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A ZG-module A is said to have an/-decomposition if A = A1 @ A* in which Af is a ZG-submodule of A such
that each irreducible ZG-factor of Af as an abelian group is finite and the ZG-submodule A? has no finite
irreducible ZG-factors. In this paper, we prove that: if G is a hyperfinite group then any artinian ZG-module A
has an/-decomposition, which gives a positive answer to the question raised by D.I. Zaitzev in 1986.
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If G is a locally soluble hyperfinite group, then it was known that any minimal (or
artinian), maximal (or noetherian), or minimax ZG-module A has an /-decomposition,
that is, A = Af © A? in which Af is a ZG-submodule of A such that each irreducible
ZG-factor of Af as an abelian group is finite and the ZG-submodule A? of A has no
finite irreducible ZG-factors (see [1, 2, and 3]). In the above results, is the locally soluble
condition necessary? This question was asked by Zaitzev in 1986 [3]; we give a positive
answer for the artinian case. That is, we prove the following

Theorem. / / G is a hyperfinite group, then any artinian ZG-module A has an
f-decomposition.

In order to prove the theorem, we need some lemmas.

Lemma 1. Let G be a group, x an element of G, A a ZG-module with pA = 0for some
prime p, and B a nonzero subset of A. If also x is of order p, then B(x— 1)#B.

Proof. Suppose B(x — \) = B then for 0 / a e B we have

a = ai(x — l) = a2{x—l)2= ••• =am(x— l ) p

a (rP— U — 0am\x l ) ~ u >

a contradiction.
The following lemma, though easy, is the key to our removal of the solubility
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hypothesis. We emphasise that S is assumed only to be a normal subset; that is, Sg = S
for all g e G.

Lemma 2. Let G be a group, S a normal subset of G and A a ZG-module. Then CA(S)
and [A, S] = £ X 6 S A(x ~ 1) are I-G-submodules of A.

The proofs of Lemma 2 and the well-known Lemma 3 are left to the reader.

Lemma 3. Let G be a group, x an element of G, and H a subgroup of G contained in
the centralizer CG{x) of x in G. If A is a ZG-module, then for any ZH-submodule B of A
we have B(x— 1) and C^x) are ZH-submodules of A and B/C^x) =ZH B(x— 1).

Lemma 4. Let G be a hyperfinite group and A an artinian ZG-module such that pA = 0
for some prime p. If the irreducible ZG-factors of A as abelian groups are all finite, then A
is finite.

Proof. Suppose A is infinite, then by the artinian condition we may assume each
proper ZG-submodule of A is finite. We may also assume that G acts faithfully on A. If
G were finite then A would be artinian as a Z-module and so would be finite, therefore
we may assume that G is infinite.

Let B be a proper ZG-submodule of A and let H = CG(B), then H is a normal
subgroup of finite index in G. So H contains a nontrivial finite subgroup K which is
normal in G (by G being hyperfinite). Let q be a prime factor of the order of K and let
S = {xeK; x is of order q). For G^C^S), since G^CG{K) and G/CG(K) is finite so Gj
is a subgroup of finite index in G. Thus A is an infinite artinian ZGX -module. Therefore
A contains a least ZG-^— submodule Ax such that Ax is infinite, B<AU and each proper
ZGj-submodule of / I , as an abelian group is finite. Since CA(S) is a ZG-submodule of A
(Lemma 2) and B£CA(S)<A so CA(S) as an abelian group is finite. Thus CAl(S) =
A1 nCA(S) is a proper ZG-submodule of Ax and B^CAi(S). Hence there exists xoeS
such that B^CAl(x0)<A1. Let G2 = CG(x0), then Gi^Gi and so G2 is of finite index in
G. Clearly there exists a least ZG 2-submodule A2 of A such that A2 is an infinite
artinian ZG2-module, each proper ZG2-submodule of A2 as an abelian group is finite,
and Ai is contained in A2. For x o eG 2 , if | x o | = q ^ p then, by Fitting's lemma,
A2 = lA2,<x0>~] + CA2(<x0>). Since B |C x , (x 0 )<^ , so B^CA2(<x0>)<A2 and
then [A2, < x o > ] and C^2(<x0>) are nonzero proper ZG2-submodules of A2. Thus
[A2, <x o > ) are finite and so A2 is finite, a contradiction. Therefore |xo | =q=p. Since
B^CAt{x0)<A1 and A2(x0— 1)<A2 (Lemma 1), we have B^CA2{x0)<A2 and so both
CAi(x0) and A2/CA2(x0) =ZG2(A2(x0 — l)) are finite. Hence A2 is finite, a contradiction
again. Thus the result holds.

Lemma 5. / / G is a hyperfinite group and A an artinian ZG-module all of whose
irreducible ZG-factors are finite, then A as an abelian group is Cernikov and G/CG(A) is
finite.
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Proof. This is similar to the proof of Theorem 3 in [2].

Proof of Theorem. Suppose A does not have an /-decomposition, then by the
artinian condition we may assume that each proper ZG-submodule of A has one. Since
G is locally finite and A is artinian, A is periodic and further A is a p-group for some
prime p. Let M be the sum of all proper ZG-submodules of A; then M has an
/-decomposition and so M^A. Thus M is the unique maximal submodule of A. We
may assume that G acts faithfully on A and consider the irreducible ZG-image A/M. (1)
If AjM is finite then we may assume M = Mf by investigating A/Mf; similarly, (2) if
A/M is infinite we assume M = Mf. Also, it is clear that G is infinite.

Case 1. A/M is finite and M =
In this case, let H = C^A/M), then G/H is finite and so H contains a nontrivial finite

subgroup K which is normal in G. Let q be a prime factor of the order of K for some
prime q and let S = {xeK; x is of order q). For G1 = CG(S), we have G^CG{K) and so
G, is of finite index in G. Therefore A is an artinian ZG—module and then A contains a
least ZGj-submodule Ax such that A1 is not contained in M. Then A^/Axr\
M)( = zcMi+M)/M) is a finite irreducible ZGrmodule. For xeS, since S^K^H =
CG(A/M) we have AJCAl(x) { = zG,Ai(x — l)^M) has no nonzero finite ZGrfactors and
then CAl(x) is not contained in M. Thus CAl(x) = Al for any xeS and then CAl(S) = Ai,
which shows that / l ^ C ^ S ) . So the ZG-submodule CA(S) of A is not contained in M
and then C (̂S) = A, which is contrary to G being faithful on /I. Case 1 is proved.

Case 2. A/M is infinite and M = Mf.
In this case, M as an abelian group is Cernikov and G/CG(M) is finite, by Lemma 5.

Consider A as a ZGj-module, where Gl = CG(M). Then A is artinian and so contains a
least ZG-submodule Av which is not contained in M. As Gl contains a nontrivial finite
subgroup F which is normal in G so we must have Al^CAl(F), since otherwise
/ l igC^F) would imply that CA{F) = A, contrary to the faithfulness of G. Since
CAl{F)^Ml( = A1nM) and AJM^z^A^ + M^M) is irreducible, CAl(F) = M1. Let
G2 = CGl(F), then GJG2 is finite and then At is an artinian ZG2-module. Let A2 be a
least ZG2-submodule of At not contained in M. By C/(|(F) = M1 we have CM(F) =
M2( = A2nCAt(F) = A2 n Mt =A2 nAtn M = A2 nM), it implies that there exists x o eF
such that A2=£CA2{x0)(^M2). Therefore A2(x0— l)( = zG2A2/CAt(x0)) is an infinite
irreducible ZG2-submodule of A2 and then of A. Thus A contains an infinite irreducible
ZG-submodule generated by A2(x0— 1) and then A has an /-decomposition, a contradic-
tion. Case 2 is proved.

By the above proof, the theorem is true.
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