
J. Functional Programming 5 (1): 131-134, January 1995 © 1995 Cambridge University Press 131

Book review

Abstract Data Types in Standard ML by Rachel Harrison, John Wiley &
Sons, 1993, 212 pp, ISBN 0-471-93844-0.

The aim of this text is to present a thorough treatment of data abstraction within
a functional framework. Although there is now an abundance of introductory books on
functional programming, this is one of the few to be aimed at a second course, and the first
to be aimed specifically at the data structures course commonly taught in universities. The
philosophy of the text is the same as Harrison's earlier book on Modula-2, and is similar in
style to many other second course imperative programming texts. The main novelty stems
from the use of Standard ML (SML) as the implementation language. SML is ideal for this
purpose due to the explicit support for abstract data types (ADTs) provided by the abstype
and module constructs of the language.

After an initial chapter outlining the philosophy behind the use of abstract data types, and
a brief introduction to functional languages, the book devotes one chapter in turn to each
major type of ADT: lists, stacks, queues, and so on. An axiomatic specification is used to
define each type, followed by the development of an implementation and examples of its use.
Each chapter concludes with a summary reviewing the main definitions and concepts, which
is very helpful, and acts as a quick revision aid. Functions are specified informally throughout
the book using pre- and post-conditions.

Chapter 2 deals with lists, and covers most of the elementary list processing functions,
together with a fairly comprehensive treatment of sorting. The chapter also describes how
to give a representation independent specification of an ADT using a set of axioms. Con-
sistency and sufficient completeness of the axioms are discussed, and an informal proof
of these properties given for the list axioms. The corresponding proofs are omitted for all
the other types in the book. Chapter 3 covers the stack ADT and the initial implemen-
tation is based on SML's abstype construct. Deficiencies in this implementation motivate
the need for functors and structures, and an implementation using these is then developed.
Chapter 4 presents queues as an ADT, first using a list as the underlying implementa-
tion type, and then using a pair of lists for increased efficiency. Priority queues are also
treated, and dequeues discussed but no implementation given. Chapter 5 deals with binary
trees and then Chapter 6 extends this material to ordered binary trees. The sorted binary
tree is used as the basis of an implementation of a priority queue. Deficiencies in this ap-
proach then motivate the material on heaps and heapsort. Finally, the chapter discusses
balanced trees, and in particular AVL trees, although no implementation is provided. Chap-
ter 7 is devoted to a lengthy discussion of 2-3 trees and their implementation. Chapter
8 deals with finite sets and multisets, implemented as lists and ordered trees. The final
chapter deals with graphs, and graph algorithms such as graph searching and topological
sorting.

The book includes exercises, typically involving the construction of a short function, or
the evaluation of an expression by hand. They are ideal as quick exercises for reinforcing the
material in the book. From a teaching perspective it might have been useful to include some
more difficult exercises that could form the basis of a project or practical. No solutions to the
exercises are provided.

When programming in SML there is frequently some tension between the use of concrete

https://doi.org/10.1017/S0956796800001271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001271


132 Book review

data types, with their associated support for pattern matching, and abstract data types
supporting representation independence. Lists and trees would usually be represented as
concrete types, whereas types that were not freely generated, such as sorted trees and sets,
would be modelled as abstract types. The book is rather inconsistent when it comes to
the treatment of this subject. For example, lists are first introduced as an ADT, but then
nearly all the examples are based on pattern matching, treating lists as a concrete data type.
Trees, on the other hand, are viewed purely as an ADT. It is unclear why lists and trees
should be distinguished in this way, and such differences may confuse a reader unfamiliar
with programming in SML. This is perhaps an example of where the traditional approach
to ADTs has not been modified to take into account the facilities and advantages of the
language being used.

Most of the abstract types in the book are implemented by functors parameterised on a
structure called Item. This structure contains details of the object being manipulated by the
ADT, such as its type, an equality function, an ordering, and a print function. The approach is
appealing as one would expect that the same structures could be used to build many different
container types. An Item structure for integers could be used to build stacks of integers,
queues of integers and sets of integers for example. Unfortunately, in the book each ADT
requires its own specialised Item structure. The Item parameter for stacks must include a
function to print out stacks and the one for queues prints out queues and so on. It is not at
all clear why these functions were not included in the functor, allowing the same structures to
be used in a variety of contexts. One of the aims of a volume on ADTs should be to develop
a sound methodology for creating and using such types, and this book seems flawed in this
respect.

Deciding which functions to provide within an ADT, and which to define outside its
barriers, is a problem frequently encountered by students when they start to define ADTs.
There is often a trade-off between efficiency and the effort required to alter the representation
type. The author has made some reasonable choices for most of the types, though it would
have been helpful to have explained the rationale behind these choices more explicitly. The
interface to the Set ADT is a little more ad hoc, providing set subtraction and the ability to
remove an element from the set, but no mechanism for iterating over the elements of the set
for example.

The book contains a number of programming errors that might confuse a novice program-
mer. To cite a particular example, in a number of places an open declaration is used in a
functor body with the unintentional side-effect of hiding some of the functor parameters. The
error is compounded by the omission of the sharing constraints that would otherwise have
been required. In other examples, where an open declaration has not been used, the sharing
constraints have been included. The language features used in the book are only described
very briefly, and so it may be difficult for a reader to understand such problems without
external assistance.

Such deficiencies would be easy to fix, either in a revised version of the book, or by a
lecturer basing a course on this text. A more worrying problem concerns the efficiency of
the example code presented in the book. Functional languages are often perceived to be
inefficient, both in terms of execution speed and memory usage. The author argues that this
is becoming less of a problem due to improved compiler technology. The book emphasises
efficiency concerns by noting the time complexity, though not the space complexity, of many
of the functions. Unfortunately, some of the functions seem to be written with a fairly reckless
disregard for efficiency. It is not uncommon to find code such as

if height 1 > height r then ...
else if height r > height 1 then ...
else ...

where potentially costly expressions are executed repeatedly. In a textbook there is, of course,
a case for emphasising clarity rather than efficiency. However, many of the functions are

https://doi.org/10.1017/S0956796800001271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001271


Book review 133

neither clear or efficient. For example, to check if a list is sorted the author takes the list
and pairs it up, element by element, with its tail. The pairs are then checked to ensure they
are ordered. In a lazy language this might be acceptable as the intermediate list would only
be constructed on demand. However, in a strict language such as ML the implementation
needs to construct this entire list of pairs for each call of the function. There are many other
similar cases in the book, leaving one with the impression that the code is not really suitable
for serious use. The clarity of the code could also be improved by more careful typesetting of
some of the larger examples.

The book is aimed at those readers who have some familiarity with a functional language,
but not necessarily SML. For such readers the book should provide a good grounding in
the principles of data abstraction within a functional framework. It is not clear whether
the author also intended the book to be used by functional programmers wishing to learn
SML. In my opinion, it would be difficult to use the book as a self-contained introduction
to programming in SML for a number of reasons. Whole areas of the language are omitted
(e.g. exceptions and references), whilst other parts are given only a cursory treatment (e.g. the
material on modules). The quality of some of the code and programming styles might also
give cause for concern in the context of teaching inexperienced programmers. The book is
more successful if used as an advanced text when the reader has already developed a firm
grounding in SML programming from reading a book such as Paulson's ML for the Working
Programmer. In such cases, the initial sections of the book may be redundant, although some
of the later chapters would be useful. The book could also be used as a reference manual of
ADT implementations, although many of the examples would require further development
before they could be considered as exemplary solutions. In summary, a commendable first
effort in this area, and I look forward to others.

K. MITCHELL

Department of Computer Science

University of Edinburgh

https://doi.org/10.1017/S0956796800001271 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001271

