ON THE MAXIMAL CONNECTED ALGEBRAIC SUBGROUPS OF THE CREMONA GROUP I

HIROSHI UMEMURA

This paper is a continuation of the two preceding papers [12], [13] where the classification of the de Jonquières type subgroups in the Cremona group of 3 variables is promised. However the classification of such subgroups is postponed until the article in preparation "On the maximal connected algebraic subgroups of the Cremona group II". The purpose of this paper is to establish a general method to study algebraic subgroups in the Cremona group of n variables and to illustrate how it works and leads to the classification of Enriques (Theorem (2.25)) when applied to the 2 variable case. This method gives us also the classification of the maximal connected algebraic subgroups of the Cremona group of 3 variables. The reason why we dare to write a new proof of the notorious Enriques Theorem is as follows. The case of 3 variables is rather complicated and we are sometimes obliged to indicate only the results and the way how to prove them without going into the detailed calculations if they are done quite similarly as in the 2 variable case. Hence we consider the best way to understand our classification in the 3 variable case is to read a complete proof in the 2 variable case beforehand. This is a raison d'être of a new proof of the Enriques Theorem and hence of this paper. Our method will be applied for the 4 variable case too.

As in the preceding papers, we work over an algebraically closed field of characteristic 0 . All algebraic groups are connected and when we speak of a law chunk of algebraic operation (G, X), X is irreducible. 1 denotes either the unit element of a group or the group consisting only of the unit element.

[^0]
§ 1. Some results in the study of algebraic subgroups of the Cremona group

Let X be an algebraic variety defined over an algebraically closed field k of characteristic 0 . We study the group of the birational automorphisms of X. We are particularly interested in connected algebraic subgroups of the group of the birational automorphisms of X. When we speak of the group of the birational automorphisms of X and of a morphism of an algebraic group onto that group, we do not consider the group of the birational automorphisms merely as an abstract group. There is an algebraic structure which makes the group of the birational automorphisms something like an algebraic group. This structure is most naturally expressed if we make a functorial interpretation.

We denote by Autbirat X a group functor on the category of k-schemes; for a k-scheme Z, Autbirat $X(Z)=Z$-pseudo automorphisms of $Z \times X$ (cf. Demazure [3]). Roughly speaking, Autbirat $X(Z)=Z$-birational automorphisms of $Z \times X$. The group of k-valued points Autbirat $X(k)$ is nothing but the 'group of the k-birational automorphisms of X. In general, this functor is far from being representable.

The following theorem clarifies the notion of an algebraic morphism of an algebraic group to Autbirat X.

Theorem (1.1). Let G be an algebraic group and X an algebraic variety. Then there is a 1-1 correspondence between the following:
(1) Morphisms of group functors $G \rightarrow$ Autbirat X.
(2) Algebraic pseudo-operations (G, X).
(3) Algebraic operations $\left(G, X^{\prime}\right)+$ birational isomorphism $f: X^{\prime} \longrightarrow X$ modulo equivalence relation $\sim^{(*)}$.

The correspondence (1) $\leftrightarrow(2)$ is Proposition 4, p. 515, Demazure [4]. $(2) \rightarrow(3)$ is a well known theorem of Weil (Theorem, p. 375, Weil [15]). $(3) \rightarrow(2)$ is evident (cf. Umemura [12]).
${ }^{(*)}\left(G, X_{1}^{\prime}\right)+f_{1}$ is equivalent to $\left(G, X_{2}^{\prime}\right)+f_{2}^{\prime}$ if and only if the diagram

Definition (1.2). An algebraic subgroup G of Autbirat X is a subgroup functor of Autbirat X representable by an algebraic variety.

The following result is also found in Demazure [3] (Proposition 3, p. 513).

Proposition (1.3). Let X be a variety, G an algebraic group and φ a morphism of G to Autbirat X. Then the $\operatorname{Ker} \varphi$ is represented by a closed subgroup of G.

We need not only algebraic subgroups but also morphisms $G \rightarrow$ Autbirat X with finite kernels.

Definition (1.4). Let (G, X) be an algebraic pseudo-operation. We say (G, X) is effective (resp. almost effective) if the kernel of the induced morphism $G \rightarrow$ Autbirat X is 1 (resp. a finite group scheme). It follows from Theorem (1.1).

Proposition (1.5). There is a $1: 1$ correspondence between the following two sets:
$\{$ connected algebraic subgroups in Autbirat $X\}$ /conjugacy $\stackrel{1: 1}{\longleftrightarrow}\{$ effective algebraic operations $\left(G, X^{\prime}\right) \mid G$ is a connected algebraic group, X^{\prime} is birationally isomorphic to $X\}$ / isomorphism of law chunks of algebraic operation.

See Umemura [13].
Let G be a connected algebraic subgroup of Autbirat X. Let C be the set of all the algebraic subgroups of Autbirat X conjugate to G. C will be simply called a conjugacy class of connected algebraic subgroups in Autbirat X. There corresponds to C, by Proposition (1.5), an equivalence class of algebraic operations. Any algebraic operation (G, X) of this equivalence class is called an effective realization (or simply a realization) of the conjugacy class C. An operation $\left(G^{\prime}, X\right)$ such that there exists a morphism of algebraic operation (φ, Id): $\left(G^{\prime}, X\right) \rightarrow(G, X)$ with $\operatorname{Ker} \varphi$ finite is said to be an almost effective realization of the conjugacy class C.

Lemma (1.6). Let X be an algebraic variety and G an (connected) algebraic group contained in Autbirat X. The following are equivalent:
(1) There exists a realization (G, X^{\prime}) of the conjugacy class of G in Autbirat X such that G has a non-empty open orbit on X^{\prime}.
(2) For any realization (G, X^{\prime}) of the conjugacy class of G in Autbirat X, G has a non-empty open orbit on X^{\prime}.

Proof. Since (2) $\Rightarrow(1)$ is trivial, we prove (1) $\Rightarrow(2)$. Let $\left(G, X^{\prime}\right),\left(G, X^{\prime \prime}\right)$ be realizations of G and we assume (G, X^{\prime}) has a non-empty open orbit. It follows from the definition there exists an isomorphism $(\varphi, f):\left(G, X^{\prime}\right) \rightarrow$ ($G, X^{\prime \prime}$) of law chunks of algebraic operations. Hence by Corollary p. 404 Rosenlicht [7], ($G, X^{\prime \prime}$) also has a non-empty open orbit.

Definition (1.7). Let X, G be as in Lemma (1.6). If G satisfies one of the condition of Lemma (1.6), G is said to be generically transitive. Otherwise, G is said to be generically intransitive.

The effectiveness of an algebraic operation (G, X) sometimes restricts the group G.

Lemma (1.8). Let (G, X) be an effective algebraic operation. If (G, X) is generically transitive and G is abelian, then $\operatorname{dim} G=\operatorname{dim} X$.

Proof. Let G / H be the open orbit in X. The morphism $G \rightarrow$ Aut X factors through $G \rightarrow$ Aut G / H. Since G / H is open in X, the homogeneous space $(G, G / H)$ is effective. As G is abelian, this shows $H=1$ and $\operatorname{dim} G$ $=\operatorname{dim} G / H=\operatorname{dim} X$.

Definition (1.9). Let X be a variety and C_{1}, C_{2} be conjugacy classes of connected algebraic subgroups of Autbirat X. We say C_{1} is a subgroup of C_{2} if there exist algebraic groups $G_{i}(i=1,2)$ such that $G_{1} \subset G_{2} \subset$ Autbirat X and such that G_{i} belongs to the conjugacy class C_{i}.

Proposition (1.10). Let X be a variety and $C_{i}(i=1,2)$ conjugacy classes of connected algebraic subgroups of Autbirat X. Let $\left(G_{i}, X_{i}\right)$ be realizations of C_{i} for $i=1,2$. Then, the following are equivalent.
(1) C_{1} is a subgroup of C_{2}.
(2) There exists a morphism $(\varphi, f):\left(G_{1}, X_{1}\right) \rightarrow\left(G_{2}, X_{2}\right)$ of law chunks of algebraic operations such that f is birational.

Proof. (1) \Rightarrow (2). In fact, there exist birational maps $h_{i}: X_{i} \rightarrow X, i=$ 1,2 and the condition (1) implies there exists a birational automorphism $h: X \rightarrow X$ such that $h\left(h_{1} G_{1} h_{1}^{-1}\right) h^{-1} \subset h_{2} G_{2} h_{2}^{-1}$. This means there exists a (rational hence regular) morphism $\varphi: G_{1} \rightarrow G_{2}$ such that ($\varphi_{1}, h_{2}^{-1} \circ h \circ h_{1}$): $\left(G_{1}, X_{1}\right) \rightarrow\left(G_{2}, X_{2}\right)$ is a morphism of algebraic law chunks with birational $h_{2}^{-1} \circ h \circ h_{1}$.
(2) \Rightarrow (1). Let us fix a birational map $h_{2}: X_{2} \rightarrow X$. Then, $h_{2} f G_{1} f^{-1} h_{2}^{-1}$ is an algebraic subgroup of C_{1} and $h_{2} G_{2} h_{2}^{-1}$ is an algebraic subgroup of C_{2}. The inclusion $f G_{1} f^{-1} \subset G_{2}$ implies the inclusion $h_{2} f G_{1} f^{-1} h_{2}^{-1} \subset h_{2} G_{2} h_{2}^{-1}$.

Definition (1.11). The Cremona group Cr_{n} of n variable is, by definition, Autbirat P^{n}.

It follows from the definition that $\mathrm{Cr}_{n}(k)$ is the group of the k automorphisms of the rational function field of n-variables. As we proved in [13], algebraic subgroups of the Cremona groups are linear. Hence, from now on we assume all the algebraic groups are linear.

In the proof of Theorem (3.7) Umemura [13], it is important to observe the orbits of a normal subgroup, e.g., the unipotent radical, the center of the unipotent radical. The idea of studying the orbits of a normal subgroup looks naive but it is rather powerful. This method is so useful that we use it repeatedly. Here is the first example of the application.

Lemma (1.12). Let $(G, G / H)$ be an algebraic homogeneous space and n the dimension of G / H. We assume the operation of G is effective. If there is a normal subgroup N of G isomorphic to $G_{a}^{\oplus m}$ such that N has an n dimensional orbit, then (1) $m=n$, (2) G / H is isomorphic to the affine space A^{n}, and (3) $(G, G / H)$ is a suboperation of the n dimensional affine transformation $\left(G T A_{n}, A^{n}\right)$, (4) G is the semi-direct product $N \cdot H$.

Proof. Let X be the n dimensional N-orbit. Then X is an open subset. Since N is normal, for any $g \in G, g X$ is also an n dimensional N-orbit. Hence $g X$ coincides with X, i.e. X is G-invariant and $X=G / H$. Since N operated on $X=G / H$ transitively and effectively and since N is abelian, m should be equal to n by Lemma (1.8) and X is isomorphic to $G_{a}^{\oplus n}$, hence to the affine space A^{n} and N operates on $X=G / H \simeq A^{n}$ as translation group. As N operates transitively on G / H, we get $G=N H$. Since the operation of N is effective, $N \cap H=1$ hence G is a semi-direct product. Now, it remains to show that H is a subgroup of the affine translation. Let $g \in H, n \in N$, then the result of the operation of g on the coset $n H$ is $g n H=g n\left(g^{-1} g\right) H=g n g^{-1} H$. Hence the operation of H on A^{n} is linear.

Corollary (1.13). Let $(G, G / H)$ be an effective homogeneous space as in Lemma (1.12). If the center U_{z} of the unipotent radical of G has n dimensional orbit (here $n=\operatorname{dim} G / H)$, then (1) $\operatorname{dim} U_{z}=n$, (2) G / H is isomorphic to the affine space A^{n}, (3) $(G, G / H)$ is a suboperation of the n dimensional affine transformation $\left(G T A_{n}, A^{n}\right)$, (4) the unipotent radical U is abelian, namely $U=U_{Z}$, (5) H is reductive and (6) G is a semi-direct product $G=H \cdot U_{z} \simeq H \cdot G_{a}^{\oplus n}$.

Proof. The assertions (1), (2) and (3) follow from Lemma (1.12). To prove (4), we need

Lemma (1.14). Let U be a (connected) unipotent algebraic group and U^{\prime} a closed normal subgroup. If the quotient group U / U^{\prime} is 1 dimensional (hence isomorphic to \boldsymbol{G}_{a}), then the exact sequence

$$
1 \longrightarrow U^{\prime} \longrightarrow U \xrightarrow{p} U / U^{\prime} \longrightarrow 1
$$

splits. Namely there exists a closed subgroup K of U such that the restriction $\left.p\right|_{K}: K \rightarrow U / U^{\prime}$ is an isomorphism.

Before we start the proof, we notice the assertion of the Lemma is evidently false if char $k>0$. If U is abelian, the result is well-known (Corollaire, p. 172, Serre [8]). We prove the lemma by induction on the dimension of U. If $\operatorname{dim} U=1$, a non-zero homomorphism of \boldsymbol{G}_{a} to \boldsymbol{G}_{a} is an isomorphism because char $k=0$. Let us assume the Lemma holds for $\operatorname{dim} U \leq m$. Let U, U^{\prime} be as in Lemma (1.14) with dimension $U=m$ +1 . The unipotent group has the non-trivial center U_{z} with $\operatorname{dim} U_{z} \geq 1$. If $\left.p\right|_{U_{z}}$ is surjective, as we have seen above the exact sequence

$$
\left.1 \longrightarrow \operatorname{Ker} p\right|_{U_{Z}} \longrightarrow U_{z} \longrightarrow U / U^{\prime} \longrightarrow 1
$$

splits and we have nothing to prove. Hence we may assume $p\left(U_{z}\right)=1$. This is equivalent to say that the diagram

commutes where q, r are canonical maps. It follows from the induction hypothesis r has a section s. It is sufficient to show q has a section over $s\left(U / U^{\prime}\right)$, i.e. the exact sequence $1 \rightarrow U_{z} \rightarrow q^{-1}\left(s\left(U / U^{\prime}\right)\right) \rightarrow s\left(U / U^{\prime}\right) \rightarrow 1$ splits.

Since U_{z} is abelian, we have to show $H^{2}\left(G_{a}, U_{z}\right)=0$ for the trivial $G_{a^{-}}$ module U_{z}. Let more generally W be a finite dimensional vector group on which \boldsymbol{G}_{a} operates trivially, then $H^{2}\left(\boldsymbol{G}_{a}, W\right)=0$ since W is the direct sum of \boldsymbol{G}_{a} 's and $H^{2}\left(\boldsymbol{G}_{a}, \boldsymbol{G}_{a}\right)=0$ (See Proposition 8, p. 172, Serre [8]).

Let us come back to the proof of the assertion (4) in Corollary (1.13). Consider the exact sequence,

Assume $U / U_{z} \neq 1$. Since U / U_{z} is unipotent, it contains G_{a}. The exact sequence restricted on this G_{a} splits by Lemma (1.14). Hence, there exists a subgroup K of U lying over the \boldsymbol{G}_{a}. Then the subgroup $U_{z} \cdot K$ is unipotent and abelian. Hence $U_{z} \cdot K$ is isomorphic to $G_{a}^{\oplus n+1}$. On the other hand, in the proof of the Lemma, we proved G / H is homogeneous space of U_{Z} hence in particular, a homogeneous space of $U_{Z} \cdot K$. Since $U_{Z} \cdot K$ is abelian and of dimension $n+1$, the operation of $U_{z} \cdot K$ on its homogeneous space of dimension n can not be effective by Lemma (1.8). This contradicts the assumption that the operation of G is effective. Hence U coincides with U_{z}. Now the assertions (5), (6) follow from Lemma (1.12).

For the definitions of primitive, imprimitive and de Jonquières type transformations, we refer the reader to Umemura [12], [13]. But we recall the following properties because they are basic and used frequently in the sequel.
(1.15) Let G be an analytic group and H a closed analytic subgroup. Then an analytic operation $(G, G / H)$ is primitive if and only if the Lie algebra of H is a maximal Lie subalgebra of the Lie algebra of G (Proposition (1.7), Umemura [13]).
(1.16) Let G be an (connected) algebraic group and H be a closed subgroup. Then an algebraic operation $(G, G / H)$ is of de Jonquières type if and only if there exists a closed algebraic subgroup K of G such that $H \subset K \subseteq G$ and $\operatorname{dim} H<\operatorname{dim} K$.

The following theorem is an algebraic version of a theorem of Morozoff [6].

Theorem (1.17). Let $(G, G / H)$ be an effective algebraic operation with $\operatorname{dim} G / H \geqslant 2^{(*)}$. We assume that $(G, G / H)$ is primitive, i.e., the associated

[^1]analytic operation $(G, G / H)^{a n}$ is primitive.
(1) If G is not semi-simple, then (i) G / H is isomorphic to an affine space, (ii) ($G, G / H$) is (algebraically) an suboperation of the affine transformation group, (iii) the unipotent radical U of G is abelian and H is a reductive part of G and (iv) U is an irreducible H-module.
(2) If G is semi-simple, then the Lie algebra g of G is either simple or isomorphic to the direct product $\mathfrak{g}_{1} \times \mathfrak{g}_{1}$ of the two copies of a simple Lie algebra g_{1}.

Proof. If G is not semi-simple, we notice first that G cannot be reductive. For, otherwise G has a nontrivial center Z and we can find in Z a 1 dimensional normal subgroup N of G. Then $K=N H$ satisfies the condition of (1.16) and ($G, G / H$) is of de Jonquières type hence $(G, G / H)^{a_{n}}$ is imprimitive. Let U be the unipotent radical and U_{Z} be its center. U_{Z} is a normal subgroup of positive dimension. Therefore, if $U_{z} \cdot H \subsetneq G, K=U_{z} \cdot H$ satisfies the condition of (1.16) and ($G, G / H$) is of de Jonquières type and $(G, G / H)^{a n}$ is imprimitive. Hence we may assume $U_{z} H=G$, namely U_{z} has an open orbit. If U were not irreducible, then there would exist a proper H-invariant space U^{\prime} and $K=U^{\prime} \cdot H$ would satisfy the condition (1.16) and ($G, G / H$) would be of de Jonquières type hence imprimitive. The assertions (1) (i), (ii), (iii) follow from Corollary (1.13).

Now, we assume G is semi-simple. Let \tilde{G} be the universal covering of G. Then, the Lie algebra of \tilde{G} is isomorphic to G and \tilde{G} is simply connected. Let $\varphi: \tilde{G} \rightarrow G$ be the covering map. It is known that φ is finite and algebraic. Let $\tilde{H}=\varphi^{-1}(H)$. Then the algebraic operation $(\tilde{G}, \tilde{G} / \tilde{H})$ is primitive. Though the algebraic operation $(\tilde{G}, \tilde{G} / \tilde{H})$ is not effective but almost effective. Let $\tilde{G}=G_{1}^{s_{1}} \times G_{2}^{s_{2}} \times \cdots \times G_{r}^{s_{r}}$ where G_{i} is simple, $s_{i} \geq 1$ is an integer for $1 \leq i \leq r$ and we assume that if $1 \leq i<$ $j \leq r, G_{i}$ is not isomorphic to G_{j}. First, let us show $r=1$. Assume $r \geq$ 2. Since the Lie algebra \mathfrak{h} of H is maximal in \mathfrak{g}, by (1.15) the projection $p_{j}: H \rightarrow G_{j}^{s_{j}}$ is either surjective or $p_{j *}(\mathfrak{G})$ is a maximal Lie subalgebra in $\mathrm{g}_{j}^{s_{j}}$ for $1 \leq j \leq r$ where g_{j} is the Lie algebra of G_{i}. This latter case never happens as we assume $r \geqslant 2$.

In fact if there exist a j such that $p_{j *}(\mathfrak{G})$ is maximal in $\mathfrak{g}_{i}^{s_{i}}$, then we have $\mathfrak{h} \subset p_{j^{*}}^{-1} p_{j} *(\mathfrak{G}) \subseteq \mathfrak{g}$. As $r \geq 2$, there exists an $i \neq j$. Since the operation ($\tilde{G}, \tilde{G} / \tilde{H})$, is almost effective, h does not contain non-zero ideal. In particular, the ideal $0 \times \cdots \times 0 \times \mathrm{g}_{i}^{s_{i}} \times 0 \times \cdots \times 0$ is not contained in
\mathfrak{G} but is contained in $p_{j^{*}}^{-1} p_{j^{*}}(\mathfrak{G})$. Hence $\mathfrak{G} \subseteq p_{j^{*}}^{-1} p_{j^{*}}(\mathfrak{G}) \subseteq g$ which contradicts the maximality of the Lie subalgebra \mathfrak{h}. We have therefore surjective morphisms: $\mathfrak{G} \rightarrow \mathrm{g}_{i}^{s i}$ for any i. By Levi's theorem \mathfrak{G} is isomorphic to the semi-direct product $\mathfrak{h}=r+\mathfrak{h}_{s}$ where r is the radical of \mathfrak{h} and \mathfrak{h}_{s} is semisimple. We are given surjective morphisms: $\mathfrak{h}_{s} \rightarrow \mathfrak{g}_{i}^{s_{i}}$ for any i. But it is an easy excercise of Lie algebra to conclude $\operatorname{dim} h_{s} \geq \sum_{i=1}^{r} s_{i} \operatorname{dim} g_{i}=$ $\operatorname{dim} g$ hence $\operatorname{dim} h \geq \operatorname{dim} g$. We have proved r should be 1 . Now, we may assume $\tilde{G}=G^{\prime s}$ where G^{\prime} is simple and $s \geq 1$ is an integer. We have to show $s \leq 2$. Assume $s \geq 3$. And let g^{\prime} be the Lie algebra of G^{\prime} and $p=$ $p_{2,3} \ldots, s$ be the projection of $\tilde{G}=G^{\prime s}$ onto the last $s-1$ factors. The same argument as above shows the map $p_{*}: \mathfrak{G} \rightarrow \mathfrak{g}^{\prime(s-1)}$ is surjective. Since the Lie algebra \mathfrak{g}^{\prime} of G^{\prime} is semi-simple, the map $p_{*}: \mathfrak{G} \rightarrow\left(g^{\prime}\right)^{s-1}$ splits and there exist a section $i:\left(g^{\prime}\right)^{s-1} \rightarrow \mathfrak{h}$. The composite morphism $p_{1} \circ i:\left(g^{\prime}\right)^{s-1} \rightarrow g^{\prime}$ is either 0 or surjective. If $p_{1} \circ i$ is zero, \mathfrak{h} contains an ideal $0 \times \mathfrak{g}^{\prime} \times \cdots \times$ g^{\prime} hence H contains a normal subgroup $1 \times G^{\prime} \times \cdots \times G^{\prime}$ of dimension $(s-1) \operatorname{dim} G^{\prime}$ which contradicts the effectiveness. Thus, $p_{1} \circ i:\left(g^{\prime}\right)^{s-1} \rightarrow g^{\prime}$ is surjective. But any non-zero morphism $\left(g^{\prime}\right)^{s-1} \rightarrow \mathfrak{g}^{\prime}$ is up to automorphism of g^{\prime}, the projection onto the j-th factor for a suitable $1 \leq j \leq s-1$. In particular, $p_{1} \circ i$ is the projection onto the j-th factor for a suitable $1 \leq j$ $\leq s-1$, up to automorphism of g^{\prime}. It follows, then up to automorphism of $G^{\prime s}$, the composite morphism $\left(G^{\prime}\right)^{s-1} \stackrel{i}{\longrightarrow} H \Longleftrightarrow G^{\prime s}$ is nothing but $\left(p_{j}, p_{1}, p_{2}, \cdots, p_{s-1}\right)$. In particular, H contains a normal subgroup

$$
1 \times G^{\prime} \times \cdots \times G^{\prime} \times \stackrel{j+1}{1} \times \cdots \times G^{\prime}
$$

of dimension $(s-2) \operatorname{dim} G^{\prime}>0$ which is a contradiction. Hence $s \leq 2$. We can answer in positive way to the question proposed in [13].

Corollary (1.18). Let $G_{i}(i=1,2)$ be connected algebraic groups and H_{i} be closed algebraic subgroups of G_{i} such that the algebraic operation $\left(G_{i}, G_{i} / H_{i}\right)$ are effective and primitive. Let $(\varphi, f):\left(G_{1}, G_{1} / H_{1}\right)^{a n} \rightarrow\left(G_{2}, G_{2} / H_{2}\right)^{a n}$ be an isomorphism of analytic operations. Then the morphism (φ, f) is algebraic, i.e., there exists an isomorphism $\left(\varphi^{\prime}, f^{\prime}\right):\left(G_{1}, G_{1} / H_{1}\right) \rightarrow\left(G_{2}, G_{2} / H_{2}\right)$ of algebraic operations such that $\left(\varphi^{\prime}, f^{\prime}\right)^{a n}=(\varphi, f)$.

Proof. Since the algebricity of f follows from that of φ, we have to show φ is algebraic. If G_{1} is semi-simple, then the assertion is trivial. For, an analytic homomorphism of a semi-simple algebraic group to an algebraic group is algebraic (Théorème 10, VIII-8, Serre [10]). If G_{1} is not
semi-simple, then by the proof of Theorem (1.17), G_{i} is the semi-direct product $H_{i} U_{i}$ where H_{i} is reductive, U_{i} is the unipotent radical of G_{i} and U_{i} is abelian ($i=1,2$). Let R_{i} denote the radical of $G_{i}(i=1,2)$. By replacing the reference point of G_{2} / H_{2}, we may assume $\varphi\left(H_{1}\right)=H_{2}$. Since H_{1} is reductive, $\left.\varphi\right|_{H_{1}}: H_{1}^{a n} \rightarrow H_{2}^{a n}$ is algebraic by Théorème 10, VIII-8, Serre [10]. φ induces an isomorphism between the radicals R_{1} and R_{2} and we have to show $\left.\varphi\right|_{R_{1}}$ is algebraic. If $R_{1}=U_{1}$, then $R_{2}=U_{2}$ and the isomorphism $\left.\varphi\right|_{U_{1}}: U_{1}^{a n} \rightarrow U_{2}^{a n}$ is linear hence algebraic. If $R_{1} \supsetneq U_{1}$, then R_{1} $=U_{1} \cdot G_{m}$ and $R_{2}=U_{2} \cdot G_{m}$. For since, H_{1}-module U_{1} is irreducible, the center of H_{1} is at most \boldsymbol{G}_{m}. Since the operation is effective, we may assume the group structure of R_{1} is defined by $t \cdot u \cdot t^{-1}=t \times u$ (multiplication of the scalor t on the vector u is denoted by $t \times u$) for $t \in \boldsymbol{G}_{m}, u \in U_{1}$. We shall describe the restriction $\left.\varphi\right|_{R_{1}}=\psi$. Since $\varphi\left(H_{1}\right)=H_{2}, \varphi\left(\boldsymbol{G}_{m}\right)=\boldsymbol{G}_{m}$. Thus $\psi: R_{1}=U_{1} \cdot G_{m} \rightarrow R_{2}=U_{2} \cdot G_{m}$ is written as $\psi(u \cdot t)=\psi_{1}(u) \psi_{2}(u) \psi_{2}(t)$ for $u \in U_{1}, t \in \boldsymbol{G}_{m}$ where $\psi_{1}: U_{1} \rightarrow U_{2}$ is an analytic map and $\psi_{2}: R_{1}^{a n} \rightarrow \boldsymbol{G}_{m}^{a n}$ is an analytic morphism of Lie groups. We shall show $\psi_{2}(u)=1$ for any $u \in U_{1}$. In fact, let $u_{1} \cdot t_{1}, u_{2} \cdot t_{2} \in R_{1}$ and write the condition for $\varphi\left(\left(u_{1} \cdot t_{1}\right)\left(u_{2} \cdot t_{2}\right)\right)$ $=\varphi\left(u_{1} \cdot t_{1}\right) \varphi\left(u_{2} \cdot t_{2}\right)$. Comparing the \boldsymbol{G}_{m} component, we get $\psi_{2}\left(u_{1} \cdot\left(t_{1} \times u_{2}\right)\right)=$ $\psi_{2}\left(u_{1}\right) \psi_{2}\left(u_{2}\right)$ hence $\psi_{2}\left(t_{1} \times u_{2}\right)=\psi_{2}\left(u_{2}\right)$. Therefore, for any $t \in \boldsymbol{G}_{m}, u \in U_{1}$, $\psi_{2}(t \times u)=\psi_{2}(u)$ hence $\psi_{2}(u)=1$. It follows ψ maps U_{1} onto U_{2} hence $\left.\psi\right|_{U_{1}}$ is linear and φ is algebraic.

As we proved in Umemura [13], in Cr_{3} there are few algebraic operations which are imprimitive and not of de Jonquières type. The following theorem is nothing but an abstraction of Theorem (3.7), Umemura [13].

Theorem (1.19). Let (G, X) be an effective algebraic operation. If (G, X) is imprimitive (i.e., the associated analytic operation ($G, X)^{a n}$ is imprimitive) and if (G, X) is not of de Jonquières type, then (G, X) is generically transitive and G is semi-simple.

Proof. Let us first notice that $\operatorname{dim} X \geq 2$ because (G, X) is imprimitive. By Umemura [13], a generically intransitive operation is of de Jonquières type if the dimension of the transformation space ≥ 2. Hence we may assume (G, X) is a homogeneous space $(G, G / H)$. By (1.16), it is sufficient to construct a closed subgroup K such that $H \subset K \subsetneq G$ and $\operatorname{dim} H<$ $\operatorname{dim} K$ under the hypothesis that G is not semi-simple. If G is solvable, then there exists a 1 dimensional closed normal subgroup N of G. Since ($G, G / H$) is effective, the normal group N is not contained in H and $K=$
$H N$ satisfies our requirement. If G is reductive, we may assume G is not a torus because $G=$ torus case is trivial. Let Z be the center of G. If G is not semi-simple, $\operatorname{dim} Z \geq 1$. Let N be a 1 dimensional closed subgroup of Z. Then N is normal and the normal subgroup N is not contained in H because $(G, G / H)$ is effective. The closed subgroup $K=H N$ satisfies the desired condition. It remains to check the case where G is neither solvable nor reductive. Let U_{z} denote the center of the unipotent radical U of G. Since U_{Z} is normal, U_{Z} is not contained in H. Hence, if $U_{Z} \cdot H \neq G$, then it is sufficient to put $K=U_{Z} H$. Therefore we may assume $U_{Z} \cdot H=G$. Namely U_{z} orbit $U_{z} H$ coincides with G / H. It follows from Corollary (1.13) $U=U_{z}$ and G is the semi-direct product $U_{z} \cdot H$. Let $\mathfrak{g}, \mathfrak{h}, u_{z}$ denote the Lie algebras of G, H, U_{z}. Therefore $\mathfrak{g}=u_{z}+\mathfrak{h}$. By (1.15), the Lie algebra \mathfrak{G} is not maximal. This implies \mathfrak{y}-module u_{z} is not irreducible. Consequently, the vector group U_{z} is not an irreducible H-module. Let $0 \neq W \subseteq U_{z}$ be an H-invariant submodule. Then $K=$ $W \cdot H$ satisfies our requirement.

Corollary (1.20). Let (G, X) be an effective algebraic operation. We assume the associated analytic operation $(G, X)^{a n}$ is imprimitive. If G is not semi-simple, then (G, X) is of de Jonquières type.

This is a part of Theorem (1.19).
Lemma (1.21). Let G be a (connected) reductive algebraic group, (G, X) an algebraic operation, $f: X \rightarrow Y$ a morphism of algebraic varieties such that the diagram

is commutative, where φ is the operation and p_{2} is the projection $G \times X \rightarrow$ X. If, for any closed point $y \in Y$, the operation of G on the fibre $X_{y}=f^{-1}(y)$ is not almost effective (resp. effective), then the operation (G, X) is not almost effective (resp. effective).

Proof. As the effective case is treated similarly, we prove the Lemma for the almost effective case. Since a normal subgroup of positive dimen-
sion of G contains a torus, a torus is contained in a maximal torus and since maximal tori are conjugate, a maximal torus T of G satisfies the hypothesis. Therefore, we may assume G is a torus. Let F be the inverse image of the diagonal of $X \times X$ by the morphism $\left(\varphi, p_{2}\right): G \times X \rightarrow X \times X . \quad F$ is a closed subscheme of $G \times X$ and a subgroup scheme over X of $G \times X$. Since a morphism is generically flat, there exists a non-empty open subset U of X such that the projection $p_{2}: F \cap G \times U \rightarrow U$ is faithfully flat. By Lemma 5, p. 520, Demazure [3], there exists a closed subscheme H of G such that $F=H \times U$. Let $x \in U$ be a closed point. It follows from the assumption, that there exists a closed subgroup K of positive dimension of G operating trivially on the fibre $X_{f(x)}$. This shows K is a subgroup of H and the operation of G is not almost effective.

§ 2. Classification of the maximal connected algebraic subgroups of the Cremona group of two variables

The classification, up to conjugacy, of the maximal connected algebraic subgroups of the Cremona group of two variables Cr_{2} was done by Enriques [4]. We apply the results of $\S 1$ to recover the result of Enriques. The method of Enriques is quite different from ours and depends on the classification of linear systems on two dimensional rational varieties. Let us indicate roughly why the classification of the maximal connected algebraic subgroups of the Cremona group is related to the classification of linear systems on rational varieties. Let (G, X) be a realization of a conjugacy class of a connected algebraic subgroups in the Cremona group of n variables. As the theorem of the equivariant resolution of singularity is proved, then by equivariant completion and equivariant Chow's lemma (Sumihiro [11]), we could assume X non-singular and projective. Then, since X is rational, $h^{01}(X)=h^{10}(X)=0$. Hence the Picard scheme of X is descrete and the algebraic group G leaves any complete linear system on X invariant. A maximal algebraic group of Cr_{n} is defined to be the group of the birational transformations leaving a linear system invariant.

The advantage of our method is the comprehensiveness (we hope) and to be extendable to the higher dimensional case. The three dimensional case is treated in Umemura [12], [13] and will be completed by our method in Umemura [14].
(A) Classification of the maximal primitive connected algebraic subgroups of Cr_{2}.

Let (G, X) be a realization of a conjugacy class of the maximal primitive connected algebraic subgroups of Cr_{2}. Then, by Proposition (1.10), Theorem (1.17) and Corollaire 1, p. 521, Demazure [14], G is semi-simple of rank ≤ 2. Hence, the Lie algebra g of G is isomorphic to $s l_{2}, s l_{3}, s l_{2} \times s l_{2}$ or G_{2}. Let X be isomorphic to G / H, then by Umemura [13], the Lie algebra \mathfrak{h} of H has the following properties: (1) \mathfrak{h} is maximal Lie subalgebra of \mathfrak{g}, (2) h contains no non-zero ideals of \mathfrak{g}, (3) $\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{h}=2$. It is an easy exercise to see that G_{2} contains no Lie subalgebra of codimension 2. The only one possible such G and H is $\left(P G L_{3}, P_{2}\right)$. Hence, any primitive connected algebraic subgroup of Cr_{2} is, up to conjugacy, is contained in ($P G L_{3}, P_{2}$).
(B) Classification of the imprimitive connected algebraic groups which are not of de Jonquières type.

Before we begin the classification, let us notice the following Lemma which is almost evident but will be often used.

Lemma (2.1). Let (G, X) be a realization of a conjugacy class C of the connected algebraic groups in Cr_{2}. Then, the following are equivalent:
(1) The conjugacy class C is of de Jonquières type.
(2) The algebraic operation (G, X) is of de Jonquières type.
(3) There exists a morphism $(\varphi, f):(G, X) \rightarrow\left(P G L_{2}, P^{1}\right)$ of law chunks of algebraic operation such that $\varphi(G) \neq 1$.

If we assume the realization (G, X) is a homogeneous space $(G, G / H)$, then the following condition is equivalent to the preceding conditions (1), (2), (3):
(4) There exists a morphism $(\varphi, f):(G, G / H) \rightarrow\left(P G L_{2}, P^{1}\right)$ of algebraic operations with $\varphi(G) \neq 1$.

Proof. The equivalence of (1) and (2) is the definition. Let (G^{\prime}, X^{\prime}) be an algebraic operation such that X^{\prime} is a rational curve. Then (G^{\prime}, X^{\prime}) is considered as a suboperation of ($P G L_{2}, P^{1}$) and a unirational curve is rational. This shows the equivalence of (2) and (3). The equivalence of (3) and (4) follows from Corollary, p. 404, Rosenlicht [7].

The following Proposition is similar to Theorem (3.7) Umemura [13] and proved by the same method.

Theorem (2.2). Let (G, X) be a realization of a conjugacy class of the connected algebraic subgroups in Cr_{2}. Let g be the Lie algebra of G. If
(G, X) is imprimitive and if \mathfrak{g} is not isomorphic to $s l_{2}$, then (G, X) is of de Jonquières type.

Proof. By Theorem (1.19), we may assume that (G, X) is generically transitive and G is semi-simple. Therefore we assume (G, X) is a homogeneous space $(G, G / H)$. Since any 1 dimensional effective analytic law chunk is contained in $\left(P G L_{2}, P^{1}\right)$, it follows from the hypothesis that there exists a morphism of law chunks of analytic operation $(\varphi, f):(G, G / H)^{a n}$ $\rightarrow\left(P G L_{2}, P^{1}\right)^{a n}$ with non-trivial φ. Hence, the Lie algebra g contains $s l_{2}$ as a direct factor. If \mathfrak{g} is not isomorphic to $s l_{2}$, then the $\operatorname{ker} \varphi$ contains an ideal \mathfrak{f} of g such that \mathfrak{f} is a simple Lie algebra. Since \mathfrak{f} is simple, there exists a normal closed algebraic subgroup K of G corresponding to ${ }_{1}$ by Theorems 15, p. 177, Chevalley [2]. The orbits of K are one dimensional because $k \subset \operatorname{ker} \varphi$. Hence $K H \subsetneq G$. Since the operation ($G, G / H$) is effective, the normal subgroup K is not contained in H and $\operatorname{dim} H<$ $\operatorname{dim} K H$. Therefore by (1.16), $(G, G / H)$ is of de Jonquières type.

Corollary (2.3). Let (G, X) be a realization of a conjugacy class of the connected algebraic groups in Cr_{2}. If (G, X) is imprimitive and not of de Jonquières type, then (G, X) is isomorphic to $\left(\mathrm{SO}_{3}, \mathrm{SO}_{3} / D_{\infty}\right)$ as an algebraic law chunk of operation (or in usual language, birationally isomorphic $t o$). The definition of D_{∞} is given in the proof.

Proof. By Theorem (1.19) and Theorem (2.2), (G, X) is isomorphic to ($G, G / H$) as an algebraic law chunk of operation and G is isomorphic to $S L_{2}$ or SO_{3}. There is a morphism $\varphi: S L_{2} \rightarrow S O_{3}$ of degree 2 . Hence in either case, G / H is isomorphic to $S L_{2} / H^{\prime}$ for an appropriate 1 dimensional closed algebraic subgroup H^{\prime} of $S L_{2}$. It is easy to see that a 1 dimensional closed algebraic subgroup H^{\prime} of $S L_{2}$ is conjugate to one of the following:

$$
\begin{align*}
T & =\left\{\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) \in S L_{2}\right\}, \tag{1}\\
D_{\infty} & =\left\{\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right),\left(\begin{array}{cc}
0 & b \\
-b^{-1} & 0
\end{array}\right) \in S L_{2}\right\}, \tag{2}\\
U_{n} & =\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right) \in S L_{2} \right\rvert\, a^{n}=1\right\}, \quad n=1,2, \cdots . \tag{3}
\end{align*}
$$

Hence the operation $(G, G / H)$ is isomorphic to $\left(S L_{2}, S L_{2} / H^{\prime}\right)$ or $\left(S O_{3}\right.$, $\mathrm{SO}_{3} / \varphi\left(H^{\prime}\right)$) as an algebraic operation. If H^{\prime} is T or $U_{n}(n=1,2, \cdots)$, then

$$
H^{\prime} \sqsubseteq B=\left\{\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right) \in S L_{2}\right\}
$$

and the operation $(G, G / H)$ is of de Jonquières type by (1.16). Hence $H^{\prime}=D_{\infty}$ and D_{∞} is not contained in a Borel subgroup. Therefore ($S L_{2}$, $\left.S L_{2} / D_{\infty}\right)$ is not of de Jonquières type. But the operation $\left(S L_{2}, S L_{2} / D_{\infty}\right)$ is not effective. Hence ($G, G / H$) is isomorphic to $\left(\mathrm{SO}_{3}, \mathrm{SO}_{3} / \varphi\left(D_{\infty}\right)\right.$) as an algebraic operation. Since $\varphi\left(D_{\infty}\right)$ is isomorphic to $D_{\infty}, \varphi\left(D_{\infty}\right)$ is, by abuse of notation, denoted by D_{∞}.

Proposition (2.4). The conjugacy class in Cr_{2} of the almost effective realization $\left(S L_{2}, S L_{2} / D_{\infty}\right)$ is a subgroup of the conjugacy class of the realization $\left(P G L_{3}, P_{2}\right)$, hence is not maximal among the connected algebraic subgroups in Cr_{2}.

Proof. Let V be the irreducible representation of degree 2 of $S L_{2}$. Let u, v be a base of V such that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2} \quad \text { transforms } \quad(u, v) \longmapsto(a u+c v, b u+d v) .
$$

Let us consider the irreducible representation $S^{2}(V)$ of degree 3 and projectify the $S L_{2}$ operation on $P\left(S^{2}(V)\right)$. Then the stabilizer at $u v \in P\left(S^{2}(V)\right)$ coincides with D_{∞}. Therefore we get a morphism $\left(S L_{2}, S L_{2} / D_{\infty}\right) \rightarrow\left(P G L_{3}\right.$, $P\left(S^{2}(V)\right)$) and the Proposition follows from Proposition (1.10).
(C) Classification of the maximal connected algebraic subgroups of de Jonquières type in Cr_{2}.

Case (C-tr). First we treat generically transitive operations. Hence, we assume that all realizations are homogeneous space $(G, G / H)$.

Case (C-tr-1). $\quad G$ is neither reductive nor solvable.
Let U denote the unipotent radical of G and U_{z} the center of U. It follows from the hypothesis that $\operatorname{dim} U_{z} \geq 1$. If the dimension of the orbit $U_{Z} H \subset G / H$ is 2 , then $(G, G / H)$ is a suboperation of the 2 dimensional affine transformation group by Theorem (1.13) and is not maximal. Hence, we may assume that the dimension of the orbit $U_{z} H \subset G / H$ is ≤ 1. But since the operation is effective, the normal subgroup U_{Z} of positive dimension is not contained in H. Therefore the dimension of the orbit $U_{z} H \subset G / H$ is equal to 1 and we get the morphism of algebraic operation

$$
(G, G / H) \xrightarrow{(\mathrm{Id}, f)}\left(G, G / U_{z} H\right) .
$$

The fibre of $f: G / H \rightarrow G / U_{Z} H$ is $U_{z} H / H$ which is a 1 dimensional homogeneous space of the commutative unipotent group U_{z}, hence isomorphic to A^{1}. Since any effective algebraic operation on a rational curve is a suboperation of ($P G L_{2}, P^{1}$), there exists a morphism $(\varphi, f):\left(G, G / U_{z} H\right) \rightarrow$ ($P G L_{2}, \boldsymbol{P}^{1}$) of algebraic operations such that f is an open immersion. Let us consider the composite ($\varphi^{\prime}, f^{\prime}$) of (Id, f) and (φ, f). This gives us an exact sequence

$$
1 \longrightarrow N \longrightarrow G \xrightarrow{\varphi^{\prime}} P G L_{2}, \quad \text { where } N=\operatorname{Ker} \varphi^{\prime} .
$$

Since the fibre of f is A^{1} and no simple algebraic group acts on A^{1}, N^{0} is solvable. As we assume G is not solvable, the $\operatorname{map} \varphi^{\prime}$ is surjective. Hence the sequence

$$
\begin{equation*}
1 \longrightarrow N \longrightarrow G \xrightarrow{\varphi^{\prime}} P G L_{2} \longrightarrow 1 \tag{2.5}
\end{equation*}
$$

is exact, U is a subgroup of N and N is a subgroup of the automorphism group Aut $_{P^{1}} G / H$ of A^{1}-bundle. Since the unipotent part of the solvable algebraic group Aut \boldsymbol{A}^{1} is \boldsymbol{G}_{a}, the operation of U on each fibre is abelian and hence U is abelian because the operation is effective. Therefore $U=U_{z}$. The connected component N^{0} is normal and we get a commutative diagram

Since $\left[N: N^{0}\right]<\infty$, the morphism $G / N^{0} \rightarrow P G L_{2}$ is finite, N^{0} is the radical of G and the Lie algebra of G / N^{0} is isomorphic to $s l_{2}$.

Case (C-tr-1- α). We assume $U=N^{0}$.
The unipotent part U is a G / U-module. Through the isogeny $S L_{2} \rightarrow$ $G / U, U$ is an $S L_{2}$-module. If we consider the semi-direct product $U \cdot S L_{2}$, by the structure theorem in characteristic 0 , there exists an isogeny $\psi: U \cdot S L_{2} \rightarrow G$ such that the diagram below is commutative;

where i is the canonical inclusion, p is the projection and $S L_{2} \rightarrow G / U$ is the natural isogeny. Let us put $\tilde{G}=U \cdot S L_{2}$ and $\tilde{H}=\psi^{-1}(H)$. Then the operation ($\tilde{G}, \tilde{G} / \tilde{H})$ is almost effective.

Lemma (2.6). The $S L_{2}$-module U is irreducible.
Proof. If $U \simeq \oplus_{i=1}^{r} V_{i}$ be a decomposition into the direct sum of irreducible modules. Let $B \subset S L_{2}$ be a Borel subgroup, $C \subset B$ a Cartan subgroup, $W \subset B$ the unipotent part of B and $v_{i} \in V_{i}$ be the highest weight vector with respect to C and B. Then let us put $D=\left\{\lambda_{1} v_{1}+\cdots+\lambda_{r} v_{r} \mid \lambda_{i}\right.$ $\in k, 1 \leq i \leq r\}$. Then $D \cdot W$ is a closed abelian subgroup of dimension $r+1$ of $\tilde{G} . \quad D$ has a 2 dimensional orbit on \tilde{G} / \tilde{H} because $\lambda_{j} v_{j}$ has 1 dimensional orbit along a fibre and W has 1 dimensional orbit in horizontal direction. Hence by Lemma (1.8), $\operatorname{dim} D=r+1 \leq 2$. Namely $r \leq 1$.

To determine \tilde{H}, we need
Lemma (2.7). Let L be a unipotent group (defined over an algebraically closed field characteristic 0) and M be a closed subgroup. Then M is connected.

Proof. Induction on the dimension of L. If $\operatorname{dim} L=1, L \simeq \boldsymbol{G}_{a}$ and the assertion is trivial. For a general L, there exists a normal subgroup K of dimension 1 so that there exists an exact sequence

$$
1 \longrightarrow K \longrightarrow L \longrightarrow L / K \longrightarrow 1
$$

By the induction hypothesis $K \cap M$ and $\varphi(M)$ is connected, hence M is connected.

Let us now determine the closed subgroup \tilde{H} of \tilde{G}. To this end, we fix a Borel subgroup

$$
B=\left\{\left(\begin{array}{ll}
* & 0 \\
* & *
\end{array}\right) \in S L_{2}\right\}
$$

and a Cartan subgroup

$$
C=\left\{\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right) \in S L_{2}\right\}
$$

of $S L_{2}$. Let u, v be variables and

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}
$$

operates linearly on the 2 dimensional vector space $U_{2}=k u \oplus k v$ by $u \mapsto$ $a u+c v, v \mapsto b u+d v$. Let U_{n} be the $(n-1)$-th symmetric power $S^{n-1}\left(U_{z}\right)$ of $U_{z} . \quad U_{n}$ is the irreducible representation of degree n of $S L_{2}$. By Lemma (2.6), there exists an integer $n \geq 1$ such that the unipotent radical U is isomorphic to U_{n+1} as an $S L_{2}$-module. Since $\operatorname{dim} U \tilde{H} / \tilde{H}=\operatorname{dim} U / U \cap \tilde{H}$ is equal to $1, p(\tilde{H})$ is 2 dimensional hence a Borel subgroup of $S L_{2}$. By taking a conjugation if necessary, we may assume $p(\tilde{H})=B$. Since we are in characteristic $0, U \cap H \subset U$ is connected by Lemma (2.7). Therefore it follows, from the exact sequence

$$
\begin{equation*}
0 \longrightarrow U \cap \tilde{H} \longrightarrow \tilde{H} \longrightarrow B \longrightarrow 1, \tag{2.8}
\end{equation*}
$$

that \tilde{H} is connected. By exact sequence (2.8), $U \cap \tilde{H} \subset U$ is a B-invariant space with $\operatorname{dim} U / U \cap \tilde{H}=1$. The B-invariant space of codimension 1 of U is uniquely determined: $U \cap \tilde{H}$ is generated by monomials $u^{n-1} v, u^{n-2} v$, \cdots, v^{n} which we denote by U_{n+1}^{\prime} or U^{\prime}. The weights of these monomials are $n-2, n-4, \cdots,-n$. The subgroup \tilde{H} is contained in $p^{-1}(B)=U \cdot B$. The image $p(\tilde{H})$ contains a torus \boldsymbol{G}_{m} hence \tilde{H} contains also a torus \boldsymbol{G}_{m}. Taking again the conjugation by an element of $U \cdot B$, we may assume that the torus $0 \cdot C \subset U \cdot B$ is in \tilde{H}. Let u, b, c, h be the Lie algebra of U, B, C, \tilde{H}. Then the Lie algebra $u+b$ of $U \cdot B$ is decomposed into the direct sum of c-eigen spaces: $u+b=\sum_{\alpha=0}^{n} W_{n-2 \alpha}+\left(W_{-2}+c\right)$ where $W_{i} \simeq k$ and the index i is the weight of the vector space with respect to the adjoint action of c. Since $h \supset h \cap u=\sum_{\alpha=1}^{n} W_{n-2 \alpha}, h \supset c$ and since $\operatorname{dim} h=\operatorname{dim} u$ $+\operatorname{dim} b-1, h$ is also the direct sum of c-eigen spaces and h should be $\sum_{\alpha=1}^{n} W_{n-2 \alpha}+c+$ (one dimensional c-eigen space) W^{\prime} where W^{\prime} is a subspace of $W_{n}+W_{-2}$. Hence $W^{\prime}=W_{n}$ or W_{-2}. In the first case $\tilde{H}=U \cdot C$ and in the second case $\tilde{H}=\left(u^{n-1} v, \cdots, u v^{n-1}, v^{n}\right) \cdot B$. Since the operation $(\tilde{G}, \tilde{G} / \tilde{H})$ is almost effective, \tilde{H} contains no normal subgroup of \tilde{G} of positive dimension and \tilde{H} can not coincide with $U \cdot C$. Hence $\tilde{H}=\left(u^{n-1} v\right.$, $\left.u^{n-2} v^{2}, \cdots, v^{n}\right) \cdot B$.

To state our conclusion we need definitions.
Definition (2.9). For an integer $n \geqslant 0$, we denote by G_{n} the semidirect product $U_{n+1} S L_{2}, U_{n+1}^{\prime}$ is the linear space ($u^{n-1} v, u^{n-2} v^{2}, \cdots, v^{n}$) and H_{n} denotes the closed subgroup $U_{n+1}^{\prime} B$ of G_{n}.

We have proved
Proposition (2.10). There exists an integer $n \geqslant 0$ such that the con-
jugacy class of the algebraic operation $(G, G / H)$ in case ($C-\operatorname{tr}-1-\alpha$) is realized by $\left(G_{n}, G_{n} \mid H_{n}\right)$.

We write explicitly the operation $\left(G_{n}, G_{n} / H_{n}\right)$ in terms of a local coordinate system for a later use.

Proposition (2.11). For an integer $n \geqslant 0$, the algebraic operation $\left(G_{n}, G_{n} / H_{n}\right)$ realizes an algebraic subgroup in Cr_{2} consisting of the following k-automorphisms of $k(x, y)$:

$$
(x, y) \longmapsto\left(\frac{a x+b}{c x+d}, \frac{y+f_{n}(x)}{(c x+d)^{n}}\right), \quad \text { where }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}, f_{n}(x) \in k[x],
$$

$\operatorname{deg} f_{n}(x) \leqslant n$ and x, y are independent variables over k.
Proof. To avoid the index, we put $G_{n}=\tilde{G}, H_{n}=\tilde{H}, U_{n}=U$ and $U_{n}^{\prime}=U^{\prime}$.

Let

$$
K=\left\{\left.y u^{n}\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \in U S L_{2}=\tilde{G} \right\rvert\, x, y \in k\right\}
$$

Then K is a closed subgroup of \tilde{G} isomorphic to $\boldsymbol{G}_{a}^{\oplus 2}$. Since $K \cap \tilde{H}=1$, the orbit $K \cdot \tilde{H}$ in \tilde{G} / \tilde{H} is isomorphic to $\boldsymbol{G}_{a}^{\oplus 2} \simeq A^{2}$ and we can take x, y as a coordinate system on A^{2}. Let us express the regular operation of \tilde{G} on \tilde{G} / \tilde{H} as a rational operation on the open subset $K \cdot \tilde{H}$ of \tilde{G} / \tilde{H} by using the coordinate system x, y. First let

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}
$$

To write the operation of g in terms of coordinate system x, y is equivalent to determine x^{\prime}, y^{\prime} such that

$$
\left(\begin{array}{ll}
a & b \tag{2.12}\\
c & d
\end{array}\right) y u^{n}\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \tilde{H}=y^{\prime} u^{n}\left(\begin{array}{ll}
1 & x^{\prime} \\
0 & 1
\end{array}\right) \tilde{H}
$$

Let us solve (2.12) which is equivalent to

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) y u^{n}\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \in y^{\prime} u^{n}\left(\begin{array}{cc}
1 & x^{\prime} \\
0 & 1
\end{array}\right) \tilde{H} .
$$

Therefore, since we have seen $\tilde{H}=U^{\prime} \cdot B$,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) y u^{n}\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)=y^{\prime} u^{n}\left(\begin{array}{ll}
1 & x^{\prime} \\
0 & 1
\end{array}\right)\left(\sum_{l=1}^{n} a_{l} u^{n-l} v^{l}\right)\left(\begin{array}{cc}
a^{\prime} & 0 \\
c^{\prime} & a^{\prime-1}
\end{array}\right)
$$

for suitable

$$
\left.\begin{array}{l}
a_{l} \in k, \quad 1 \leq l \leq n, \quad\left(\begin{array}{cc}
a^{\prime} & 0 \\
c^{\prime} & a^{\prime-1}
\end{array}\right) \in S L_{2} \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) y u^{n}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \\
\quad=y^{\prime} u^{n}\left(\begin{array}{ll}
1 & x^{\prime} \\
0 & 1
\end{array}\right)\left(\sum_{l=1}^{n} a_{l} u^{n-l} v^{l}\right.
\end{array}\right)\left(\begin{array}{ll}
1 & x^{\prime} \\
0 & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & x^{\prime} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & 0 \\
c^{\prime} & a^{\prime-1}
\end{array}\right), ~ \begin{array}{ll}
1 & \left.y^{\prime} u^{n}+\sum_{l=1}^{n} a_{l} u^{n-l}\left(x^{\prime} u+v\right)^{l}\right]\left(\begin{array}{ll}
1 & x^{\prime} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & 0 \\
c^{\prime} & a^{\prime-1}
\end{array}\right)
\end{array}
$$

and we get

$$
\begin{align*}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & x^{\prime} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & 0 \\
c^{\prime} & a^{\prime-1}
\end{array}\right) \tag{2.13}\\
& y(a u+c v)^{n}=y^{\prime} u^{n}+\sum_{l=1}^{n} a_{l} u^{n-l}\left(x^{\prime} u+v\right)^{2} \tag{2.14}
\end{align*}
$$

It follows from (2.13) $x^{\prime}=(a x+b) /(c x+d)$. To solve (2.14), we notice $(a u+c v)^{n}=\left(\left(a-c x^{\prime}\right) u+c\left(x^{\prime} u+v\right)\right)^{n}$. Therefore $y^{\prime}=y\left(a-c x^{\prime}\right)^{n}=y /(c x$ $+d)^{n}$. The operation of U on A^{2} is determined in a similar way and they are the set of automorphisms $\left.(x, y) \mapsto(x, y)+f_{n}(x)\right), f_{n}(x) \in k[x], \operatorname{deg} f_{n}(x) \leq n$.

Case (C-tr-1- β). $\quad N^{0}$ is not unipotent.
Since the fibre of f is A^{1}, and Aut \boldsymbol{A}^{1} is solvable, N^{0} is solvable and the dimension of a maximal torus of N^{0} is at most 1 and $N^{0}=U \cdot G_{m}$ by Lemma (1.21). By the structure theorem, there is an isogeny $\psi: N^{0} \cdot S L_{2}$ $=\tilde{G} \rightarrow G$ such that $\psi \mid N^{0}$ is an isomorphism. Hence, there are an isogeny $\psi: U \cdot \boldsymbol{G}_{m} \cdot S L_{2} \rightarrow G$ and a commutative diagram

where i is the canonical inclusion, p is the projection and $S L_{2} \rightarrow P G L_{2}$ is the isogeny. The algebraic group $\varphi\left(U \cdot S L_{2}\right)$ is in case (C-tr-1- α). Hence U is abelian and the $\boldsymbol{G}_{m} \cdot S L_{2}$-module U is irreducible. We shall see below as G_{m}-module, U is of weight 1. Now let $\tilde{H}=\psi^{-1}(H)$. By (C-tr-1- α), $\tilde{H} \cap U \cdot S L_{2}=\left(u^{n-1} v, u^{n-2} v^{2}, \cdots, v^{n}\right) B$. As every algebraic action of \boldsymbol{G}_{m} on A^{1} has a fixed point, $G_{m}(\subset N)$ has a fixed point on the fibre $\tilde{H} / U \cap \tilde{H} \simeq$ \boldsymbol{A}^{1}. Hence we may assume that by taking the conjugation of an element of U if necessary, that the maximal torus \boldsymbol{G}_{m} of N^{0} is contained \tilde{H}.

Lemma (2.15). \tilde{H} is connected.
Proof. As $\operatorname{dim} N \tilde{H} / \tilde{H}=\operatorname{dim} N / N \cap \tilde{H}=1, \operatorname{dim} p(\tilde{H})$ is 2 and $p(\tilde{H})$ is a Borel subgroup and in particular connected (Borel [1]).

Therefore, it is sufficient to show that $\tilde{H} \cap U G_{m}$ is connected. In fact, by the exact sequence $0 \rightarrow U \rightarrow U G_{m} \rightarrow \boldsymbol{G}_{m} \rightarrow 1$, we get $0 \rightarrow U \cap \tilde{H} \rightarrow$ $(\tilde{H} \cap U) \boldsymbol{G}_{m} \rightarrow \boldsymbol{G}_{m} \rightarrow 1$. But, as we are in characteristic 0 , the subgroup $U \cap \tilde{H}$ of the unipotent group U is connected by Lemma (2.7). Thus \tilde{H} $\cap U G_{m}$ is connected.

We have shown that \tilde{H} is connected and $\tilde{H} \supset U^{\prime} \cdot \boldsymbol{G}_{m} \cdot B$, where $U^{\prime}=$ $\left(u^{n-1} v, u^{n-2} v, \cdots, v^{n}\right)$. But $\operatorname{dim} U \cdot \boldsymbol{G}_{m} S L_{2} / \tilde{H}=2=\operatorname{dim} U \cdot \boldsymbol{G}_{m} \cdot S L_{2} / U^{\prime} \cdot \boldsymbol{G}_{m} \cdot B$. Hence $\tilde{H}=U^{\prime} \cdot \boldsymbol{G}_{m} \cdot B$. Thus if we determine the \boldsymbol{G}_{m}-module structure U, everything is determined. Since U is an irreducible $\boldsymbol{G}_{m} \cdot S L_{2}$-module $U \simeq$ $V \otimes U_{n+1}$ where V is an irreducible \boldsymbol{G}_{m}-module. If the representation \boldsymbol{G}_{m} $\rightarrow G L\left(U_{1}\right) \simeq G_{m} \lambda \mapsto \lambda^{l}$ is not faithful $(|l| \geq 2)$, taking the same coordinate system as in the proof of Proposition (2.11), we see that the operation of \boldsymbol{G}_{m} is given by $(x, y) \mapsto\left(x, \lambda^{l} y\right) . \quad \lambda \in \boldsymbol{G}_{m}$, and is not faithful. This contradicts the assumption that $\psi \mid N^{0}$ is an isomorphism and N^{0} operates faithfully. We thus proved U is a \boldsymbol{G}_{m}-module of dimension $n+1$ and of weight ± 1 hence we may assume of weight 1 .

We fix notations to state the result.
Definition (2.16). Let k be the \boldsymbol{G}_{m}-module of weight 1 and U_{n+1} (resp. U_{n+1}^{\prime}) is the irreducible $S L_{2}$ (resp. B)-module in Definition (2.9) for $n \geqslant 0$. The irreducible $G_{m} S L_{2}$-module $k \otimes U_{n+1}$ is also denoted by $U_{n+1} \cdot G^{(n)}$ is the semi-direct product $U_{n+1} \cdot G_{m} S L_{2}$ and we put $H^{(n)}=U_{n+1}^{\prime} \cdot G_{m} B$.

We have proved
Proposition (2.17). There exists an integer $n \geqslant 0$ such that the conjugacy class of the algebraic operation $(G, G / H)$ in case $(C-\operatorname{tr}-1-\beta)$ is realized by ($G^{(n)}, G^{(n)} / H^{(n)}$).

We can also make explicit the operation ($G^{(n)}, G^{(n)} / H^{(n)}$) in terms of a local coordinate system.

Proposition (2.18). For an integer $n \geqslant 0$, the algebraic operation $\left(G^{(n)}, G^{(n)} / H^{(n)}\right)$ realizes an algebraic subgroup in Cr_{2} consisting of the following k-automorphisms of $k(x, y)$:

$$
(x, y) \longmapsto\left(\frac{a x+b}{c x+d}, \frac{\lambda y+f_{n}(x)}{(c x+d)^{n}}\right), \quad \text { where }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}, f_{n}(x) \in k[x]
$$

$\operatorname{deg} f_{n}(x) \leqslant n, \lambda \in k^{*}$ and x, y are independent variables over k.
Proof. Using the same coordinate system as in the proof of Proposition (2.11), the Proposition is proved in a similar way.

Proposition (2.19). For $n \geqslant 0$, the operation $\left(G_{n}, G_{n} / H_{n}\right)$ is a suboperation of ($G^{(n)}, G^{(n)} / H^{(n)}$).

Proof. In fact, consider a morphism of algebraic groups $\varphi: G_{n}=$ $U_{n+1} S L_{2} \rightarrow G^{(n)}=U_{n+1} \cdot G_{m} S L_{2}, \varphi(u \cdot g)=u \cdot 1 \cdot g$ for $u \in U_{n+1}, g \in S L_{2}$, then $\varphi^{-1}\left(H^{(n)}\right)=H_{n}$ and the Proposition is proved.

Summing up Proposition (2.10), Proposition (2.17) and Proposition (2.19), we get

Proposition (2.20). Let G be a connected algebraic subgroup of the Cremona group Cr_{2} of two variables. We assume that G is generically transitive and that G is not solvable. Let $(G, G / H)$ be a realization of G and U be the unipotent radical of G.
(1) The following are equivalent:
(i) The dimension of a U-orbit in G / H is 1 .
(ii) The dimension of any U-orbit in G / H is 1 .
(2) If one of the conditions (i), (ii) is satisfied, then there exists an integer $n \geq 0$ such that in Cr_{2} the conjugacy class of G is contained in the conjugacy class of ($G^{(n)}, G^{(n)} / H^{(n)}$).

Proof. Let us prove the assertion (1). It is sufficient to show (i) \Rightarrow (ii). For $g \in G, U g H=g g^{-1} U g H=g U H$ and the U-orbit $g H$ is the translation by g of the U-orbit $U H$. The assertion (2) is a consequence of Proposition (2.10), Proposition (2.17) and Proposition (2.19).

We shall see the conjugacy class of ($G^{(n)}, G^{(n)} / H^{(n)}$) is maximal in Cr_{2} for $n \geqslant 2$ (Theorem (2.25)) but not so for $n=0,1$ (Proposition (2.21) and Proposition (2.24)).

Proposition (2.21). In the Cremona group Cr_{2} of two variables, the conjugacy class determined by the almost effective realization ($G^{(1)}, G^{(1)} / H^{(1)}$) is a subgroup of the conjugacy class determined by an effective realization ($P G L_{3}, P_{2}$).

Proof. Let $p=\left\{\left(a_{i j}\right) \in S L_{3} \mid a_{1 j}=0, j=2,3\right\} . \quad P$ is a parabolic subgroup and $\left(S L_{3}, S L_{3} / P\right)$ is an almost effective realization of the conjugacy class of $\left(P G L_{3}, P^{2}\right)$. Let $\varphi: G^{(1)}=U_{(2)} \cdot G_{m} \cdot S L_{2} \rightarrow S L_{3}$ be defined by the formula,

$$
\varphi((a u+b v) \cdot t \cdot A)=\left(\begin{array}{lll}
& a \\
A & & b \\
0 & 0 & t^{-1}
\end{array}\right) \quad \text { for } a, b \in k, t \in k^{*}, A \in S L_{2}
$$

Then $\varphi^{-1}(p)=U_{(1)}^{\prime} \boldsymbol{G}_{m} \cdot B=H^{(1)}$ and φ defines a morphism $(\varphi, f):\left(G^{(1)}, G^{(1)} / H^{(1)}\right)$ $\rightarrow\left(S L_{3}, S L_{3} / P\right)$ of algebraic operations. Since $\varphi\left(G^{(1)}\right)$ has an open orbit on P^{2} and φ is injective, f is birational. The Proposition now follows from Proposition (1.10).

Case (C-tr-2). $\quad G$ is generically transitive and reductive.
Let R be the radical of G. Since $k=C$, there exists a semi-simple algebraic group G^{\prime} and an isogeny $\varphi: R \times G^{\prime} \rightarrow G$ such that the restriction of φ on R is an isomorphism. Let $(G, G / H)$ be an effective realization. By corollaire 1, p. 521, Demazure [3], the rank of $G \leq 2$. Since G_{2} contains no Lie subalgebra of codimension 2, we can exclude the simple algebraic group of which the Lie algebra is G_{2}. Hence there exist an algebraic group \tilde{G} and an isogeny $\psi: \tilde{G} \rightarrow G$ such that ψ is an isomorphism on the radical of \tilde{G} and \tilde{G} is isomorphic to one of the following: (i) $S L_{3}$, (ii) $S L_{2}$ $\times S L_{2}$, (iii) $\boldsymbol{G}_{m} \times S L_{2}$, (iv) $S L_{2}$, (v) $\boldsymbol{G}_{m} \times \boldsymbol{G}_{m}$. Since $(G, G / H)$ is of de Jonquières type, by Lemma (2.1) there exists a non-trivial morphism of law chunks of algebraic operations $(\varphi, f):(G, G / H) \rightarrow\left(P G L_{2}, P^{1}\right)$, hence the first group $S L_{3}$ is excluded. Let us determine all algebraic subgroup \tilde{H} $\subset \tilde{G}$ of codimension 2 such that
(*) the radical operates on ($\tilde{G} / \tilde{H})$ effectively and the algebraic operation $(\tilde{G}, \tilde{G} / \tilde{H})$ is almost effective and of de Jonquières type. This gives us almost effective realizations of all the group G in case (C-tr-2).

Lemma (2.22). Up to isomorphism, we have a list of all the algebraic subgroup of \tilde{G} of codimension 2 satisfying the condition (*):
group $\tilde{G} \quad$ subgroups \tilde{H}
$S L_{2} \times S L_{2} \quad B \times B, B$ is a Borel subgroup of $S L_{2}$
$\boldsymbol{G}_{m} \times S L_{2} \quad\left\{\left.t^{n} \times\left(\begin{array}{cc}t & 0 \\ x & t\end{array}\right) \right\rvert\, x \in k, t \in k^{*}\right\}, n$ is a non-negative
integer
$S L_{2} \quad U_{n}=\left\{\left.\left(\begin{array}{cc}s & 0 \\ x & s^{-1}\end{array}\right) \right\rvert\, x \in k, s^{n}=1\right\}, n$ is a non-negative integer

$$
\begin{aligned}
& H=\left\{\left.\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right) \right\rvert\, t \in k^{*}\right\} \\
& D_{\infty}=\left\{\left.\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right)\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)^{m} \right\rvert\, m=0,1, t \in k^{*}\right\}
\end{aligned}
$$

$$
\boldsymbol{G}_{m} \times \boldsymbol{G}_{m} \quad 1
$$

Proof of the Lemma. If $\tilde{G}=S L_{2} \times S L_{2}$, we show \tilde{H} is solvable. If \tilde{H} is not solvable, then there is a non-trivial morphism $S L_{2} \rightarrow \tilde{H}$. Hence, there is a non-trivial morphism $S L_{2} \rightarrow S L_{2} \times S L_{2}$. This morphism is, up to automorphism of $S L_{2}$, one of the following: (i) $x \mapsto(x, 1)$, (ii) $x \mapsto(1, x)$, (iii) $x \mapsto(x, x)$. The morphisms (i) and (ii) do not occur. For \tilde{H} does not contain any normal algebraic subgroup of positive dimension because ($\tilde{G}, \tilde{G} / \tilde{H})$ is almost effective. Let Δ denote the morphism (iii). The Lie algebra $s l_{2} \times s l_{2}$ is considered as an $s l_{2}$-module by Δ_{*}. Then, as $s l_{2}$-module, $s l_{2} \times s l_{2}$ is isomorphic to $s l_{2} \oplus s l_{2}$. Hence $\Delta_{*} s l_{2}$ is a maximal $s l_{2}$-invariant space and in particular maximal Lie algebra of $s l_{2} \times s l_{2}$. This proves there is no algebraic subgroup of $S L_{2} \times S L_{2}$ containing $\Delta\left(S L_{2}\right)$ and of codimension 2. Now we may assume \tilde{H} is solvable. Therefore the connected component \tilde{H}^{0} is contained in a Borel subgroup $B \times B$. Counting the dimension, we conclude $\tilde{H}^{0}=B \times B$. Since any parabolic subgroup is connected, $\tilde{H}=B \times B$ (Borel [1]).

If $G=\boldsymbol{G}_{m} \times S L_{2}, \tilde{H}$ is solvable. For, otherwise, \tilde{H} contains a normal subgroup of positive dimension $S L_{2}$. As \boldsymbol{G}_{m} operates on \tilde{G} / \tilde{H} effectively and \boldsymbol{G}_{m} is in the center of $\tilde{\boldsymbol{G}}, \boldsymbol{G}_{m} \cap \tilde{H}=\{1\}$ and we get an exact sequence

$$
\begin{aligned}
& 1 \longrightarrow \boldsymbol{G}_{m} \longrightarrow \boldsymbol{G}_{m} \cdot S L_{2} \xrightarrow{p} S L_{2} \longrightarrow 1, \\
& U \\
& \tilde{H} \sim B
\end{aligned}
$$

where p is the projection. Since the dimension of the image $p(\tilde{H})$ is 2 , $p(\tilde{H})$ is a Borel subgroup B of $S L_{2}$. We may assume $B=$ lower triangular matrices in $S L_{2}$. Now we conclude

$$
\tilde{H}=\left\{\left.t^{m} \times\left(\begin{array}{cc}
t & 0 \\
x & t
\end{array}\right) \right\rvert\, t \in k^{*}, x \in k\right\}
$$

for an appropriate integer m. Since m and $-m$ give the same subgroup, we may assume m is non-negative.

If $\tilde{G}=S L_{2}$, the result is well known. If $\tilde{G}=\boldsymbol{G}_{m} \times \boldsymbol{G}_{m}$, the assertion is trivial.

Proposition (2.23). The notation being as in Lemma (2.22), the conjugacy class in Cr_{2} determined by an almost effective realization ($G, G / H$) will be simply called the conjugacy class of ($G, G / H$).
(1) The conjugacy class of

$$
\left(\boldsymbol{G}_{m} \times S L_{2}, \boldsymbol{G}_{m} \times S L_{2} /\left\{\left.t^{n} \times\left(\begin{array}{cc}
t & 0 \\
x & t
\end{array}\right) \right\rvert\, t \in k, t \in k^{*}\right\}\right)
$$

is a subgroup of the conjugacy class of $\left(G^{(n)}, G^{(n)} / H^{(n)}\right)$, for $n \geq 0$. (Definition (1.9)).
(2) The conjugacy class of $\left(S L_{2}, S L_{2} / U_{n}\right)$ is a subgroup of the conjugacy class of $\left(G^{(n)}, G^{(n)} / H^{(n)}\right)$, for $n \geq 0$.
(3) The conjugacy class of $\left(S L_{2}, S L_{2} / T\right)$ is a subgroup of the conjugacy class of $\left(S L_{2} \times S L_{2}, S L_{2} \times S L_{2} / B \times B\right)$.
(4) The conjugacy class of $\left(S L_{2}, S L_{2} / D_{\infty}\right)$ is a subgroup of the conjugacy class of $\left(P G L_{3}, P_{2}\right)$.
(5) The conjugacy class of $\left(\boldsymbol{G}_{m} \times \boldsymbol{G}_{m}, \boldsymbol{G}_{m} \times \boldsymbol{G}_{m} / 1\right)$ is a subgroup of the conjugacy class of $\left(P G L_{3}, \boldsymbol{P}_{2}\right)$.

Proof. To prove the first assertion, by Proposition (1.10) it is sufficient to construct a morphism of algebraic operations

$$
\begin{aligned}
(\varphi, f) & :\left(\boldsymbol{G}_{m} \times S L_{2}, \boldsymbol{G}_{m} \times S L_{2} /\left\{\left.t^{n} \times\left(\begin{array}{cc}
t & 0 \\
x & t^{-1}
\end{array}\right) \right\rvert\, x \in k, t \in k^{*}\right\}\right) \\
& \longrightarrow\left(G^{(n)}, G^{(n)} / H^{(n)}\right)
\end{aligned}
$$

such that f is a birational morphism. Let $\alpha: G^{(n)}=U_{(n+1)} \cdot G_{m} \cdot S L_{2} \rightarrow G^{(n)}$ $=U_{(n+1)} \cdot \boldsymbol{G}_{m} \cdot S L_{2}$ be the inner automorphism $\alpha(x)=v^{n} \cdot x \cdot\left(-v^{n}\right)$ for $x \in G^{(n)}$. An easy calculation shows that

$$
\alpha\left(0 \cdot \boldsymbol{G}_{m} \cdot S L_{2}\right) \cap H^{(n)}=\left\{\left.0 \cdot t^{n} \cdot\left(\begin{array}{cc}
t & 0 \\
x & t^{-1}
\end{array}\right) \in \boldsymbol{G}_{m} \cdot U \cdot S L_{2} \right\rvert\, x \in k, t \in k^{*}\right\} .
$$

If we consider the composite map

$$
\boldsymbol{G}_{m} \times S L_{2} \xrightarrow{i} U_{(n+1)} \cdot G_{m} \cdot S L_{2} \xrightarrow{\alpha} U_{n+1} \cdot G_{m} \cdot S L_{2}
$$

where $i((t, A))=0 \cdot t \cdot A$ for

$$
t \in \boldsymbol{G}_{m}, \quad A \in S L_{2}, \quad(\alpha \cdot i)^{-1} H^{(n)}=\left\{t^{n} \times\left(\begin{array}{cc}
t & 0 \\
x & t^{-1}
\end{array}\right) \in \boldsymbol{G}_{m} \times S L_{2}\right\}
$$

and the first assertion is proved. As for the second assertion, by the
inclusion $S L_{2} \longleftrightarrow G_{m} \times S L_{2} A \mapsto(1, A),\left(S L_{2}, S L_{2} / U_{n}\right)$ is a suboperation of

$$
\left(\boldsymbol{G}_{m} \times S L_{2}, \boldsymbol{G}_{m} \times S L_{2} /\left\{t^{n} \times\left(\begin{array}{cc}
t & 0 \\
x & t^{-1}
\end{array}\right)\right\}\right)
$$

and we have shown (1). Therefore the assertion (2) is proved. To prove the assertion (3), we give only φ of morphism (φ, f) because f is uniquely determined by $f . \varphi: S L_{2} \rightarrow S L_{2} \times S L_{2}$ is defined by $\varphi(A)=\left(A,{ }^{t} A^{-1}\right)$. We have $\varphi^{-1}(B \times B)=H$. The assertion (4) is proved in Proposition (2.4). The assertion (5) is trivial.

As the conjugacy class realized by the algebraic operation ($G^{(1)}$, $G^{(1)} / H^{(1)}$) failed to be maximal (Proposition (2.21)), ($G^{(0)}, G^{(0)} / H^{(0)}$) is not maximal either.

Proposition (2.24). The conjugacy class determined by ($G^{(0)}, G^{(0)} / H^{(0)}$) is a subgroup of the conjugacy class realized by the almost effective algebraic operation $\left(S L_{2} \times S L_{2}, S L_{2} / B \times S L_{2} / B\right)$.

Proof. By abuse of notation, let B be the Borel subgroup of $P S L_{2}$ consisting of the matrices $\left(a_{i j}\right)_{1 \leq i, j \leq 2} \in P G L_{2}, a_{12}=0$. Then $\left(P G L_{2} \times P G L_{2}\right.$, $\left.P G L_{2} / B \times P G L_{2} / B\right)$ realizes the same conjugacy class as $\left(S L_{2} \times S L_{2}, S L_{2} / B\right.$ $\left.\times S L_{2} / B\right)$. It is sufficient, by Proposition (1.3) and Proposition (1.10), the construct a morphism

$$
(\varphi f):\left(G^{(0)}, G^{(0)} / H^{(0)}\right) \longrightarrow\left(P G L_{2} \times P G L_{2}, P G L_{2} / B \times P G L_{2} / B\right)
$$

of algebraic operations such that f is birational. Since both spaces are homogeneous, f is uniquely determined by φ. Let $\varphi: G^{(0)}=U_{1} \cdot G_{m} \cdot S L_{2} \rightarrow$ $S L_{2} \times S L_{2}$ be defined by

$$
\varphi(w, t, A)=\left(\left(\begin{array}{cc}
t & w \\
1 & 0
\end{array}\right), A\right)
$$

for $w \in U_{1}, t \in \boldsymbol{G}_{m}, A \in S L_{2}$. Then φ is a morphism of algebraic groups and $\varphi^{-1}(B \times B)=0 \cdot 1 \cdot B$, hence φ gives an open immersion f.

Theorem (Enriques) (2.25). Let G be a connected algebraic subgroup of the Cremona group Cr_{2} of two variables.
(1) The conjugacy class of G in Cr_{2} is a subgroup of the conjugacy class realized by one of the following almost effective algebraic operations
(i) $\left(P G L_{3}, P_{2}\right)$,
(ii) $\quad\left(G^{(n)}, G^{(n)} / H^{(n)}\right), n=2,3, \cdots$
(iii) $\left(P G L_{2} \times P G L_{2}, P G L_{2} \times P G L_{2} / B \times B\right), B$ is a Borel subgroup of $P G L_{2}$.
(2) There exists no inclusions among the conjugacy classes realized by the almost effective algebraic operations (i), (ii), (iii).

Proof. The second assertion follows from Proposition (1.10) if we notice that there is no inclusion among the Lie algebras of the conjugacy class of the almost effective realizations (i), (ii), (iii). The first assertion is already verified under several additional assumptions on G :
(1) G is primitive (A);
(2) G is imprimitive but not of de Jonquières type ((B), Corollary (2.3), Proposition (2.4));
(3) G is of de Jonquières type, generically transitive and neither solvable nor reductive ((C-tr-1), Proposition (2.20), Proposition (2.21), Proposition (2.24);
(4) G is of de Jonquières type, generically transitive and reductive ((C-tr-2), Lemma (2.22) Proposition (2.23)).

The rest of the paper is devoted to the proof of the Theorem. The proof will be done as follows:
(5) G is of de Jonquières type, generically transitive and solvable (Proposition (2.26));
(6) G is generically intransitive (C-intr).

Case (C-tr-4). $\quad G$ is generically transitive and solvable.
In this case Theorem (2.25) follows from the following Proposition.
Proposition (2.26). Let G be a (connected) algebraic subgroup of the Cremona group Cr_{2} of 2 variables. If G is generically transitive and solvable, G is contained in one of the conjugacy classes of the almost effective realizations (i), (ii), (iii) of Theorem (2.25).

Proof. By Corollaire 1, p. 521, Demazure [3], we may assume G is not a torus. Let U denote the unipotent part of G and U_{z} its center. If U_{Z} has 2 dimensional orbit, then by Lemma (1.12) G is a suboperation of affine transformation and hence a suboperation of ($P G L_{2}, P_{2}$). Thus we may assume the orbits of U_{z} are 1 dimensional as in Proposition (2.20). Now Proposition (2.26) follows from Proposition (2.21), Proposition (2.24) and from

Lemma (2.27). Under the same assumption as in Proposition (2.26), if
the dimension of the U_{Z}-orbits are $1, G$ is a subgroup of the almost effective realization $\left(G^{(n)}, G^{(n)} \mid H^{(n)}\right.$) for an appropriate integer $n \geqslant 0$.

Proof of the Lemma. Let $(G, G / H)$ be an effective realization of G. The morphism of algebraic operations $(G, G / H) \rightarrow\left(G, G / U_{z} H\right)$, gives an exact sequence

$$
\begin{equation*}
1 \longrightarrow N \longrightarrow G \xrightarrow{\pi} G^{\prime} \longrightarrow 1 . \tag{2.28}
\end{equation*}
$$

G^{\prime} is a solvable subgroup of $P G L_{2}$. Hence, G^{\prime} is isomorphic to $\boldsymbol{G}_{a}, \boldsymbol{G}_{m}$ or the affine transformation group $G T A_{1}$ of 1 variable. The proof of Lemma (2.27) is given under the hypotheses $G^{\prime} \simeq$ affine transformation group $G T A_{1}$. The proof in other cases is similar and simpler, hence omitted. Therefore from now on we assume $G^{\prime} \simeq G T A_{1}$. Let U be the unipotent part of the solvable group G and T a (fixed) maximal torus. The unipotent part N_{U} of N is abelian for the same reason as in case (C-tr-1). The maximal torus T acts on U and on its center U_{z} by inner automorphism. Since N_{U} is normal in U, N_{U} is a T-module. Since by Lemma (2.7) we have $N_{U}=U$ $\cap N$, restricting exact sequence (2.28) on U, we get an exact sequence

$$
\begin{equation*}
0 \longrightarrow N_{U} \longrightarrow U \xrightarrow{\pi} \boldsymbol{G}_{a} \longrightarrow 0 \tag{2.29}
\end{equation*}
$$

of T-groups.
Sublemma (2.30). Let S be a torus and U_{1} be a unipotent group. We assume S acts on U_{1}. Let U_{2} be a S-invariant closed normal subgroup of U_{2}. Let U_{3} be the quotient S-group U_{1} / U_{2};

$$
\begin{equation*}
1 \longrightarrow U_{2} \longrightarrow U_{1} \xrightarrow{\pi} U_{1} / U_{2} \longrightarrow 1 . \tag{2.31}
\end{equation*}
$$

If U_{1} / U_{2} is 1 dimensional (hence U_{1} / U_{2} is isomorphic to G_{a}), then exact sequence (2.31) of S-groups, S-splits. Namely, there exists an S-morphism $s ; U_{1} / U_{2} \rightarrow U$ such that $\pi \circ s=\mathrm{Id}$.

Proof. Let Z be the center of U_{1}. We prove the existence of S-section s by induction on the dimension of U_{1}. Before we begin the induction, we notice that if U_{1} is abelian, the Sublemma follows from the semisimplicity of S-module U_{1}. In particular, if the restriction $\pi \mid Z$ is surjective, then an S-section exists. If $\operatorname{dim} U_{1}=1$, then lemma is obvious. If $\pi \mid Z: Z \rightarrow U_{1} / U_{2}$ is surjective, then the an S-section exists as we noticed above. If $\pi \mid Z$ is not surjective, then $\pi(Z)=0$ and we get a commutative diagram of S-groups,

Since $\operatorname{dim} U / Z<\operatorname{dim} U_{1}$, by induction hypothesis there exists an S-equivariant section s of $U_{1} / Z \rightarrow U_{1} / U_{2}$. If we restrict the vertical exact sequence on $s\left(U_{1} / U_{2}\right)$, an S-equivariant section of p over $s\left(U_{1} / U_{2}\right)$ exists by the same arguments as in the proof of Lemma (1.14).

Let us come back to the proof of Lemma (2.27). By sublemma (2.30), there exists a T-section s of exact sequence (2.29). $s\left(G_{a}\right) T$ is a closed subgroup of G. Since $s\left(\boldsymbol{G}_{a}\right) T$ is solvable, there exists a 1 dimensional $s\left(\boldsymbol{G}_{a}\right) T$-invariant space V of $s\left(\boldsymbol{G}_{a}\right) T$-module U_{z}. We put $W=V \cdot s\left(\boldsymbol{G}_{a}\right)$. Since 1 dimensional representation V of G_{a} is trivial, W is a closed subgroup of G isomorphic to $\boldsymbol{G}_{a} \times \boldsymbol{G}_{a}$. The orbit $W \cdot H$ in G / H coincides with G / H. To see this, let us consider a commutative diagram;

and we observe that $W \cdot U_{z} H=G / U_{z} H$ and that the both fibrations have the same fibres. In fact, $W \cdot U_{z} H=$ the open orbit of $G_{a}\left(\subset G^{\prime}\right)$ in $A^{1}=$ $G / U_{z} H$ and $W \cdot U_{z} H=G / U_{z} H$. As for fibres, $A^{1} \simeq V \cdot H \subset U_{z} H \simeq A^{1}$ hence $V \cdot H=U_{z} \cdot H$. Since W has a 2 dimensional orbit and W is abelian, W is canonically isomorphic to the orbit $W \cdot H$. Let us fix an isomorphism $\boldsymbol{G}_{a} \times \boldsymbol{G}_{a} \simeq W$ and a coordinate system on \boldsymbol{G}_{a}. Then they define a coordinate system (y, x) on W hence on $W \cdot H=G / H$. We use this coordinate system (y, x) to write explicitly the operation $(G, G / H)$. In order to show G is a subgroup of the conjugacy class of the almost effective realization ($G^{(n)}, G^{(n)} / H^{(n)}$) for an appropriate integer $n \geq 0$, it is sufficient
to prove the operations of the maximal torus T and the unipotent part U are contained in the group of the birational automorphisms in Proposition (2.18), when they are expressed by using the above coordinate system on G / H.

As in the proof of Lemma (1.12), it is easy to see that the operation of the maximal torus T is a suboperation of the operation of 2 dimensional torus; $(y, x) \rightarrow\left(t_{1}^{a} y, t_{2}^{b} x\right)$. Since U is the semi-direct product $N_{U} \cdot s\left(\boldsymbol{G}_{a}\right)$, we have to write the operations of $N_{U}=U \cap N$ and $s\left(\boldsymbol{G}_{a}\right)$ using the coordinate system (y, x). The operation of $s\left(G_{a}\right)$ is $(y, x) \rightarrow(y, x+c)$ for $c \in k$. As we have seen above N_{U} is abelian and is a direct sum $N_{U}=\left(N_{U} \cap H\right) \cdot V$. The operation of V is $(y, x) \rightarrow(y+d, x)$ for $d \in k$. Therefore it suffices to write the operation of $N_{U} \cap H$. To describe the operation of $N_{U} \cap H$, we need some notations. Let us take a base e_{1}, \cdots, e_{l} of N_{U} such that the $s\left(\boldsymbol{G}_{a}\right)$-module structure on N_{U} is given by, for $x \in \boldsymbol{G}_{a}$,

$$
\left(x e_{1}, x e_{2}, \cdots, x e_{l}\right)=\left(e_{1}, e_{2}, \cdots, e_{l}\right)\left(f_{i j}(x)\right)
$$

where $f_{i j}(x) 1 \leq i, j \leq l$ are polynomials in x and the matrix $F(z)=\left(f_{i j}(x)\right)$ is lower triangular ($f_{i j}(x)=0$ if $1 \leq i<j \leq l$) and $f_{i i}(x)=1$ for $1 \leq i \leq l$ (Theorem (Kolchin) LA 5.7, Serre [11]). By Lemma (1.8), $s\left(\boldsymbol{G}_{a}\right)$-invariant subspace of N_{U} is 1 dimensional. Therefore $\left\{\lambda e_{l} \mid \lambda \in k\right\}=V$. Let $\sum_{i=1}^{n} a_{i} e_{i}$ $=w \in N_{U}$. To write the operation of w using the coordinate system (y, x) is equivalent to determining (y^{\prime}, x^{\prime}) such that

$$
\begin{equation*}
\left(\sum_{i=1}^{l} a_{i} e_{i}\right)\left(y e_{i} \cdot x\right)=\left(y^{\prime} e_{i} \cdot x^{\prime}\right)\left(\sum_{i=1}^{l} b_{i} e_{i}\right) \quad \text { in } N_{U} \cdot s\left(G_{a}\right) \tag{2.32}
\end{equation*}
$$

where x, x^{\prime} are considered as elements of $s\left(G_{a}\right)$ and $\sum_{i=1}^{l} b_{i} e_{i} \in N_{U} \cap H$. From (2.32), we get

$$
\left(\sum_{i=1}^{l} a_{i} e_{i}+y e_{\imath}\right) \cdot x=\left(y^{\prime} e_{l}+x^{\prime}\left(\sum_{i=1}^{l} b_{i} e_{i}\right) x^{\prime-1}\right) \cdot x^{\prime}
$$

Hence $x=x^{\prime}$ and

$$
\begin{equation*}
\sum_{i=1}^{l} a_{i} e_{i}+y e_{l}=y^{\prime} e_{l}+\sum_{i=1}^{l} \sum_{k=1}^{l} b_{i} f_{k i}(x) e_{k} \tag{2.33}
\end{equation*}
$$

Sublemma (2.34). There exist $\lambda_{i} \in k, 1 \leq i \leq l-1$ such that, for any $\sum_{i=1}^{l} a_{i} e_{i} \in N_{U} \cap H$, the coefficient a_{l} is equal to a linear combination $\sum_{i=1}^{l-1} \lambda_{i} a_{i}$.

Proof. $\quad N_{U} \cap H$ is a linear subspace of N_{U} of codimension 1 and since
the operation of $N_{U} \cdot s\left(\boldsymbol{G}_{a}\right)$ is transitive and effective, $N_{U} \cap H$ contains no $s\left(\boldsymbol{G}_{a}\right)$-invariant subspace of positive dimension. Hence $\left(N_{U} \cap H\right) \cap V=0$. Let $p(r e s p . q): N_{U}=k e_{1} \oplus k e_{2} \oplus \cdots \oplus k e_{l} \rightarrow k e_{1} \oplus k e_{2} \oplus \cdots \oplus k e_{l-1} \quad$ (resp. $k e_{l}$) be the projection. The restriction $p_{l} \mid N_{U} \cap H$ is an isomorphism because $p \mid N_{U} \cap H$ is injective and because $\operatorname{dim} N_{U} \cap H=l-1$. Thus, $q \circ\left(p \mid N_{U} \cap H\right)^{-1}$ is a homomorphism and the sublemma is proved. q.e.d.

From (2.33), we can determine

$$
a_{1}=b_{1} f_{11}(x)=b_{1}, \quad a_{2}=b_{1} f_{21}(x)+b_{2} f_{22}(x)=a_{1} f_{21}(x)+b_{2}
$$

and inductively $b_{i}, 1 \leq i \leq l-1$, hence also b_{l} by sublemma (2.34), are expressed as linear combinations of a_{i} 's whose coefficients are polynomials in x. Therefore $y^{\prime}=y+$ linear combination of a_{i} 's whose coefficients are polynomials in x. The operation of $w=\sum_{i=1}^{l} a_{i} e_{i} \in N_{U}$ on $W \cdot H \subset G / H$ is written in terms of coordinate system $(y, x) ;(y, x) \mapsto\left(y^{\prime}, x^{\prime}\right)-(y+$ linear combination of a_{i} 's whose coefficients are polynomial in $\left.x, x\right)$. Therefore, for an appropriate n the operations of $T, s\left(\boldsymbol{G}_{a}\right), V, N_{U}$ (hence of $G=\left(\left(N_{U}\right.\right.$, $\left.V) s\left(G_{a}\right)\right) T$) is contained in the k-automorphism group in Proposition (2.18) and Lemma (2.27) is proved.

Case (C-intr). G is generically intransitive.
Let (G, X) be a realization of G. Then by Theorem 2, p. 407, Rosenlicht [7], there exists a morphism $(\varphi, f):(G, X) \rightarrow(1, V)$ of law chunks of algebraic operation such that $\operatorname{dim} V=1$ and f is dominant. By the Lüroth theorem, V is rational. Replacing X by an open subset of X, we may assume (φ, f) is a morphism of algebraic operations and V is non-singular.

This case is divided into two subcases: (i) G is reductive, (ii) G is not reductive. We shall see in the second subcase G is necessarily solvable.

Bubcase (C-intr-1). G is generically intransitive and reductive.
Since the fibre of f is 1 dimensional, it follows from our assumption and Lemma (1.22) that G is a algebraic subgroup of $P G L_{2}$. Hence G is either \boldsymbol{G}_{m} or $P G L_{2}$. If $G=\boldsymbol{G}_{m}$, then by Corollaire 1, p. 521, Demazure [3], $\left(G_{m}, X\right)$ is a suboperation of $\left(P G L_{3}, P^{2}\right)$. Thus, we assume $G=P G L_{2}$. Then $f: X \rightarrow V$ is P^{1}-bundle. Since the Brauer group of a curve vanishes (cf. Grothendieck [5]), $f: X \rightarrow V$ is a locally trivial $P^{1}=$ bundle. Replacing V by an open subset V^{\prime} and X by $f^{-1}\left(V^{\prime}\right)$, we may assume f is trivial, namely $X \simeq V \times P^{1}$. Let $s: V \rightarrow X$ be a section and we choose a Borel
subgroup B of $P G L_{2}$. Let us recall the following well known facts valid for any semi-simple group and its Borel subgroup.
(2.35.1) Any Borel subgroup of $P G L_{2}$ is conjugate to the Borel group B and the normalizer of B coincides with B itself. This gives a 1:1 correspondence

$$
P G L_{2} / B \xrightarrow{\Psi}\left\{\text { Borel subgroups of } P G L_{2}\right\} \quad\left(g B \longrightarrow g B g^{-1}\right) .
$$

(2.35.2) The fibering given by the projection $p: P G L_{2} \rightarrow P G L_{2} / B$ is locally trivial for the Zariski topology.

Let us now consider the map $F: V \rightarrow P G L_{2} / B$ defined as follows; $v \in$ $V, v \mapsto \Psi^{-1}$ (stabilizer at $s(v)$). By (2.35.2), replacing V by an open subset, we may assume there exist a morphism $\tilde{F}: V \mapsto P G L_{2}$ such that the diagram

is commutative. Let $\left(1 \times P G L_{2}, V \times P G L_{2} / B\right)=\left(P G L_{2}, V \times P G L_{2} / B\right)$ be the product operation. Let $f: V \times P G L_{2} / B \rightarrow X$ be a morphism defined by $h((z, g B))=g \tilde{F}(z)^{-1} s(z)$. The morphism h is well-defined and is an isomorphism. Then (Id, h): $\left(P G L_{2}, V \times P G L_{2} / B\right) \rightarrow\left(P G L_{2}, X\right)$ is an isomorphism of algebraic operations. Hence (G, X) is considered as a suboperation of the operation (iii) of Theorem (2.25).

Subcase (C-intr-2). G is generically intransitive and not reductive.
Let U be the unipotent radical of G. By Theorem 2, p. 407, Rosenlicht [7] we may assume there exist a non-singular rational curve V and a morphism of algebraic operations $(1, f):(U, X) \rightarrow(1, V)$ such that the fibres of f are U-orbits and f is faithfully flat. Hence the fibres of f are isomorphic to A^{1}. Since U is normal, the operation of G respects the fibration $f: X \rightarrow V$. As the dimension of G-orbits $1, G$ operates trivially on V. Therefore we get a morphism of algebraic operations $(1, f):(G, X) \rightarrow(1, V)$. Let G^{\prime} be a semi-simple, closed, connected subgroup of G. Then, by Lemma (1.21) G^{\prime} is a subgroup of Aut A^{1} which is solvable. Hence $G^{\prime}=1$ and G is solvable. By Lemma (1.21), the rank of $G \leq 1$. Since the unipotent part U of respects the fibration $f: X \rightarrow V$ whose fibre is A^{1}, the operation of U on each fibre of f is abelian and hence U is abelian. Consequently,
U is isomorphic to $\boldsymbol{G}_{a}^{\oplus r}$ for a certain integer r. By Theorem 10, p. 426, Rosenlicht [9], we may assume f is trivial i.e., $X=V \times A^{1}$. Taking V smaller, we may assume V is non-singular and affine. To define an operation of $\boldsymbol{G}_{a}^{\oplus r}$ on X respecting the fibering f is equivalent to giving a morphism of group schemes over $V, V \times G_{a}^{\oplus r} \rightarrow$ Aut $_{V} V \times A^{1}=V \times$ Aut A^{1} and hence a morphism of group schemes over $V, V \times \boldsymbol{G}_{a}^{\oplus r} \rightarrow V \times \boldsymbol{G}_{a}$. Therefore, there is a $1: 1$ correspondence:

$$
\begin{gathered}
\text { \{operations of } \left.\boldsymbol{G}_{a}^{\oplus r} \text { on } X \text { respecting the fibrations } f\right\} \stackrel{1: 1}{\longleftrightarrow} \\
\operatorname{Hom}_{V-\text { group scheme }}^{\longleftrightarrow}\left(V \times \boldsymbol{G}_{a}^{\oplus r}, V \times \boldsymbol{G}_{a}\right) \simeq H^{0}\left(V, O_{v}\right)^{\oplus r} .
\end{gathered}
$$

Hence there exist $f_{1}, f_{2}, \cdots, f_{r} \in H^{0}\left(V, O_{v}\right)$ such that the operation of $\boldsymbol{G}_{a}^{\oplus r}$ $=U$ on $V \times A^{1}$ is given by $(x, y) \mapsto\left(x, y+\sum_{i=1}^{r} a_{i} f_{i}\right)$ for $\left(a_{1}, a_{2}, \cdots, a_{r}\right) \in$ $\boldsymbol{G}_{a}^{\oplus r}$. To normalized this operation, let \bar{V} be the non-singular compactification of V so that $\bar{V} \simeq P^{1}$. Let $\left\{P_{1}, P_{2}, \cdots, P_{s}\right\}=\bar{V}-V$. As a local coordinate on V, we take a global coordinate on $A^{1}=\bar{V}-P_{s}$. Let $g \in$ $H^{0}\left(V, O_{V}\right)$ such that g^{-1} is also regular on V and such that $g f_{i} \in H^{0}(\bar{V}-$ $\left.P_{s}, O_{\nabla-P_{s}}\right)$ for $1 \leq i \leq r$. If we twist the coordinate y by $(x, y) \mapsto(x, g(x) u)$, the operation of $U=G_{a r}^{\oplus r}$ becomes $(x, y) \rightarrow\left(x, y+\sum_{i=1}^{r} a_{i} g(x) f_{i} x\right)$ and hence U is a suboperation of Proposition (2.20) for suitable n. It remains to control the operation of $\boldsymbol{G}_{m}(\subset G)$ on the fibre. To define a \boldsymbol{G}_{m} operation on $V \times A^{1}$ respecting the fibration is equivalent to giving a morphism of group schemes over $V, V \times \boldsymbol{G}_{m} \rightarrow \mathrm{Aut}_{V} V \times \boldsymbol{A}^{1}=V \times$ Aut \boldsymbol{A}^{1}. Since any 1 dimensional torus in Aut \boldsymbol{A}^{1} is conjugate to a fixed 1 dimensional torus, to define a \boldsymbol{G}_{m} operation on $V \times \boldsymbol{A}^{1}$ is equivalent to give a morphism $V \rightarrow$ Aut $\boldsymbol{A}^{1} /$ Normalizer of $\boldsymbol{G}_{m}=$ Aut $\boldsymbol{A}^{1} / \boldsymbol{G}_{m} \simeq \boldsymbol{A}^{1}$. As Aut $\boldsymbol{A}^{1} \rightarrow$ Aut $\boldsymbol{A}^{1} / \boldsymbol{G}_{m}$ has a section, we may assume as in (C-intr- 1). If we change the coordinate by $(x, y) \mapsto(x, y+f(x))$ for a certain $f \in H^{0}\left(V, O_{V}\right)$, the $\boldsymbol{G}_{m}(\subset G)$ operation is given by $(x, y) \mapsto(x, t y)$ for $t \in \boldsymbol{G}_{m}$. Since the coordinate change $(x, y) \mapsto(x, y+f(x))$ does not affect the operation of $U=G^{\oplus r}, G$ is a suboperation of Proposition (2.20) for a suitable n. This completes the classification in Case (C-intr), hence the proof of Theorem (2.25).

As a concluding remark, let us notice the maximal connected algebraic groups in Cr_{2} are related to the relatively minimal models of the rational surfaces. The homogeneous space $G^{(n)} / H^{(n)}$ is an \boldsymbol{A}^{1}-bundle over $G^{(n)} /$ $U_{n+1} H^{(n)}=P^{1}$. Since the $S L_{2}$-orbit $S L_{2} \cdot U_{n+1} H^{(n)}=S L_{2} / B=P^{1}$, the A^{1}-bundle $G^{(n)} / H^{(n)} \rightarrow G^{(n)} / U_{n+1} H^{(n)}=P^{1}$ has a section hence the \boldsymbol{A}^{1}-bundle is a line
bundle. It is easy to see $G^{(n)} / H^{(n)}$ is isomorphic to $V\left(\mathcal{O}_{P_{1}}(n)\right)$ over \boldsymbol{P}^{1} and ($G^{(n)}, V\left(\mathcal{O}_{P_{1}}(n)\right)$) is equivariantly completed to (Aut F_{n}, F_{n}) where $F_{n}=$ $P\left(\mathcal{O}_{P^{1}} \oplus \mathcal{O}_{P_{1}}(n)\right)$. Since F_{n} is projective, Aut F_{n} is an algebraic group. By the maximality of $G^{(n)}$ in $\mathrm{Cr}_{2}, G^{(n)}=A u t^{0} F_{n}$. The rational surfaces \boldsymbol{P}^{2}, $F_{n}(n \geqslant 2), \quad P G L_{2} / B \times P G L_{2} / B=P^{1} \times P^{1}$ are exactly relatively minimal models of rational surfaces. We have proved

Theorem (2.36). The maximal connected algebraic groups in Cr_{2} are exactly the connected components of 1 of the automorphism groups of the relatively minimal models of rational surfaces.

References

[1] Borel, A., Linear algebraic groups, Benjamin, New York 1969.
[2] Chevalley, C., Théorie des groupes de Lie, Hermann, Paris, 1968.
[3] Demazure, M., Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Scient. Ec. Norm. Sup., 4e series, 3 (1970), 507-588.
[4] Enriques, F., Sui gruppi continui di transformazioni crenomiane nel piano, Rendic. Accad. dei Lincei, 1893, 468-473.
[5] Grothendieck, A., Le groupe de Brauer, I, II, Dix exposés sur la cohomologie des schemas, North-Holland, Amsterdam, 1968, 46-66, 67-87.
[6] Morosoff, V. V., Sur les groupes primitifs, in Russian with French summary, Mat. Sb. N.S., 5 (47) (1939), 355-390.
[7] Rosenlicht, M., Some basic theorems on algebraic groups, Amer. J. of Math., 78 (1956), 401-443.
[8] Serre, J.-P., Groupes algébriques et corps de classes, Hermann, Paris, 1959.
[9] - Lie algebras and Lie groups, Benjamin, New York, 1965.
[10] ——, Algèbres de Lie semi-simples complexes, Benjamin, New York, 1966.
[11] Sumihiro, H., Equivariant completion, J. Math. Kyoto Univ., 14 (1974), 1-28.
[12] Umemura, H., Sur les sous-groupes algébriques primitifs du groupe de Cremona à trois variables, Nagoya Math. J., 79 (1980), 47-67.
[13] -, Maximal algebraic subgroups of the Cremona group of three variables, Nagoya Math. J., 87 (1982), 59-78.
[14] -, On the maximal connected algebraic subgroups of the Cremona group II, in preparation.
[15] Weil, A., On algebraic group of transformations, Amer. J. Math., 77 (1955), 355-391.

Nagoya University

[^0]: Received April 30, 1981.

[^1]: ${ }^{*)}$ If $\operatorname{dim} G / H=1,(G, G / H)$ is a suboperation of $\left(P G L_{2}, P^{1}\right)$.

