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ON THE AREA OF PLANAR CONVEX SETS

CONTAINING MANY LATTICE POINTS

P.R. SCOTT

A classical theorem of van der Corput gives a bound for the volume

of a symmetric convex set in terms of the number of lattice points

it contains. This theorem is here generalized and extended for a

large class of non-symmetric sets in the plane.

1. Introduction

Let A be a lattice in the plane, generated by vectors U-, #„,

and having lattice determinant d(h) = IdetfU- ,%>„) \ . Let K be an open

convex set containing the origin 0 , and having area A(K) .

In 1936, van der Corput [2] showed that if K is symmetric about the

origin 0 , and contains as well as 0 , at most p distinct pairs of non-

zero lattice points, then A(K) <. 4(p + 1) . If we set c = 2p + 1 in

this result, so that a denotes the total number of lattice points in K ,

we obtain for symmetric sets, A(K) S 2o + 2 . Arkinstall [J] sought to

extend this result to non-symmetric sets in the following way.

Let a chord of K which is bisected by the origin 0 be called
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a chord of symmetry of K , and let s(K) denote the number of such

chords. Then Arkinstall shows:

If s(K) is even or infinite, then A(K)/d(A) <, 2e + 2

If s(K) > 1 and a < 4 , then A(K)/d(A) ̂  (2c + 2) + l/(2o)

If B(K) > 3 and a < 4 , then A(K)/d(A) < 2o + 2.

The inequalities are best possible, but the proofs of the last two

are long and involve much case-splitting. Further, it seems likely that

the restriction a 5 4 is unnecessary.

In the present paper, we set aside Arkinstall1s symmetry conditions,

and show that the above inequalities hold for a large class of non-

symmetric sets. It is hoped that this might be a useful step in establish-

ing Arkinstall's result without restriction.

Let k > 0. As in [5] we say that K is kA-boicnded if some

translate of K is contained in some fundamental parallelogram of kA ,

but no translate is contained in any fundamental parallelogram of

(k - e)A (e > 0> . We shall prove:

THEOREM 1. Let k = 2a + 2 . If K is kA-bovnded, and the a

lattice •points in K are collinear, then

A(K)/d(A) <> 2c + 2 + l/(2c) .

It appears to be difficult to establish a similar result when the

lattice points in K are not collinear. Instead therefore we proceed as

follows. Let P be the fundamental parallelogram of A , centred at the

origin 0 , and with side directions determined by the lattice vectors

V7, VQ - Let II denote the closed convex polygon (perhaps degenerate)

obtained by taking the convex hull of the lattice points in K . We now

define a new polygon II* to be the vector sum II + 5V of II and a five-

fold enlargement of P about the origin. This has the effect of

surrounding n by a generous border of width fv. in the v .-direction

a = i3 2).
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We shall prove:

THEOREM 2. Suppose a > 1 and K c n* . Then

(a) A(K)/d(K) < 2c + | ;

(b) if the lattice points in K are not collinear, then

A(K)/d(\) < 2c + 2 .

Both of these inequalities are best possible.

We observe that for sets K containing collinear lattice points,

and having c > 1, Theorem 1 is stronger than Theorem 2(a), and in fact

implies it. However, the result of Theorem 2 fails for sets having c = 1 .

thus the rectangle with sides along the lines y = 0, y = 1, y = ±-K ,

distorted slightly to contain the origin, satisfies the boundedness

condition of the theorem, but has area arbitrarily close to 5.

Since A(K)/d(ti), c, and the definitions of feA-boundedness and

II* are invariant under affine transformation, it will be sufficient to

establish the theorems when A is the integral lattice, in which case

d(h) = 1 .

The triangles in Figure 1 show that the inequalities of the theorems

cannot be improved. We also see from Figure 2 that some boundedness

condition needs to be placed on the set K . For the area of each of the

illustrated sets can be made as large as we please by taking the sloping

boundary lines close to horizontal.

c = 1 A = 4h c = 3

Figure 1.

A = 8
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Figure 2.

We might mention that other bounds are known for A(K) ; for example

Nosarzewska [3] showed that A(K) < a + jdP(K) , where P(K) is the

perimeter of K . However, there is no obvious way to relate this to

Arkinstall's result.

Finally we note that for a = 1 , the result of Theorem 1 is

established in [5] . We shall henceforth assume that a £ 2 .

2. Setting up the problem

We define t = t(K) to be the smallest integer such that all the

lattice points in K lie on t(K) parallel lattice lines. Thus for

example, if the lattice points in K are collinear, t(K) = 1 .

Let n denote the convex lattice polygon (possibly degenerate)

obtained by taking the convex hull of the lattice points contained in K .

We say that polygon n' is equivalent to n if n" can be obtained

from n using only integral unimodular transformations, and lattice

translations.

The following lemma sets up a useful 'standard form1 for n1 »

together with some characterising properties.

LEMMA 1. There exists a positive integer r(K) , such that n is

equivalent to a convex lattice polygon n' whose lattice points lie

precisely on the lines y = 1,23 ...3r(K) .

Proof. If t(K) = 2, I degenerates to a lattice line segment. This

is clearly equivalent to a lattice line segment lying along the y-axis and

satisfying the requirements of the lemma. (In this case, we shall specify
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this position, rather than having II lying along the line y = 1 .)

If t(K) = 2 , we can map the segment containing a maximal number of

lattice points in K to the y-axis as above. We assert that the remain-

ing parallel segment will now lie on one of the lines x = ±1 . For, if

we form a lattice triangle T from two adjacent points on the y-axis,

and a lattice point of II not on the axis, then since T <= K , T can have

no further lattice points on its boundary or in its interior. Since its

base on the y-axis has length 1, and by Pick's theorem [4] it has area *!,

the altitude of T cannot exceed 1 . Finally, a suitable integral

unimodular shear having the y-axis as axis ensures that the points of

the second segment lie on a subset of the lines y = 1,2,...,r(K) .

Suppose now that t(K) ^ 3. Then after suitable translation, n is

contained in, and has at least one vertex on each side of a p x p'

rectangle, as in Figure 3, where we may assume that p' > p > t(K) - 1 > 2

Let P,Q,R,S, be such vertices of II , as in Figure 3, and let i?1 be

the projection of R on the opposite side.

y=p+l

y=l

Figure 3.

We now obtain an equivalent polygon II1 , (perhaps identical to II) ,

in the following way. Using an integral unimodular shear, a , which

fixes the line y = 1 , we make \PR' \ £ p/2 . Such a transformation may

in fact decrease p1 to a value less than p . If this happens, noting

that a shear "perpendicular to a" leaves \PR'\ and p1 unchanged, we

simply rotate the polygon through a quarter turn about a suitable lattice
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point, and repeat the process. There can be at most a finite number of

such rotations, since at each step the positive integer p + p' is

reduced by at least 1. Note that an adjacent pair of the points PiQ}R,S

may coincide at a vertex of the rectangle.

We thus obtain an equivalent lattice polygon II' contained in a

p x p' rectangle (compare Figure 3) with p' > p £ 2 , and \PR' | < p/2 .

We now show that every line y = k(l <, k < p + 1) contains at least one

point of IT . (This will clearly establish our lemma, with r(K) = p .)

Since p 2 2 and PQRS is convex, it will be sufficient to show

that the lines y = 2,y = p each contain a lattice point; by symmetry it

will be sufficient to consider the line y = p .

If R does not lie at a vertex of the rectangle, then the intercept

of PQRS on the line y = p is smallest when Q}S lie at the base

vertices of the rectangle. Since p' - p r the (closed) intercept has

length at least 1, and so contains a lattice point. If R coincides with

S at the vertex (0>p + 1) (say) of the rectangle, vertices P,Q must lie

on the opposite two sides. Since \PR' ] <, p/2 and p1 > p, LPRQ contains

the ray from R through the point T(p3l) . But line RT has equation

x + y = p + 1 . We deduce that line y = p contains the point (l,p) of

n .

We proceed to establish our theorems for a general set K' whose

associated lattice polygon II1 satisfies Lemma 1 . This is sufficient,

since the statements of the theorems are invariant under integral

unimodular transformation, and lattice translation. For simplicity of

notation we henceforth omit the prime.

3. Proof of Theorem 2

Let o. denote the number of lattice points in K lying on

Is

r
y = i(l < i < r) ; then £ o • = a . On each line y = i(l < i < r) ,

i
there exist lattice points P\ ,P. such that P'.P. is the segment of

v v 1,1
length a. + 1 containing the a- points of K on y = £ in its
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interior . By Lemma 1, c • / 0 (1 < i < r) .

447

We now partition K into convex subsets with the lines

y = i + -z (1 £ i £ r - 1) , obtaining v subsets K-,Kn, . . . ,K , with K-

containing just the lattice points on y = i . Clearly

r
A(K) A(K.) .

By the convexity of K3 for 2 < i < r - 1 , each K. is contained in a

trapezium bounded by the lines y = i i ~% i and lines through the points

P\,P- . Such a trapezium has area o. + 1 . Hence

(*) A(K.) < a. + 1(2 < i <, r - 1)

I t remains to find bounds for A(K^) and A(K)

LEMMA 2. A(Kt) + A(Kr) < | (o1 + cy + 2) + j , and this result is

best possible.

Proof. We first find an upper bound for A(K ) for certain sets

Kr •

Suppose that K is bounded by straight lines through p',p which
I" TV

are parallel, or meet in a point of the half-plane y > r • If K is

also bounded by the line y = r + 1 , then K is contained in a

parallelogram of length a + 1 and height — (Figure 4(a)). Hence

. 3 ,
V

y=r+l

y=r

Q1

-y=r+2

•y=r+l

-y=r

(a)
Figure 4. (b)
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Assume now that K extends beyond the line y = r + 1 ; by our

boundedness condition on K, K does not extend beyond y = r + -z .

Let Q' , Q be adjacent points on the line y = r + 1 such that K

intercepts the segment Q'Q (Figure4(b)) . Since K is convex, there

exists a point W such that K is bounded by Q'W, QW ; thus K lies

within the triangle A determined by Q'W, QW and the line y = r - j .

Let Q'W, QW cut off a segment of length t on the line y = r . Then A

has base length -^C3t - 1) and altitude (3t - l)/2(t - 1) . Hence

A(K) Sr' -"'"'- 2* 2 '2(t - 1)

(3t - I)2

act - i)

For t > 1, this rational function of t assumes a minimal value of 3 at

t = — • We consider several ranges of t •
o

(a) For — < t <> 2 , the y-coordinate w of W satisfies
o

T+2£W£r + *j;, so A is not affected by the boundedness condition on

K . Substituting t = 2 in the above formula,

A(Kr)

since e >

(b) For 1 < t < -=• , triangle A becomes truncated by the horizontal
6

line v = V + yr , and K is bounded by the trapezium with sides along
4 r

Q'W, QW and the lines y = r + j, y = r - j . The area of this trapezium

is clearly constant for all t in this range, and so

A(Kr) < 3 < j<cr + 1)

since o ^ 1 .

(c) For t > 2 , K is again contained in the triangle A , and we

observe that
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A(K
2

l/2(t -

since a 5 2 . Because t > 2 , this condition is always satisfied,
r

Hence in each case,

A(Kr)

3

j(
3 i

We note that if similarly, A(KJ 5 jr(c + 1) + IT > then the inequality

of the lemma is satisfied.

Suppose now that the lines through P'}P meet in a point V in the

halfplane y < 1 . It is clear that a set K of maximal area will be

bounded by the line y = r + 1 . Hence a set K of maximal area will be

contained in a trapezium T formed by the lines V P \ V P . y = r + 1 ,
.

and y =

y=r+l

y

y=r-l

=r JM-—• • •-
_i \

Figure 5
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But since K is convex, the lines V P', V P will also bound #_ .

Let K~ denote the intersection of K* with the upper halfplane

i(x,y) \y > 0} and Kl the intersection with {(xty) \y < 0} . As we

intend applying our previous argument about K to the set ]L , we

henceforth use t to denote the length of the segment of the line y = 1

cut off by V P', V P .
r r

Now if # and K are contained in corresponding trapezia T , T

as in Figure 5, let R1,R denote the corresponding rectangles, obtained

by replacing the sloping sides by vertical segments as shown.

For t > 2, V lies above the line y = -1 , and A(K~) < y • A

geometric addition and subtraction of congruent triangles shows that

p + A(K~)

°2 + 2} + I

as required by the lemma.

(It may happen of course that the sloping sides of the lower

trapezium meet, not at V , but at some point with greater y-coordinate.

It is easily checked that the above addition and subtraction argument

holds a fortiori, in this case.)

For t % 2 ,

A(K1) + A(Kp) = AiRj + A(K~) + A(Rp)

= A(K2) + A(X) + A(Rr)

where X is made up of the two cross-hatched regions in Figure 5.

From our previous argument with K ,
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Also, regarding X as a split trapezium, having altitude -j and (combined)

parallel side-lengths t - 1 and t - -~(t + 1) , the area of X is

given by

A(X) = j. | (t - 1) + (t - |rt + D)

since t £ 2 .

Hence

AC.K2) + A(Kr)

as required.

We note that the equality is required here for the large triangle in

Figure 1. This completes the proof of the lemma.

We are now in a position to establish Theorem 2. Assuming r > 2 ,

we have from (*) and Lemma 2.

= a + j(o2 + or + r - 2) + jjr + 1) + 2

+ ~(r + 1) + 2

("noting that Cj + cp +(r - 2) s c) .

Now if the lattice points in K are not all coilinear, then

r + 1 £ a , and
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r
A(K) = I ACK^) < 2c + 2 .

On the other hand, if the lattice points in K are collinear, then

r = a , and

A(K) <. 2c + 2 + j

This completes the proof of the theorem.

4. Proof of Theorem 1

As in Lemma 1, we shall assume that the lattice points of K lie

along the £/-axis, and that a > 1 . We first symmetrize K about the

ar-axis to obtain a corresponding set K* -, clearly A(K*) = A(K) . In fact

we seek a set K* for which A(K*) is maximal; K* will be a certain

polygonal set, with its bounding lines determined by the lattice point

contraints on K . Since K contains just o lattice points on the

y-axis, we may therefore assume that K* is bounded by lines PVtP'V

1 1
through the points PfO^c + D) , P'(03 --^(o + 1)) , where by symmetry,

V(V3O) lies on the #-axis. By reflecting K (K*) in the y-axis if

necessary, we may assume that V lies on the positive x-axis (possibly

'at infinity'). It is now clear that K* will be bounded by the line

x = -1 .

There are several critical cases -to consider, depending on the

position of V .

(a) If V > (2c + l)/c , then the maximal set K* is a trapezium T ,

with parallel sides along x = ±1 , and sides through P, P' . In this

case

A(K*) = A(T) = 2c + 2

(bl If 2 < v < (2c + l)/c , then K* is an isosceles triangle, A ,

with base on the line x = -1 and sides through P, P' meeting in vertex

V . (This constraint on V ensures that the line x = 1 intercepts K*

in a segment of length at most 1, corresponding to the fact that K

contains no lattice points on the line x = 1 .) It is easily checked that
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A has maximal area when v = (2c + 2)/o ; in this case we obtain

A(K*) = 2c + 2 + l/(2c) .

(c) If 1 < v < 2 , then K* is. an isosceles triangle with its base

angles truncated by the horizontal lines y = ±(c + 1) , such lines

appearing as a result of the boundedness condition on K . An easy

calculation shows that the area assumed for such truncated triangles does

not exceed the area of the limiting figure, a (2c + 2) *• 1 rectangle,

obtained as v approaches 1. Thus here,

A(K*) < 2c + 2 .

This completes the proof of Theorem 1.

5. Comments

Although the results of the theorems are best possible, some

refinements can probably be made. For example, for sets K with

t(K) > 3 , it seems likely that no boundedness condition need be imposed

on K , although such, conditions are necessary for this proof.

We also note that there are some analogous problems to be considered,

corresponding to the n-dimensional form of van der Corput's theorem for

symmetric sets of volume V :

V(K)/d(h) < 2n~1(c + 1)
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