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Abstract

We consider a piecewise-deterministic Markov process (Xt ) governed by a jump intensity
function, a rate function that determines the behaviour between jumps, and a stochastic
kernel describing the conditional distribution of jump sizes. The paper deals with the point
process Nb+ of upcrossings of some level b by (Xt ). We prove a version of Rice’s formula
relating the stationary density of (Xt ) to level crossing intensities and show that, for a wide
class of processes (Xt ), as b → ∞, the scaled point process (Nb+(ν+(b)−1t)), where
ν+(b) denotes the intensity of upcrossings of b, converges weakly to a geometrically
compound Poisson process.
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1. Introduction

We consider a real-valued piecewise-deterministic Markov process (Xt )t≥0 whose distribu-
tion is determined by a drift coefficient µ : R → R, a jump intensity function λ : R → [0, ∞),
and a stochastic kernel J (x, dz) from R to R. The process (Xt ) is right continuous and
jumps at (positive) epochs T1 < T2 < · · · . Between the jumps, it moves along an integral
curve determined by µ. We assume that µ is right continuous with left-hand limits and that
Dµ := {u : µ(u) = 0} is a locally finite set. The occurrence of jumps is governed by the
stochastic jump intensity λ(Xt ). Given the nth jump epoch Tn, the conditional distribution of
the size Zn of the nth jump is J (XTn−, ·), where Xt− is the value of the process just before
t > 0. We will assume that the process is ergodic with invariant distribution π and refer to
Appendix A for conditions guaranteeing ergodicity. It is then essentially well known [10], [31]
that the stationary distribution π is absolutely continuous on R \ Dµ, and we let p denote its
density. We note that π might have atoms in Dµ.

The process (Xt ) is a generic model of applied probability. Special cases have been
extensively studied in the literature. We just mention storage processes [14], [27], stress release
models [7], [30], [31], queueing models [9], [27], and repairable systems [21]. It is mostly
assumed that J (x, ·) does not depend on x ∈ R and that the jumps are either only nonnegative
or only nonpositive. An extensive discussion of several ergodicity properties for a constant
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(positive) µ and negative jumps is given in [19]. General properties of piecewise-deterministic
Markov processes are studied in [11].

Now assume that X0 has the distribution π . Then (Xt ) is a stationary process, and the
sequence (Tn) forms a stationary point process. We assume that the intensity of (Tn) (the
expected number of points in an interval of unit length) is finite. Again, we refer to Appendix A
for an explicit assumption that is sufficient for this finiteness.

We say that (Xt ) has a (proper) upcrossing or downcrossing of level u ∈ R at time s > 0
if there is some δ > 0 such that Xt < u or, respectively, Xt > u for s − δ ≤ t < s and
Xt > u or, respectively, Xt < u for s < t ≤ s + δ. If, in addition, Xs− = Xs then we
speak of a continuous upcrossing or, respectively, downcrossing. Otherwise, we speak of a
discontinuous upcrossing or, respectively, discontinuous downcrossing. It is easy to see that
the set of all continuous upcrossings and downcrossings forms a stationary point process Nu

c .
Note that there are no continuous downcrossings of the level u in the case in which µ(u) > 0
and no continuous upcrossings in the case in which µ(u) < 0. The intensity of Nu

c is denoted
by νc(u). As the intensity of (Tn) is assumed to be finite, it is easy to see that νc(u) is finite for
any u ∈ R.

Our first aim in this paper is to prove the following version of Rice’s formula:

νc(u) = |µ(u)|p(u), u /∈ Dµ. (1.1)

The simplicity of this result is striking. The formula can be explained by looking at the long-run
proportion of time that (Xt ) spends in an infinitesimal interval containing u. Equation (1.1) is
a direct analog of the classical Rice formula [28], which holds for smooth processes and plays
a rather important role in engineering. A rigorous treatment of Rice’s formula is given in [22]
and a more recent discussion is given in [24]. An analog of (1.1) for (discontinuous) Poisson
shot noise processes has been studied in [4].

Let ν+,d (b) and ν−,d (b) respectively denote the intensities of discontinuous upcrossings
and downcrossings of level b. Our proof of (1.1) uses the simple relation νc(u) = |ν+,d (u) −
ν−,d (u)|; see Lemma 3.1. In fact, (1.1) can be rewritten as

ν−,d (u) − ν+,d (u) = µ(u)p(u), u /∈ Dµ. (1.2)

Such equalities for level-crossing intensities are widely used in queueing theory. Here we
refer the reader to the early reference [8] and the survey [12]. It is quite remarkable that the
queueing literature does not take notice of the close relationship between (1.2) and the results
in [28] (or [4]). Equation (1.2) is mostly derived for Poisson-driven models. In principle, the
level-crossing method can also be applied in more general cases (see, e.g. [12]). There are,
however, many implicit model assumptions that make a direct derivation of (1.1) nontrivial.
So, to the best of the authors’ knowledge, result (1.1) must be considered as new. Moreover,
we will establish this formula under a minimal set of assumptions. In particular, the existence
of the stationary density need not be assumed, but is a consequence of our model assumptions.
Though assumed for convenience, even ergodicity is not needed.

Our second and main aim in this paper is to derive limit results for the point process Nb+ of
all upcrossings of level b → ∞. Whenever the intensity ν+(b) of Nb+ is positive, we introduce
the scaled point process Mb(t) := Nb+(ν+(b)−1t), t ≥ 0. It is stationary and has intensity 1.
Under our assumptions (see the scenarios below), (1.1) will imply that the intensity ν+(b) can
be explicitly expressed as

ν+(b) = |µ(b)|p(b) (1.3)
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for all sufficiently large b. We refer the reader to Section 4 for more detail. We will study the
limiting behaviour of Mb under the following three scenarios and some additional assumptions,
see (4.4)–(4.6).

Scenario 1.1. We have µ(y) → −∞ as y → ∞, and there exists a u0 ∈ R such that
J (x, (−∞, 0)) = 0 for x ≥ u0 (no negative jumps from states x ≥ u0).

Scenario 1.2. We have λ(y) → ∞ as y → ∞, µ(y) is positive for all sufficiently large y, and
J (x, (0, ∞)) = 0 for all x ∈ R (no positive jumps).

Scenario 1.3. As y → ∞, we have µ(y) → µ(∞) ∈ R \ {0} and λ(y) → λ(∞) ∈ [0, ∞). In
the case in which µ(∞) < 0, there exists a u0 ∈ R such that J (x, (−∞, 0)) = 0 for x ≥ u0,
and in the case in which µ(∞) > 0 we have J (x, (0, ∞)) = 0 for all x ∈ R. Moreover, J (y, ·)
converges weakly, as y → ∞, to a probability measure J (∞, ·) on R.

In the first two scenarios the point process Mb will converge, as b → ∞, in distribution to
a Poisson process. The explanation of this phenomenon is quite simple. Fixing a level u > u0,
the trajectory of the process (Xt ) can be split into independent and identically distributed (i.i.d.)
cycles between the successive continuous crossings of this level. Then hitting a high level b

during a particular cycle will be a ‘rare event’. In both scenarios, with a probability arbitrarily
close to 1 for large enough b, given that the level b was exceeded during a cycle, there is exactly
one upcrossing of that level during this cycle.

In the third scenario the limiting behaviour of Mb is slightly more complicated. The crossing
of a high level b is still a rare event. However, given that the level b was exceeded during a
cycle, the conditional distribution of the number of continuous crossings of that level during
this cycle will be geometric with a parameter that converges, as b → ∞, to some number
ρ ∈ (0, 1). Therefore, the limit is a geometrically compound Poisson process �ρ , which is
defined as follows. Each point of a homogeneous Poisson process of intensity (1 − ρ) gets
(independently of the other points) a mass k ∈ {1, 2, . . . } with probability (1 − ρ)ρk−1. The
resulting stationary point process �ρ has independent increments and geometrically distributed
multiplicities. As the above geometric distribution has mean 1/(1 − ρ), the intensity of �ρ

is 1.
For Gaussian processes with smooth trajectories, it is well known that the point process of the

times of crossing a high level are asymptotically Poisson; see, e.g. [18], [25], and the references
therein. To the best of the authors’ knowledge, the present paper is the first to establish such
a limit theorem for jump processes. Compound Poisson limits for exceedances of a high level
by a stationary Markov chain were obtained in [29]; such limits for exceedances and also for
upcrossings of sequences are summarised in [13]. A general compound Poisson limit theorem
for stationary, strongly mixing random measures was derived in [23]. We use an approach
based on the abovementioned cycles and a modified version of the argument employed in [29]
to analyse exceedances in general Markov processes. An immediate consequence of our main
theorem is that the first time of crossing a high level is asymptotically exponentially distributed.
A discussion of this well-known phenomenon can be found, for instance, in [1] and Section
VI.4 of [2]. However, in the present framework the result seems to be new.

This paper is organised as follows. Section 2 contains the detailed definition of the process
as well as some of its fundamental properties. Section 3 provides the proof of Rice’s formula.
The Poisson limit theorem is the topic of Section 4.
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2. Definition and basic properties of the process

We consider a right-continuous function µ : R → R with left-hand limits such that the set
Dµ of 0s of µ is locally finite. We assume that µ(u−) has the same sign as µ(u) whenever
µ(u) �= 0. We also assume that, for any x ∈ R, there exists a unique continuous function
q(x, ·) : [0, ∞) → R satisfying the integral equation

q(x, t) = x +
∫ t

0
µ(q(x, s)) ds, t ≥ 0. (2.1)

The jump intensity λ is assumed to be measurable, locally bounded, and such that
∫ ∞

0
λ(q(x, s)) ds = ∞, x ∈ R. (2.2)

For the jump distribution, we assume that J (x, {0}) = 0 for all x ∈ R (see also Remark 2.1,
below).

Formally, our process (Xt ) is defined as follows. We consider a measurable space (�, F )

that is rich enough to carry a marked point process � = ((Tn, Zn))n≥1 on [0, ∞) with real-
valued random variables (marks) Zn and a real-valued random variable X0. Between the
jumps, the process is defined by Xt := q(X0, t) on [0, T1) and Xt = q(XTn, t − Tn) on
[Tn, Tn+1), n ≥ 1. At the jump epochs Tn, we have XTn := XTn− + Zn, where we note that
XTn− = q(XTn−1 , Tn − Tn−1). Finally, we define X(t) := 	 for t ≥ T∞, where 	 is a point
external to R and T∞ := limn→∞ Tn.

For any probability measure σ on R, we consider a probability measure Pσ on (�, F ) such
that Pσ (X0 ∈ ·) = σ(·) and the following properties hold. The conditional distribution of T1
given X0 is specified by

Pσ (T1 ≤ t | X0) = 1 − exp

[
−

∫ t

0
λ(q(X0, s)) ds

]
Pσ -almost surely (a.s.). (2.3)

Similarly, we assume, for n ≥ 1, that, Pσ -a.s.,

Pσ (Tn+1 − Tn ≤ t | X0, T1, Z1, . . . , Tn, Zn) = 1 − exp

[
−

∫ t

0
λ(q(XTn, s)) ds

]
. (2.4)

By (2.2), the jump epochs Tn are indeed all finite a.s. The conditional distributions of the jump
sizes are given by

Pσ (Zn+1 ∈ · | X0, T1, Z1, . . . , Tn, Zn, Tn+1) = J (XTn+1−, ·) Pσ -a.s., n ≥ 0. (2.5)

Since J (x, {0}) = 0, x ∈ R, we can assume that Zn(ω) �= 0 for all n ≥ 1 and ω ∈ �.
The conditional distribution of � given X0 is now completely specified. Our assumptions

imply that (Xt ) is a homogeneous Markov process with respect to the family {Px : x ∈ R},
where Px := Pδx is the measure corresponding to the initial distribution supported by x. The
expectations with respect to Pσ and Px are denoted by Eσ and Ex , respectively. Actually, (Xt )

is a piecewise-deterministic Markov process in the terminology of [11].

Remark 2.1. As Zn �= 0 for all n ≥ 1, there is a one-to-one correspondence between � and
(Xt ). The former condition can be easily dispensed with by suitably augmenting the process
(Xt ).
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Remark 2.2. In many applications (queueing and dam models, and repairable systems) the
process (Xt ) is nonnegative, in the sense that Xt ≥ 0 for all t ≥ 0 whenever X0 ≥ 0. Such
a situation can be accommodated by choosing the characteristics so that (−∞, 0) becomes
transient for the process. A possible choice is µ(x) = 1 and λ(x) = 0 for x < 0. Any
stationary distribution of (Xt ) is then concentrated on [0, ∞).

Remark 2.3. We assumed that the solution q(x, t) of (2.1) is defined for all t ≥ 0. This could be
generalised as follows. Suppose that, for any x ∈ R, there is a t∞(x) ∈ (0, ∞] such that q(x, ·)
is the unique continuous function on [0, t∞(x)) satisfying (2.1) for all t ∈ [0, t∞(x)). Assuming,
instead of (2.2), that

∫ t∞(x)

0 λ(q(x, s)) ds = ∞, x ∈ R, we can still use (2.3), (2.4), and (2.5) to
define a marked point process � such that, a.s., T1 < t∞(X0) and Tn+1−Tn < t∞(XTn), n ≥ 1.
Hence, we can define the Markov process (Xt ) as before. All the results of this paper remain
valid in this more general framework.

The next result provides the (generalised) infinitesimal generator of (Xt ). Set

τm := inf{t ≥ 0 : |X(t)| ≥ m}, m ∈ N.

Proposition 2.1. Let f : R → R be absolutely continuous and let its Radon–Nikodym deriva-
tive f ′, as well as the function x 	→ λ(x)

∫
(f (x + z) − f (x))J (x, dz), be locally bounded.

Then, for any probability measure σ on R,

Eσ f (Xt∧τm) = Eσ f (X0) + Eσ

∫ t∧τm

0
f ′(Xs)µ(Xs) ds

+ Eσ

∫ t∧τm

0

∫
R

(f (Xs + z) − f (Xs))λ(Xs)J (Xs, dz) ds. (2.6)

Proof. Denote by (Ft ) the filtration generated by X0 and the restriction of � to [0, t] × R.
Using basic results on marked point processes (see, e.g. Chapter 4 of [20]), we obtain, from
(2.3), (2.4), and (2.5),

Eσ

∞∑
n=1

h(Tn, Zn) = Eσ

∫ ∞

0

∫
R

h(t, z)λ(Xt )J (Xt , dz) dt (2.7)

for all predictable h : � × [0, ∞) × [0, ∞) → [0, ∞). We can now proceed as in Section 8 of
[19] to obtain the result.

We have to make two basic assumptions on the process. They will be discussed in
Appendix A.

Assumption 2.1. The process (Xt ) is Harris ergodic. Its invariant distribution is denoted by
π .

In view of Remark 2.1, the marked point process � is stationary under Pπ ; see [3] for more
detail on this stationarity. In particular, the distribution of (N(t + s) − N(s))t≥0 does not
depend on s ≥ 0, where N(t) := card{n ≥ 1 : Tn ≤ t} is the number of jumps in the time
interval [0, t]. The (stationary) intensity of N is defined by λπ := Eπ N(1).

Assumption 2.2. We have λπ < ∞.
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Let g : [0, ∞)×R×R → [0, ∞) be measurable. Applying (2.7) with σ = π and h(t, z) :=
g(t, Xt−, z), and using Fubini’s theorem, we obtain

Eπ

∞∑
n=1

g(Tn, XTn−, Zn) =
∫ ∞

0

∫
R

∫
R

g(s, x, z)λ(x)J (x, dz)π( dx) ds. (2.8)

Choosing g(s, x, z) = 1{0 ≤ s ≤ 1}, we obtain the equality in

λπ =
∫

λ(x)π( dx) < ∞. (2.9)

A quick consequence of Proposition 2.1 is the following (basically well-known) integral
equation for π .

Proposition 2.2. Let f : R → R be bounded and differentiable with a continuous derivative
f ′ that has a compact support. Then

∫
f ′(x)µ(x)π( dx) =

∫∫
λ(x)(f (x) − f (x + z))J (x, dz)π( dx).

Proof. The assumptions on f allow us to use (2.6). Because of Assumption 2.1, the process
(Xt ) is real valued and locally bounded. Hence, we have, Pπ -a.s., τm → ∞ as m → ∞.
As f is bounded, the left-hand side of (2.6) converges to Eπ f (Xt ) = Eπ f (X0). As f ′ has
a compact support and µ is locally bounded, the second term on the right-hand side of (2.6)
converges as well. For the third term, we can use (2.9) and bounded convergence to conclude
that

0 = Eπ

∫ t

0
f ′(Xs)µ(Xs) ds + Eπ

∫ t

0

∫
R

λ(Xs)(f (Xs + z) − f (Xs))J (Xs, dz) ds.

Using Fubini’s theorem and stationarity again, we obtain the assertion.

Some relationships between π and the stationary distribution of the imbedded process (XTn)

can be found in [10].

3. Rice’s formula

In this section we will prove the following assertion, establishing Rice’s formula, (1.1).

Theorem 3.1. Under Assumptions 2.1 and 2.2, the stationary distribution π has a density p

on R \ Dµ satisfying νc(u) = |µ(u)|p(u) for all u /∈ Dµ.

We prepare the proof with an auxiliary result. The point processes of discontinuous upcross-
ings and downcrossings are denoted by Nu

+,d and Nu
−,d , respectively. In this section we take

Pπ to be the underlying probability measure. Then � is a stationary marked point process,
and Nu

+,d and Nu
−,d are (jointly) stationary point processes. Their intensities are denoted by

ν+,d (u) and ν−,d (u), respectively.

Lemma 3.1. For any u ∈ R \ Dµ, we have νc(u) = ν+,d (u) − ν−,d (u) in the case in which
µ(u) < 0 and νc(u) = ν−,d (u) − ν+,d (u) in the case in which µ(u) > 0.
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Proof. Assume that µ(u) < 0. (The argument for the other case is the same.) As the solution
of (2.1) is unique and µ is right continuous, there are no continuous upcrossings of level u.
Therefore, between any two successive downcrossings there must be exactly one discontinuous
upcrossing of u. The point process of all continuous downcrossings is just given by Nu

c . Hence,
we have, for any t ≥ 0,

Nu
+,d (t) − 1 ≤ Nu

−,d (t) + Nu
c (t) ≤ Nu

+,d (t) + 1.

Taking expectations gives

ν+,d (u)t − 1 ≤ ν−,d (u)t + νc(u)t ≤ ν+,d (u)t + 1.

Dividing by t and letting t → ∞ yields the assertion.

Proof of Theorem 3.1. Let u ∈ R be such that µ(u) < 0. Since µ(u−) < 0 by our
assumption on µ, we have

Nu
+,d = {s > 0 : Xs− < u < Xs}, Nu

−,d = {s > 0 : Xs− ≥ u ≥ Xs, Xs− > Xs}.
Applying (2.8) yields

ν+,d (u) =
∫∫

1{x < u < x + z}λ(x)J (x, dz)π( dx), (3.1)

ν−,d (u) =
∫∫

1{x ≥ u ≥ x + z}λ(x)J (x, dz)π( dx). (3.2)

Let f be a function satisfying the assumptions of Proposition 2.2. By (3.1) and (3.2) (and
the corresponding formulae for µ > 0), we have (giving ν−,d (u) − ν+,d (u) some fixed value
when µ(u) = 0)∫

f ′(u)(ν−,d (u) − ν+,d (u)) du

=
∫∫∫

f ′(u) 1{x > u ≥ x + z} duλ(x)J (x, dz)π( dx)

−
∫∫∫

f ′(u) 1{x + z > u ≥ x} duλ(x)J (x, dz)π( dx)

=
∫∫

1{z < 0}(f (x) − f (x + z))λ(x)J (x, dz)π( dx)

−
∫∫

1{z > 0}(f (x + z) − f (x))λ(x)J (x, dz)π( dx)

=
∫∫

(f (x) − f (x + z))λ(x)J (x, dz)π( dx).

Therefore, we obtain, from Proposition 2.2,∫
f ′(u)(ν−,d (u) − ν+,d (u)) du =

∫
f ′(u)µ(u)π( du).

The class of functions f ′ that are allowed in the above formula is rich enough to conclude first
that π is absolutely continuous on R \ Dµ and second that the density p satisfies

µ(u)p(u) = ν−,d (u) − ν+,d (u)

for almost all u /∈ Dµ. Lemma 3.1 implies the assertion.
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Remark 3.1. The above proof shows that the density p satisfying Rice’s formula, (1.1), has
limits from the left and the right. The proof also shows how to construct a right-continuous
version of this density. Such a version satisfies (1.1) with the exception of at most countably
many u /∈ Dµ.

4. Asymptotics of level crossings

In this section we write P := Pπ . Consider the point process Nb+ of all upcrossings of some
level b ∈ R and let ν+(b) denote its intensity (under P). It is given by

ν+(b) = 1{µ(b) > 0}νc(b) + ν+,d (b), b /∈ Dµ,

where we refer to the introduction for the definition of the intensities νc(b) and ν+,d (b).
From Lemma 3.1, (3.1), and (3.2), we obtain ν+(b) → 0 as b → ∞. If µ(x) < 0 and
J (x, (−∞, 0)) = 0 for all x ≥ u0 (no negative jumps from levels above u0), we have
ν−,d (b) = 0 and ν+(b) = ν+,d (b) = νc(b) for b ≥ u0. If J (x, [(u0 − x)+, ∞)) = 0 for
all x ∈ R (no positive jumps to levels above u0) and µ(x) > 0 for all x ≥ u0, we have
ν+,d (b) = 0 and ν+(b) = ν−,d (b) = νc(b) for b ≥ u0. (Here a+ := max{a, 0} denotes the
positive part of a.) In either case, Theorem 3.1 implies that (1.3) holds for b ≥ u0. Whenever
ν+(b) > 0, we introduce the following scaled point process Mb (on [0, ∞)):

Mb(t) := Nb+(ν+(b)−1t), t ≥ 0.

In each of Scenarios 1.1–1.3 described in the introduction we will prove (under additional
technical assumptions) the convergence

Mb w−→ �ρ as b → ∞, (4.1)

where ‘
w−→’ denotes weak convergence of point processes (see, e.g. [15, p. 316]), under the

probability measure P, where ρ ∈ [0, 1) is explicitly determined by the characteristics of (Xt )

(see Theorem 4.1, below) and the geometrically compound Poisson process �ρ was defined in
the introduction. If ρ = 0 then �ρ is a unit-rate Poisson process. Actually, we will prove the
weak convergence of Pσ (Mb ∈ ·) for an arbitrary initial distribution σ .

In Scenarios 1.1 and 1.2 we assume that the jumps (from high enough levels) in the respective
processes are dominated in distribution. This means that there exists a u0 ∈ R and a family
of nonincreasing (right-continuous) functions (H̄ (u, ·))u≥u0 such that supx≥u J (x, (z, ∞)) ≤
H̄ (u, z) for all z ∈ R and u ≥ u0. In other words, denoting by ξ(x) a generic random variable
(RV) with the distribution J (x, ·), this means that there exist RVs ξ(u) such that

ξ(x)
d≤ ξ(u), x ≥ u ≥ u0, (4.2)

where ‘
d≤’ denotes the usual stochastic order. We assume that E ξ(u) < ∞. In Scenario 3 we

will assume in addition that there exist RVs ξ(u) such that

ξ(u)
d≤ ξ(x), x ≥ u ≥ u0. (4.3)

Furthermore, set

µ(u) := sup
x≥u

µ(x), λ(u) := sup
x≥u

λ(x), λ(u) := inf
x≥u

λ(x).

Next we will make Scenarios 1.1–1.3 more precise.
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Scenario 4.1. We have µ(y) → −∞ as y → ∞, and there exists a u0 ∈ R such that (4.2)
holds and J (x, (−∞, 0]) = 0 for all x ≥ u0. Moreover,

E ξ(u0) + µ(u0)

λ(u0)
< 0. (4.4)

Scenario 4.2. We have λ(y) → ∞ as y → ∞. Furthermore, there is a u0 ∈ R such that (4.2)
holds, µ(y) > 0 for all y ≥ u0, J (x, [(u0 − x)+, ∞)) = 0 for all x ∈ R, and

E ξ(u0) + µ(u0)

λ(u0)
< 0, (4.5)

where we can assume, without loss of generality, that ξ(u0) < 0.

Scenario 4.3. As y → ∞, we have µ(y) → µ(∞) ∈ R \ {0} and λ(y) → λ(∞) ∈ [0, ∞).
There is some u0 ∈ R such that (4.2) and (4.3) hold, J (x, (−∞, 0)) = 0 for all x ≥ u0 in
the case in which µ(∞) < 0, and J (x, [(u0 − x)+, ∞)) = 0 for all x ∈ R in the case in
which µ(∞) > 0. Furthermore, we have, for y → ∞, ξ(y), ξ(y)

w−→ ξ(∞), where ξ(∞) is an
integrable RV satisfying

E ξ(∞) + µ(∞)

λ(∞)
< 0. (4.6)

Remark 4.1. Each of the inequalities (4.4)–(4.6) implies the second ergodicity condition (A.2),
below. In case of (4.4) and (4.5) this is due to the monotonicity properties of ξ(u), µ, λ, and λ.

Example 4.1. As an example of Scenario 4.1, consider a process (Xt ) governed by the equation

dXt = −βXt dt + dYt ,

where β > 0 is constant and (Yt ) is a compound Poisson process (with intensity λ and i.i.d.
jumps Zj > 0). Such processes appear in a number of important applications and are known
under several names (in particular, as storage processes with linear release functions [14] and
as outputs of shot-noise excited filters with exponential memory; see, e.g. [16]). As is well
known, (Xt ) is ergodic if and only if E ln(1 ∨Z1) < ∞, and if this is the case, there is a simple
closed-form expression for the Laplace transform of its stationary density (in particular, if the
Zj s are exponentially distributed with parameter α then the stationary distribution π is gamma
with parameters λ and α); see, e.g. [6].

Also, observe that, for a somewhat more general process of the form

Xt =
∑

n : t≤Tn

hn(t − Tn),

where (Tn, hn) is a stationary marked point process (with rate λ for the underlying point process
N and marks hn taking values in the space of nonincreasing, nonnegative functions), the
intensity of level upcrossings was given in [17]. It has a closed form in terms of the Palm
probability measure P0 of P with respect to N and can equivalently be written as

ν+(u) = λ P0(u − h0(0) < X0− ≤ u), u > 0.
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Example 4.2. Scenario 4.2 can be illustrated by the so-called stress release processes used in
statistical seismology (see, e.g. [7], [30], and [31]). The model assumes that µ(y) ≡ µ and
λ(y) = exp[β(y − y0)], where µ, β > 0 and y0 ∈ R are all constants, and that Zn < 0 are
i.i.d. RVs (usually assumed to follow a truncated Pareto distribution). Thus, the constructed
stress process (Xt ) is always ergodic, the characteristic function of its stationary density having
a closed-form infinite product representation [7].

Example 4.3. Processes covered by Scenario 4.3 appear in queueing theory and also as storage
processes. For instance, we can consider a work-modulated single-server queue, (Xt ), being
the workload process (for a formal definition and detailed treatment of such a process, we refer
the reader to the discussion of ‘Model 2’ in [9]; see also [27]). Then we will have µ(y) ≤ 0,
y > 0, and µ(0) = 0. The asymptotic homogeneity conditions from the scenario mean that,
under heavy load, the dependence of the arrival and service processes on the load asymptotically
vanishes.

Theorem 4.1. Let the assumptions of either Scenario 4.1, 4.2, or 4.3 be satisfied, and assume
that νc(b) > 0 for all sufficiently large b. Then Pσ (Mb ∈ ·) converges for any distribution σ

on R weakly to P(�ρ ∈ ·) as b → ∞. The number ρ is given by ρ = 0 in Scenarios 4.1 and
4.2, and in Scenario 4.3 by

ρ =

⎧⎪⎪⎨
⎪⎪⎩

− λ(∞)

µ(∞)
E ξ(∞) if µ(∞) < 0,

1 − wµ(∞)

λ(∞)
if µ(∞) > 0,

(4.7)

where w is the only positive solution of the equation

E ewξ(∞) = 1 − wµ(∞)

λ(∞)
.

Remark 4.2. The ergodicity assumption in Theorem 4.1 (see Assumption 2.1) has been made
for technical convenience. It would have been enough to assume the existence of a stationary
distribution π such that the positivity assumption made in the theorem is satisfied. The theorem
then still holds for all distributions σ whose support is ‘attracted’ by the support of π .

Remark 4.3. Let g : R → R be a strictly increasing, continuously differentiable function
such that g(x) → ∞ as x → ∞. Then (X

g
t ) := (g(Xt )) is again a piecewise-deterministic

Markov process, as defined in Section 2. The characteristics of (X
g
t ) are given by µg(y) =

g′(g−1(y))µ(g−1(y)), λg(y) = λ(g−1(y)), and J g(y, ·) = J (g−1(y), g−1(y + ·) − g−1(y)).
If the point processes of upcrossings defined in terms of (X

g
t ) satisfy a compound limit theorem,

as in Theorem 4.1, then so do the corresponding processes defined in terms of (Xt ). Therefore,
the assertion of the theorem remains true in the more general case, when the assumptions of
either Scenario 4.1, 4.2, or 4.3 holds for the transformed process (X

g
t ).

As a corollary, we find that the first crossing time

T (b) := inf{t > 0 : Xt > b} (4.8)

is asymptotically exponentially distributed.

Corollary 4.1. Under the assumptions of Theorem 4.1, we have, for any s ≥ 0,

Pσ ((1 − ρ)νc(b)T (b) > s) → e−s as b → ∞.
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Proof. For any s ≥ 0 and b ≥ u0, we have ν+(b) = νc(b) and

Pσ ((1 − ρ)νc(b)T (b) > s)

= Pσ (X0 < b, Mb((1 − ρ)−1s) = 0)

= Pσ (Mb((1 − ρ)−1s) = 0) − Pσ (X0 ≥ b, Mb((1 − ρ)−1s) = 0). (4.9)

The second term on the right-hand side of (4.9) converges to 0 as b → ∞. As any fixed
finite number of points (in our case 0 and (1 − ρ)−1s) are almost surely not contained in �ρ ,
we find, from (4.1) and a standard property of weak convergence of point processes (see [15,
Theorem 16.16]), that the first term in (4.9) converges to P(�ρ((1 − ρ)−1s) = 0) = e−s . This
completes the proof.

Remark 4.4. Define T1(b) := T (b) and, inductively, Tn+1(b) := inf An, n ≥ 1, where An

is the set of all t > Tn(b) such that Xt > b and Xs < b for some s ∈ (Tn(b), t). Under the
assumptions of Theorem 4.1, we obtain, for any n ≥ 1 and s ≥ 0 as above,

Pσ ((1 − ρ)νc(b)Tn(b) > s) → P(�ρ((1 − ρ)−1s) ≤ n − 1) as b → ∞.

An easy calculation shows that, for instance,

P(�ρ((1 − ρ)−1s) ≤ 1) = e−s(1 + (1 − ρ)s),

P(�ρ((1 − ρ)−1s) ≤ 2) = e−s

(
1 + (1 − ρ2)s + (1 − ρ)2s2

2

)
.

Corollary 4.2. Let the assumptions of Theorem 4.1 be satisfied, and let B ⊂ [0, ∞) be a
bounded Borel set whose boundary has Lebesgue measure 0. Then Mb(B)

w−→ ζB as b → ∞,
where ζB is a nonnegative integer-valued RV with the Laplace transform

E exp[−zζB ] = exp

[
−|B|(1 − ρ)

(
1 − 1 − ρ

ez − ρ

)]
, z ≥ 0. (4.10)

Here |B| denotes the Lebesgue measure of B.

Proof. The right-hand side of (4.10) is just the Laplace transform of �ρ(B). Hence, the
result is a direct consequence of Theorem 4.1 and Theorem 16.16 of [15].

Remark 4.5. The random variable ζB
d= �ρ(B) (where ‘

d=’ denotes equality in distribution)
is infinitely divisible with a Lévy measure having mass |B|(1 − ρ)2ρk−1 at k ≥ 1 .

4.1. Proof of Theorem 4.1

A possible way of proving the theorem is to apply standard point process techniques on
weak convergence employing generating functions. However, a simpler and shorter alternative
is to use a regenerative process approach to analysing exceedances of stationary Markov chains
from [29]. The natural choice of i.i.d. cycles in our case is the segments of the trajectory
of (Xt ) between consecutive continuous crossing of a fixed level. For a fixed u ∈ R, we
define an increasing sequence τn(u), n ≥ 0, of stopping times inductively by τ0(u) := 0 and
τn+1(u) := inf{t > τn(u) : Nu

c (t) ≥ n+1}, where inf ∅ := ∞. Hence, Nu
c (t) is the cardinality

of {n ≥ 1 : τn(u) ≤ t}. Let Nu
c (∞) := limt→∞ Nu

c (t) and τ(u) := τ1(u).

Lemma 4.1. Assume that u ∈ R satisfies νc(u) > 0. Then P(τ (u) < ∞) = 1 and P(Nu
c (∞) =

∞) = Pu(N
u
c (∞) = ∞) = 1. Moreover, νc(u) = (Eu τ (u))−1.
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Proof. Take a u ∈ R. The strong Markov property implies that (Xt )t≤τ(u) and (1{τ(u) <

∞}Xτ(u)+t )t≥0 are independent for any initial distribution. This fact will often be used in
the sequel. In particular, Nu

c is a renewal process (with a possibly defective distribution of
interpoint distances). Under P, Nu

c is also a stationary point process. If νc(u) > 0, this clearly
implies that P(τ (u) < ∞) = 1. The equality νc(u) = (Eu τ (u))−1 is then a consequence of
the elementary renewal theorem. In particular, Eu τ (u) < ∞, so that the relations P(Nu

c (∞) =
∞) = Pu(N

u
c (∞) = ∞) = 1 are obvious. This completes the proof of the lemma.

Lemma 4.1 clearly implies that if νc(u) > 0 then P(τn(u) < ∞) = Pu(τn(u) < ∞) = 1
for all n ≥ 1.

Lemma 4.2. Assume that u ∈ R satisfies νc(u) > 0, and let b ∈ R. Then νc(b) > 0 if and
only if Pu(τ (b) < ∞) > 0. In this case Pu(τ (b) < ∞) = 1.

Proof. Assume that νc(b) > 0. Since P(τ (u) < ∞) = 1 by Lemma 4.1, we must have
Pu(τ (b) < τ(u)) > 0. Since Pu(N

u
c (∞) = ∞) = 1, we can use a geometrical trial argument

to obtain Pu(τ (b) < ∞) = 1. Assume, conversely, that Pu(τ (b) < ∞) > 0. Then we
must have Pu(τ (b) < τ(u)) > 0 and, hence, Pu(τ (b) < ∞) = 1. Lemma 4.1 implies that
P(τ (b) < ∞) = 1. Hence, Nb

c is a nonempty, stationary point process under P and must,
therefore, have a positive intensity νc(b). This completes the proof of the lemma.

In the remainder of the proof of Theorem 4.1 we will assume that u0 is chosen according to
the assumptions of either Scenario 4.1, 4.2, or 4.3. It is then no loss of generality to assume
that µ(u) �= 0 and νc(u) > 0 for all u ≥ u0. We now fix u ≥ u0. Denote by

ζn := sup{Xt : τn(u) ≤ t < τn+1(u)}
the maximum of the process (Xt ) over the nth cycle. The above lemma and the assumptions
of Theorem 4.1 imply that the distribution of ζ1 has an unbounded support and, hence,

R(b) := 1 − ρ

νc(u) P(ζ1 > b)
≡ 1 − ρ

νc(u) Pu(τ (u) > τ(b))
< ∞, b ∈ R,

and R(b) → ∞ as b → ∞. The proof of Theorem 3.1 of [29] shows that the first crossing
times T (b) (see (4.8)) satisfy

lim
b→∞ Px(T (b) > R(b)) = e−(1−ρ), x ∈ R.

Here we have also used the fact that ergodicity of (Xt ) and Lemma 4.1 together imply that

Px(τ (u) < ∞) = 1, x ∈ R.

Next we introduce the scaled process Lb(t) := Nb+(R(b)t) and choose a function r(b), b ∈
R, such that, as b → ∞,

r(b) → ∞, r(b) = o(R(b)), R(b) Pu(τ (u) > r(b)) → 0

(which is always possible since Eu τ (u) = 1/νc(u) < ∞ by Lemma 4.1). Denote by Lb
0

the point process of the points (T ′
n(b)), obtained as follows: T ′

1(b) := T (b) and T ′
n+1(b) :=

inf A′
n, A′

n being the set of all t > T ′
n(b) + r(b) such that Xt > b and Xs < b for some

s ∈ (T ′
n(b) + r(b), t). This is an analogue of the process N ′

T of [29, p. 376]: a process of the
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locations of ‘clusters’of upcrossings of level b. Since having an uprocssing of b in the nth cycle
is equivalent to having ζn > b, we can easily verify that the argument proving Theorem 3.2 of
[29] also demonstrates that our process Lb

0 converges in distribution to a Poisson process �′
ρ

with intensity 1 − ρ.
To complete the proof of Theorem 4.1, it remains to determine the asymptotic behaviour of

the distribution of the size of the clusters of upcrossings as b → ∞ and then use Theorem 3.3 of
[29]. We will begin by introducing the probability of having a nontrivial cluster of upcrossings:

γ (u, b) := Pb(τ (u) > τ(b)), u < b,

where we note that

Pu(N
b+(τ (u)) = Nb

c (τ (u))) = 1, b > u ≥ u0. (4.11)

In the case in which µ < 0 on (u0, ∞), this is due to the absence of negative jumps from a level
above b. In the case in which µ > 0 on (u0, ∞) we even have Nb+ = Nb

c because there are no
positive jumps to a level above b. From (4.11) and the strong Markov property, we obtain

Pu(N
b+(τ (u)) = k | Nb+(τ (u)) > 0) = (1 − γ (u, b))γ k−1(u, b), k ≥ 1. (4.12)

Now we will analyse the limiting behaviour of γ (u, b). The assumptions of Theorem 4.1 are
used in the following key lemma.

Lemma 4.3. Under either Scenario 4.1, 4.2, or 4.3, for all sufficiently large u,

lim
b→∞ γ (u, b) = ρ,

where ρ is defined in Theorem 4.1.

Proof. Without loss of generality, we can assume that H̄ (·, z) is nonincreasing for any z ∈ R

(or, equivalently, that ξ(u)
d≤ ξ(v) for u > v) and that H(·, z) is nondecreasing. Recall that

u0 is chosen according to the assumptions of either Scenario 4.1, 4.2, or 4.3. We always take
u, b ∈ R such that b > u ≥ u0. Note that, in Scenarios 4.1 and 4.2, the drift conditions (4.4)
and (4.5), respectively, hold with u in place of u0. In Scenario 4.1 or 4.2 the argument will run
roughly as follows. Owing to the imposed conditions, for a large enough initial value b, the
trajectory of (Xt ) will very quickly drop by a given large quantity C. Since in the part of the
state space above the level u the process can be shown to be dominated (at its jump points) by
a random walk with i.i.d. jumps and a negative trend, we can choose C large enough to ensure
that the process will not climb back by C prior to dropping below the level u. If (Xt ) does not
drop quickly enough from a high level then it is likely there will be several crossings of that
level before the process returns to the range of its ‘normal values’. This case requires the more
restrictive conditions formulated in Scenario 4.3.

First consider Scenario 4.1 and fix an arbitrary ε > 0. Since the process has a negative drift
coefficient in the half-line [u, ∞), it can only exceed the level b > u by a jump, so we can
restrict ourselves to considering the values XT1 , XT2 , . . . :

Px(τ (b) < τ(u)) ≤ Px(sup{XTk
: Tk ≤ τ(u)} ≥ b), x ≥ u. (4.13)

Furthermore, for x and t such that q(x, t) > u, we have

Px(T1 > t) = exp

[
−

∫ t

0
λ(q(x, s)) ds

]
≥ exp[−λ(u)t] = P(χ(λ(u)) > t), (4.14)
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where χ(w) is a RV following the exponential distribution with parameter w. Therefore, we can
easily see that the right-hand side of (4.13) does not exceed P(S ≥ b−x), where S := supk≥1 Sk

is the global supremum of a random walk

Sk = ζ1 + · · · + ζk, k ≥ 1, (4.15)

with i.i.d. jumps ζk
d= ξ(u) + µ(u)χ(λ(u)), where ξ(u) and χ(λ(u)) are independent of each

other. Since E ζk < 0 by (4.4), S is a proper RV, and we can choose C so large that P(S ≥
C) < ε.

Next we assume that b ≥ u + C. For any t ≥ 0, the equation q(b, t) = b − C has a
unique solution t = t (b, C). Since µ(y) → −∞ as y → ∞, we have t (b, C) → 0 as
b → ∞. In particular, we obtain, from (4.14), Pb(T1 ≤ t (b, C)) < ε for all large enough b.
Then we have Pb(Xt(b,C) = b − C) > 1 − ε, and finally, due to (4.13) and our choice of C,
Pb(τ (b) < τ(u)) < 2ε. Since ε was arbitrary small, this completes the proof of the lemma in
the case of Scenario 4.1.

Now consider Scenario 4.2. In this case, jumps from levels x ≥ u are negative, and we can
concentrate on the values XT1−, XT2−, . . . . For a given ε > 0, choose a C < ∞ such that
P(S ≥ C) < ε for the random walk (4.15) with i.i.d. jumps ζk

d= ξ(u) + µ(u)χ(λ(u)), where
ξ(u) and χ(λ(u)) are independent of each other. Consider a stopping time T with values in
{T1, T2, . . . }. Then, as we can easily see, given that XT − < b − C, the probability of the
process exceeding b on the time interval [T , ∞) prior to dropping below u will again be less
than ε.

Since the deterministic drift is now positive on (u0, ∞),

Px(T1 > t) = exp

[
−

∫ t

0
λ(q(x, s)) ds

]
≤ exp[−λ(x)t] = P(χ(λ(x)) > t), x ≥ u.

Therefore, given X0 = b, we have XT1−
d≤ b + µ(u)χ(λ(b)), and it is not difficult to see that,

for m ≥ 1, X̄m := supT1≤t≤Tm
Xt and Xm := infT1≤t≤Tm Xt ,

Pb({X̄m ≥ b} ∪ {Xm ≥ b − C})
≤ P

(
max

1≤k≤m
Sk ≥ −µ(u)χ(λ(b − C))

)
+ P(Sm ≥ −C), (4.16)

where (Sk) is a random walk given by (4.15) with i.i.d. jumps ζk
d= ξ(u) + µ(u)χ(λ(b − C)),

and (Sk) and χ(λ(b − C)) which appear in (4.16) are independent of each other. Now choose
m so large that P(Sm ≥ −C) < ε (this is possible due to (4.5)) and then choose b so large that
the first term on the right-hand side of (4.16) is also less than ε. The latter is possible due to
the following observation. Setting

S′
k := ξ ′

1 + · · · + ξ ′
k, S′′

k := ξ ′′
1 + · · · + ξ ′′

k , k ≥ 1,

where (ξ ′
k) and (ξ ′′

k ) are independent sequences of i.i.d. RVs with ξ ′
k

d= ξ(u) and ξ ′′
k

d= χ(λ(b−
C)), the event in that term implies that

max
1≤k≤m

S′
k ≥ −µ(u) max

1≤k≤m
S′′

k − µ(u)ξ ′′
m+1.

The RV on the left-hand side is almost surely negative, with a distribution independent of b.
Because it is assumed that λ(y) → ∞ as y → ∞, the distribution of the right-hand side
converges to δ0 as b → ∞.
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Thus, on the event complementary to the one on the left-hand side of (4.16), the process
(Xt ) will drop at one of the times T1, . . . , Tm below the level b − C (denote this epoch by
T ∗), without having continuously crossed the level b prior to that time. Also, due to our choice
of C and to the strong Markov property, the process will reach the level b on the time interval
[T ∗, τ (u)] with probability less than ε. This means that Pb(τ (b) < τ(u)) < 3ε. This completes
the proof of the lemma in the case of Scenario 4.2.

Finally, in Scenario 4.3 we start by considering b > v > u and noting that {τ(v) > τ(b)} ⊂
{τ(u) > τ(b)} holds Pb-a.s. Hence, we have, as b → ∞,

γ (u, b) = Pb(τ (v) > τ(b)) + Pb(τ (u) > τ(b) > τ(v))

= γ (v, b) + Pb(τ (b) > τ(v)) Pv(τ (u) > τ(b))

= γ (v, b) + o(1),

where we made use of the strong Markov property and also of the obvious relation Pv(τ (u) >

τ(b)) → 0 due to ergodicity. Therefore, the quantities

lim sup
b→∞

γ (u, b) = lim sup
b→∞

γ (v, b) =: γ+, (4.17)

lim inf
b→∞ γ (u, b) = lim inf

b→∞ γ (v, b) =: γ−, (4.18)

do not depend on v.
Now we assume that µ(∞) < 0. Then crossing level b can only occur due to a jump, and

since to get from level x > b down to level u will require a continuous downcrossing of b, we
obtain

Pb(τ (b) < τ(u)) = Pb(sup{XTk
− b : Tk < τ(u)} > 0). (4.19)

Next we observe that, for the segment of the process on the time interval [0, τ (u)], we have

Sk

d≤ XTk
− b

d≤ S̄k, where (S̄k)k≥1 and (Sk)k≥1 are random walks with i.i.d. jumps

ξk
d= ξ(u) + µ(u)χ(λ(u)) and ξ

k

d= ξ(u) + µ(u)χ(λ(u)),

respectively, where we again make the usual independence assumptions. Owing to (4.6) and
the uniform integrability of (ξ(u)), we obtain E ξ

k
≤ E ξk < 0 for all large enough u, so that

then
Su := sup

k≥1
Sk

d≤ S̄u := sup
k≥1

S̄k < ∞ a.s.

It is not difficult to see that, for b > 2u,

P(Su > 0) + V (u, b) ≤ Pb(sup{XTk
− b : Tk < τ(u)} > 0) ≤ P(S̄u > 0),

where

V (u, b) := P(sup{Sk : k ≤ η} > 0) − P(Su > 0) − P

(
µ(u)χ(λ(u)) >

b

2
− u

)
,

and η := inf{k > 0 : Sk < −b/2}. Since, clearly, η → ∞ a.s. as b → ∞, we obtain
limb→∞ V (u, b) = 0, and so, owing to (4.17), (4.18), and (4.19), we have

P(Su > 0) ≤ γ− ≤ γ+ ≤ P(S̄u > 0).
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Now, by virtue of Theorem 6 and Condition B of [5, p. 114], we obtain

lim
u→∞ P(Su > 0) = lim

u→∞ P(S̄u > 0) = P(S > 0),

where S = supk≥1 Sk for a random walk (Sk) with i.i.d. jumps ζk
d= ξ(∞) + µ(∞)χ(λ(∞))

with negative mean. This clearly implies that γ+ = γ− = limb→∞ γ (u, b) = P(S > 0),

and the value of the last probability is well known to be given by the first expression on the
right-hand side of (4.7); see, e.g. Theorem VIII.5.7 and Corollary III.6.5 of [2].

The argument in the case in which µ(∞) > 0 is very similar, the main difference being the
value of P(S > 0). But again it is well known that this value is given by the second expression
on the right-hand side of (4.7); see, e.g. Theorem X.5.1 of [2]. This completes the proof of the
lemma.

The lemma implies that, under the conditions of the theorem, the conditional distribution of
the number of upcrossings of b during a cycle, given the level was reached during the cycle, will
converge to the geometric law with probabilities (1−ρ)ρk−1, k = 1, 2, . . . . This, together with
the argument used to prove Theorem 3.3 of [29], shows that Lb converges to �ρ in distribution.
To complete the demonstration of Theorem 4.1, it remains to note that

R(b) ≡ 1 − ρ

νc(u) P(ζ1 > b)
∼ 1

νc(b)
= 1

ν+(b)
. (4.20)

The last equality is obvious from the assumptions of the theorem (cf. the beginning of this
section). To prove the asymptotic equivalence, observe that

Eu Nb
c (τ (u)) = Eu(N

b
c (τ (u)) | Nb

c (τ (u)) > 0) Pu(N
b
c (τ (u)) > 0) = P(ζ1 > b)

1 − γ (u, b)

(using (4.12)), so that from Lemma 4.3 we have

R(b) ∼ 1

νc(u) Eu Nb
c (τ (u))

.

Now (4.20) follows from the equilibrium equation, νc(u) Eu Nb
c (τ (u)) = νc(b), which holds

owing to the following simple observation: its right-hand side gives the intensity of continuous
crossings of level b, whereas its left-hand side is the mean number of cycles (formed by
continuous crossings of u) per time unit multiplied by the mean number of crossings of b per
cycle. This completes the proof of the theorem.

Observe that relation (4.20) together with Theorem 3.1 relates the tail asymptotics of the
distribution of the cycle maximum ζ1 to that of the stationary density p of the process. Namely,
we have the following corollary.

Corollary 4.3. Under the assumptions of Theorems 3.1 and 4.1, for any large enough u (the
level used to construct the cycles),

P(ζ1 > b) ∼ 1 − ρ

νc(u)
|µ(b)|p(b) as b → ∞.

Remark 4.6. Theorem 4.1 assumes that νc(b) = ν+(b) > 0 for all sufficiently large b. This
can be checked with the help of Lemma 4.2. To indicate how this can be done, we fix a u ∈ R

satisfying νc(u) > 0. Consider first the case in which q(u, t) → ∞ as t → ∞. Since λ is
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locally bounded, we then have Pu(N
b+(∞) > 0) > 0, implying that Pu(N

b+(∞) > 0) = 1.
A second case is that there are ε, δ > 0 such that λ(x)J (x, [ε, ∞)) > 0 for all x ≥ u − δ.
Owing to the possibility of many positive jumps in a small period of time, we again have
Pu(N

b+(∞) > 0) > 0.

Appendix A

First we formulate some conditions under which Assumption 2.1 will hold true. Introduce
the mean values

m−(x) := −
∫ 0

−∞
zJ (x, dz), m+(x) :=

∫ ∞

0
zJ (x, dz), x ∈ R,

and

m(x) := m+(x) − m−(x) =
∫

zJ (x, dz), x ∈ R.

Assumption A.1. For all x ∈ R, m−(x)+m+(x) < ∞ and λ(x)(m−(x)+m+(x)) is a locally
bounded function on R.

In the next assumption we use the convention 0/0 := 0.

Assumption A.2. We have

lim
x→−∞

1

m+(x)

∫ ∞

−x

(x + z)J (x, dz) = lim
x→∞

1

m−(x)

∫ −x

−∞
(x + z)J (x, dz) = 0. (A.1)

Next we formulate a basic ergodicity assumption.

Assumption A.3. There is an ε > 0 such that

lim inf
x→−∞(µ(x) + λ(x)m+(x)(1 − ε) − λ(x)m−(x)) > 0,

lim sup
x→∞

(µ(x) + λ(x)m+(x) − λ(x)m−(x)(1 − ε)) < 0. (A.2)

Remark A.1. Assume that two of the limits

lim
x→−∞ µ(x), lim

x→−∞ λ(x)m−(x), lim
x→−∞ λ(x)m+(x)

exist and are finite, and make a similar assumption on the corresponding limits as x → ∞.
Then Assumption A.3 is equivalent to

lim inf
x→−∞(µ(x) + λ(x)m(x)) > 0 > lim sup

x→∞
(µ(x) + λ(x)m(x)).

For a constant (positive) µ and negative jumps, this is the well-known ergodicity condition for
the stress release model (see [19], [30], and [31]).

The next assumption states that all bounded sets are small for the process (see [27]). Previous
studies (see, e.g. [19], [27], and [31]) show that this is a rather weak though sometimes tedious
to check assumption. We will not discuss it any further.

Assumption A.4. For any bounded interval I ⊂ R, there is a t0 > 0 and a nontrivial measure
Q on R such that

Px(Xt0 ∈ ·) ≥ Q(·), x ∈ I.
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Theorem A.1. If Assumptions A.1, A.2, A.3, and A.4 are satisfied then Px(T∞ = ∞) = 1 for
all x ∈ R and (Xt ) has a unique invariant distribution π .

Proof. We proceed similarly to [19]. For any m ≥ 1, the process (Xt∧τm) is again Markov.
By (2.6), its generalised generator Am (cf. [27]) is given by

Amf (x) = µ(x)f ′(x) + λ(x)

∫
(f (x + z) − f (x))J (x, dz), |x| < m,

where f satisfies the assumptions of Proposition 2.1. By Assumption A.1 we can take f (x) :=
|x| to obtain, for |x| < m,

Amf (x) = sgn(x)µ(x) + λ(x)

∫
(|x + z| − |x|)J (x, dz)

= sgn(x)µ(x) + sgn(x)λ(x)m+(x) − sgn(x)λ(x)m−(x)

+ 2

(
1{x < 0}λ(x)

∫ ∞

−x

(x + z)J (x, dz) − 1{x ≥ 0}λ(x)

∫ −x

−∞
(x + z)J (x, dz)

)
,

(A.3)

where sgn(x) ∈ {−1, 1} is the sign of x ∈ R, defined in a right-continuous way, and where the
second equality comes from

|x + z| − |x| = 2(1{−z < x < 0} − 1{z < −x ≤ 0})(x + z) + sgn(x)z, z �= 0.

We define

ε(x) := 1{x < 0} 1

2m+(x)

∫ ∞

−x

(x + z)J (x, dz) − 1{x ≥ 0} 1

2m−(x)

∫ −x

−∞
(x + z)J (x, dz).

Then ε(x) ≥ 0 and from (A.1) we have ε(x) → 0 as |x| → ∞. We can now rewrite (A.3) as

Amf (x) = sgn(x)µ(x) + sgn(x)λ(x)m+(x)(1 − 1{x < 0}ε(x))

− sgn(x)λ(x)m−(x)(1 − 1{x ≥ 0}ε(x)). (A.4)

Using our assumptions in (A.4), we easily get numbers ε > 0, x0 > 0, and d ≥ 0 such that

Amf (x) ≤ −ε + 1{|x| ≤ x0}d, |x| < m, m ∈ N. (A.5)

In particular, we can apply Theorem 2.1 of [27] to conclude that, for any x ∈ R, τm → ∞
Px-a.s. as m → ∞. This proves the first assertion. We are then in a position to apply Theorem
4.2 of [27] to complete the proof of the theorem.

Remark A.2. Under the conditions of Theorem A.1, the process (Xt ) is even positive Harris
recurrent; see [27]. Only a weak additional assumption is needed to obtain Harris ergodicity,
i.e. the total variation convergence of Px(Xt ∈ ·) to π for any x ∈ R. By Theorem 6.1 of [26],
one such assumption is irreducibility of one skeleton chain.

Next we discuss Assumption 2.2. If λ is a bounded function then this assumption is trivially
satisfied. If not then we can impose the following slightly stronger version of Assumption A.3
and a weak positivity assumption on m−(x) + m+(x).
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Assumption A.5. There is an ε > 0 such that

lim inf
x→−∞(µ(x) + λ(x)m+(x)(1 − ε) − λ(x)m−(x)(1 + ε)) > 0,

lim sup
x→∞

(µ(x) + λ(x)m+(x)(1 + ε) − λ(x)m−(x)(1 − ε)) < 0.

Theorem A.2. If Assumptions A.1, A.2, A.4, and A.5 are satisfied and, moreover,

lim inf|x|→∞ (m−(x) + m+(x)) > 0, (A.6)

then Px(T∞ = ∞) = 1 for all x ∈ R and (Xt ) has a unique invariant distribution π satisfying∫
λ(x)π( dx) < ∞.

Proof. Using the assumptions in (A.4), we can easily strengthen (A.5) to

Amf (x) ≤ − max{ε, λ(x)} + 1{|x| ≤ x0}d, |x| < m, m ∈ N.

Hence, we can apply Theorem 4.2 of [27] to obtain
∫

λ(x)π( dx) < ∞.

Remark A.3. In the framework described in Remark 2.2, Assumption A.3 can be reduced to
(A.2). A similar remark applies to Assumptions A.2 and A.5, and to (A.6).
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