c + 3a)x2 + a(b + 3))B{y)/(l - ^)\a - xf.

From (3.6) it follows that limit cycles can only exist if

(3.7) (c + 3a)a(b + 3) < 0.

Under this condition the expression £ (l&X J is of constant sign for x ^ 0:

d(J(x)(
Tx\J

Since 7(0) = (6 + 3)/a, it follows from (3.3), (3.7), (3.8) that condition (iii) of Lemma
2.2 is also satisfied for system (3.5). This completes the proof of Theorem 3.1. D

4. CUBIC SYSTEMS WITH FOUR REAL LINE INVARIANTS

In this section we study the number of limit cycles of cubic systems with four real
line invariants. The main result of this section is the following theorem.

THEOREM 4 . 1 . A cubic system with four real Hne invariants has at most one

limit cycle which, if it exists, is hyperbolic.

In [14] Kooij studied some aspects of cubic systems with four real line invariants.
One of the results of [14] is the following lemma.

LEMMA 4 . 1 . If a cubic system with four real Hne invariants has a Hmit cycle then
either the four real hne invariants are formed by two pairs of parallel Hnes or amongst
the four real hne invariants exactly one pair is parallel and three hnes pass through the
same point.

REMARK. In [14] the existence of limit cycles for the cubic systems described in Lemma

4.1 has been shown by means of the Andronov-Hopf bifurcation.

In the sequel we shall prove that the cubic systems described in Lemma 4.1 have at
most one limit cycle. Our method of proof is to transform the cubic systems under con-
sideration to a generalised Lienard system. We consider separately the cases identified
in Lemma 4.1.
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14 A. Zegeling and R.E. Kooij [8]

THEOREM 4 . 2 . A cubic system with four reed line invariants that are formed by
two pairs of parallel lines has at most one limit cycle which, if it exists, is hyperbolic.

PROOF: Without loss of generality we can assume that the cubic system with four
real line invariants formed by two pairs of parallel lines has the following form:

— = (mx2 +nx + l)(ax + y),

<> 1
where n2 - 4m > 0, 0 ^ 0.

In order to be able to apply Lemma 2.2, we first transform (4.1) by setting v =
y/(l+y), dt/dr = 1/(1+y):

dx
— = axk(x) + fc(x)(l - ax)y,<4-2> 1
-£ = -flex + [-/3d + (20c + c)x]y + (/? + l)(d - cx)y\
at

with fc(x) = mx2 -\-nx + 1 and where we have restored the old variables v —> y, T —* t.

System (4.2) is of the form of system (2.4), with

/o(z) = axk(x),

h{x) = k{x)(ax - 1),

(4.3) go{x) = -0cx,

The invariant y = (3 in (4.1) has been transformed into the invariant y = /?/(/3 + 1)
in (4.2). Lemma 2.2 can be applied to system (4.2), except if /? = — 1. However, for
/? = — 1, the uniqueness of the limit cycle of system (4.1) can be proved by using (4.2)
in a different way, which was done in [14]. In the case 0^—1, according to Lemma
2.2 system (4.2) can be transformed into:

( 4 4 )

with

J(x) = [-a(m + c)x2 + (ad-Pc- an)x + (dfi - a)]/w(x)(ax

g(x) = (ad- c)(0 + l)x/u,{x)[ax - l)2k(x),
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where u(x) satisfies w'(x)/w(x) = (0 + l)(d - cx)/k(x)(l - ax).
Therefore we arrive at a system satisfying the conditions of Lemma 2.4, with

<P(V) = e" + 7.

q(x) = —a(m + c)x2 + (ad — (3c — an)x + d/3 — a,

p(x) = (ad-c)(/3 + l)x,

r(x)=u(x)(ax-l)2k(x).

The zeros of (ax — 1) and k(x) determine the interval (ri, r2) mentioned in Lemma
2.4. The uniqueness of the limit cycle follows immediately and the proof of Theorem
4.2 is completed. U

REMARK. The proof of Theorem 4.2 also holds for n2 - 4m < 0 in system (4.1), that
is if the cubic system has one real pair of parallel line invariants and one complex
conjugated pair of parallel line invariants.

THEOREM 4 . 3 . A cubic system with four reaJ line invariants such that exactly
one pair of lines is parallel and three lines pass through the same point, has at most
one Umit cycle which, if it exists, is hyperbolic.

The proof of Theorem 4.3 basically runs the same as the proof of Theorem 4.2.
We just point out one difference. For the cubic system mentioned in Theorem 4.3 the
generalised Lienard equation takes the form

dt + 7 Jo h^h^hsisMs) '
ay g2(»)
dt A1(z)fc2(x)/l3(a;)a;(z)>

where P2(z) and 92(2) are quadratic functions in x and hi(x), h,2(x) and h$(x) are
linear functions. The zeros of hi(x), h.2(x) and fcs(a;) define the interval (r i , r 2)
mentioned in Lemma 2.3. The uniqueness of the limit cycle follows from Lemma 2.4.

Theorem 4.1 follows from Lemma 4.1 and Theorems 4.2 and 4.3.

5. UNFOLDINGS OF CODIMENSION TWO SINGULARITIES

In this section we investigate the number of limit cycles in unfoldings of vector
fields with codimension two singularities. Without going into the details of the origin
of the problem, we just state here that the main problem is to determine the number
of limit cycles of the following two systems for the amplitudes [5]:

dx „ ,
— = t\x + Bxy + xy*,

(5-1) dl
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16 A. Zegeling and R.E. Kooij [10]

where x ^ 0, T/ = ± 1 , B ^ 0, |ei | , |e2|

(5.2)

dx
— = x[-q + qx + (q + l)y],

-j£ = y\p - (p +1)* - py] +

where p,q£R, q ? - 1 , * > 0, y ^ 0, | £ l | , |e2 | , | e » | < l ,
In [5] also so-called nondegenerate conditions on the parameters were imposed, but

since we shall not use them, we shall not list them here to avoid confusion. These two
systems occur in the unfolding of doubly degenerate singularities of vector fields in Rn,
n ^ 2, of which the linear part takes the form (after reduction to a centre manifold
[12]):

(5.3)

0 1 01
- 1 0 0

0 0 0J
0 1 0 0l

- 1 0 0 0
0 0 0 u
0 0 -u) 0.

for (5.1),

, for (5.2).

Systems (5.1) and (5.2) were used in [5], with the exception that in (5.2) we rewrote
the perturbation terms. This was done with the recurrence relations in appendix B of
[5]. For small values of the perturbation parameter e this does not influence the number
of limit cycles. Our choice makes it easier to transform to a Lienard equation, whereas
the system equivalent to (5.2) used in [5] is more difficult to transform.

To study (5.1) and (5.2) we consider the more general systems:

(5.4)

where z ^ 0, c; G R,

(5.5)

dx
— = cix + c2xy
dy 2 2
— =c4+csx + c6y ,

— - \d

— = y[d4 + dsx + day

where se^O, y > 0 , djGR.
In the remainder of this section we shall prove:
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[11] Polynomial systems with algebraic invariants 17

THEOREM 5 . 1 . Systems (5.4) and (5.5) have at most one limit cycle which, if it
exists, is hyperbolic.

Since (5.1) and (5.2) are subfamilies of (5.4) and (5.5) an immediate consequence
of Theorem 5.1 is:

THEOREM 5 . 2 . In tie amplitude equations for unfoldings of codhnension two
singularities of nonresonant vector fields in Rn at most one Hmit cycle appears and if
it appears it is hyperbolic.

REMARK. In [23, 24] the existence of limit cycles in systems (5.1) and (5.2) was proved.

PROOF OF THEOREM 5.1: After setting x2 = e" in system (5.4) we obtain:

t
-± = c4 + cse

u + c6y
2,

which is system (2.8) (changing u —» y, y —» x) with tp(y) = cse" + c4, p(x) —
— (2ci +2c2X +2c s x 2 ) , q(x) — —2c6x, r(z) = 1. By a reversal of time t —> —t, cs
can be assumed to be positive. The uniqueness of limit cycles follows immediately from
Lemma 2.3. System (5.5) is already of the form (2.4) with:

/o(x) = x(di + d2x),

Mx) = -<*sx,

(5.7) go(x) = 0,

g\{x) = <f4 + dsx + d7x
2,

g2(x) = d6.

According to Lemma 2.2, system (5.5) can be transformed into a generalised Lienard
system, because it has an invariant y = 0:

f£ = e v + 7 _ f'j(r)dr,
(5.8) * J°

dy _, .
Tt = ~9{x)'

with 7(x) = [d2(d3 + de)x + d1«i6]/^xa;(x),
g(x) = [-d3d7x

2 + {d2d6 - d3d5)x + djdfl - didkydlx^x),

where w(x) satisfies w'(z)/w(x) = d6/d3x.
Finally we make a translation in x, such that the singularity (around which the

limit cycle should occur) at x = xo, where XQ > 0, is moved to x = 0. This is necessary,
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since in the Lemma 2.4 it is implicitly assumed that the singularity has an x-coordinate
equal to zero. After the translation x = x — xo , system (5.8) is still of the same form,
but with (omitting the bar):

/ (*) = [Ao + Ajx + \2x
2]/4(x + xo)w(x +

(5.9)
g(x) — x[fi0 + /xiz]/(ij(x + xo)w(x + x0),

where Ao, Ai, A2, /xo> A*i, xo are functions of the parameters d\, d2, da, d^, ds, dg, dj,

and where we have used that <j(xo) = 0 in (5.8).

We do not specify the parameters in (5.9), because in order to apply Lemma 2.4
all we need to know is the structure of / (x) , g{x) in the generalised Lienard system.
The system (2.4) with the functions given in (5.9), satisfies the conditions of Lemma
2.4, with ip{y) = ev + 7 , q(x) = Ao + Xix + X2x

2, p(x) = x(fi0 + /xix), r(x) =

d\(x + XQ)LV{X + xo). We choose T2 to be —xo and T\ to be +00. Then r(x) ^ 0 on
this interval and the uniqueness of the limit cycle follows immediately. D

REMARK. The proof of the uniqueness is an extension of the work done on the
Bogdanov-Takens system [12]. For that system the uniqueness of the limit cycle in
the unfolding of a codimension two singularity in the plane, was proved originally using
Pontryagin-integral techniques [12]. However, similar to what was done in this section,
it is much easier to prove this by considering the system to be a part of a larger family
of vector fields. Interestingly enough for the Bogdanov-Takens system this result was
obtained already in China before the Bogdanov-Takens system itself appeared in the
picture [19].
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