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Abstract

One of the fundamental principles driving diversity or homogeneity in domains such as

cultural differentiation, political affiliation, and product adoption is the tension between two

forces: influence (the tendency of people to become similar to others they interact with) and

selection (the tendency to be affected most by the behavior of others who are already similar).

Influence tends to promote homogeneity within a society, while selection frequently causes

fragmentation. When both forces act simultaneously, it becomes an interesting question to

analyze which societal outcomes should be expected.

To study this issue more formally, we analyze a natural stylized model built upon

active lines of work in political opinion formation, cultural diversity, and language evolution.

We assume that the population is partitioned into “types” according to some traits (such

as language spoken or political affiliation). While all types of people interact with one

another, only people with sufficiently similar types can possibly influence one another. The

“similarity” is captured by a graph on types in which individuals of the same or adjacent types

can influence one another. We achieve an essentially complete characterization of (stable)

equilibrium outcomes and prove convergence from all starting states. We also consider

generalizations of this model.

Keywords: social networks, selection, influence, opinion formation

1 Introduction

1.1 Selection and influence

Human societies exhibit many forms of cultural diversity—in the languages that are

spoken, in the opinions and values that are held, and in many other dimensions. An

� A one-page abstract of this work has appeared in ACM Conf. on Electronic Commerce, 2013.
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active body of research in the mathematical social sciences has developed models

for reasoning about the origins of this diversity, and about how it evolves over time.

One of the fundamental principles driving cultural diversity is the tension between

two forces: influence and selection. Influence refers to the tendency of people to

become similar to those with whom they interact, whereas selection (or choice

homophily, McPherson et al. (2001)) is the tendency of people to interact with those

who are more similar to them, and/or to be more receptive to influence from those

who are similar.1

Both of these forces lead toward outcomes in which people end up interacting with

others like themselves, but in different ways: influence tends to promote homogeneity,

as people shift their behaviors to become alike, while selection tends to promote

fragmentation, in which a society can split into multiple groups that have less and

less interaction with each other. Research that offers qualitative analyses for issues

such as consensus-building, political polarization, or social stratification can often

be interpreted through the lens of this influence-selection trade-off (Cohen, 1977;

Kandel, 1978; McPherson et al., 2001). The trade-off between influence and selection,

and the development of data analysis techniques to try separating the effects of the

two, have been integral to understanding and promoting the adoption of products

and behaviors in social networks (Anagnostopoulos et al., 2008; Aral et al., 2009;

Bramoullé et al., 2009; LaFond & Neville, 2010; Shalizi & Thomas, 2011), an active

line of work at the interface of computing, economics, and statistics.

When both influence and selection are operating at the same time, how should we

reason about their combined effects? In particular, as Axelrod (1997, p. 203) asked:

If people who are similar to one another tend to become more alike in their beliefs,

attitudes, and behavior when they interact, why do not all such differences eventually

disappear?

Several lines of modeling work have approached this question, all starting from

similar underlying motivations, but developing different mathematical formalisms.

1. Research on political opinions has studied populations in which each person

holds an opinion. The opinion is represented by a number drawn from a

bounded interval on the real line �1, or from a discrete set of points in

an interval. (For example, the interval may represent the political spectrum

from liberal to conservative.) Each person is influenced by the opinions

of others who are sufficiently nearby on the interval, thus capturing the

interplay between influence (people are shifting their opinions based on the

opinions of others) and selection (people only pay attention to others whose

opinions are sufficiently close) (Ben-Naim et al., 2003; Deffuant et al., 2000;

Hegselmann & Krause, 2002).

2. Axelrod proposed a model of cultural diversity in which there are several

dimensions of culture, and each person has a value associated with each

dimension (e.g. a choice of language, religion, or political affiliation). Agents

1 While selection may sometimes have causes other than similarity, such as attraction of the opposites or
triadic closure, we focus on similarity-driven selection throughout this paper. We use the term selection
rather than homophily because the latter is sometimes used to refer to the broader fact that people
tend to be similar to their neighbors in a social network, regardless of the mechanism leading to this
similarity.
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are more likely to interact when they agree on more dimensions; when two

people interact, one person randomly chooses a dimension in which they differ,

and changes his value so that they now match in this dimension (Axelrod,

1997). For example, two people who have passions for similar sports and

styles of food may end up having an easier time (and more opportunity for)

associating, and hence an easier time influencing one another along another

dimension such as religious beliefs. Again, the model represents an influence

process in which the interactions are governed by selection based on (cultural)

similarity. Axelrod’s model has generated a large amount of subsequent work;

see Castellano et al. (2009) for a survey.

3. Finally, Abrams and Strogatz exhibited some of the interesting effects that

can occur even when there are only two types of people. They modeled a

scenario in which people speak one of two languages. People mainly interact

with speakers of their own language, but there is gradual “leakage” over

time as speakers of one language may convert to become speakers of the other

(Abrams & Strogatz, 2003). The Abrams–Strogatz model has also generated an

active line of follow-up results, including explorations of its microfoundations

through agent-based simulation (Stauffer et al., 2007) and analyses of the

spatial effects and population density (Patriarca & Leppanen, 2004).

1.2 Commonalities among models

Although the models described above differ in many details, they have the same

underlying structure: the population is divided into a set of types (the opinions,

the cultural choices, the language spoken), and a person of any given type may be

influenced to switch types, but only by others whose types are sufficiently similar.

(In the case of the Abrams–Strogatz model, there is a preference for one’s own type,

but since there are only two types, all types can influence each other.) This process

generates a “flow” as people migrate among different types, and we can ask questions

about both dynamics (which outcomes the process will reach) and equilibria (which

outcomes are self-sustaining, in the sense that the flows between types preserve

the fraction of people who belong to each type). Following the language around

Axelrod’s work, we will refer to this type of process as representing the cultural

dynamics of the population.

In addition to their similarities in structure, these cultural dynamics models also

agree in their broad conclusions. In the first two models, the population gradually

separates into distinct “islands” in the space of possible types; subsequently, no

further interaction between the islands is possible. In the Abrams–Strogatz model,

with just two types, the only outcomes that are stable under perturbations are

the two extreme outcomes in which everyone ends up belonging to the same type.

Typically, there is also an unstable equilibrium in which each language is spoken by

a non-zero fraction of the population.

The most salient difference among the models is the structure that is imposed on

the set of types. In each case, there is an undirected influence graph T on the set

of types: when a person of type u interacts with a person of type v, the person of

type u has the potential to switch to (or move towards) v provided that u and v are

neighbors in T (i.e. provided that u and v are sufficiently similar according to the
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AT AG CP DP

CC

DC

Fig. 1. A small subgraph of the “religion” graph, showing edges along which

transitions may happen between agnostics, atheists, casual protestants, devout

protestants, casual catholics, and devout catholics.

interpretation of the model). In the models of one-dimensional opinion dynamics

on a discrete set, the graph T is the kth power of a path for some k � 1 (types are

similar enough when they are within k steps on the path); in Axelrod’s model, the

graph T is the kth power of a (not necessarily binary) hypercube. The Abrams–

Strogatz model shows that these kinds of processes can exhibit subtle behavior even

on a two-node influence graph T.

1.3 The present work: Cultural dynamics on an arbitrary influence graph

All of the prior results apply only to highly structured, symmetric graphs (essentially

hypercubes and paths), whereas in some of the settings that the models seek to

capture, the set of types can have a less orderly structure. As one simple example,

consider a subgraph of the “religion” graph (depicted in Figure 1), with the following

six types: agnostics (AG), atheists (AT), casual protestants (CP), devout protestants

(DP), casual catholics (CC), and devout catholics (DC). Here, it is reasonable

to assume that transitions happen between the casual versions of each belief, or

between casual and devout versions of the same belief. In other words, the graph

would consist of a triangle AG-CP-CC, and edges AT-AG, DP-CP, DC-CC.2

To ensure that insights derived from the analysis of a model (such as the ones

for hypercubes and graphs) are not limited to those specific models, and to further

understand the governing principles, it is desirable to understand the dynamics and

equilibria of the process in more general graphs.

This is the problem we address in the present work, where we develop techniques

for resolving some of the main questions on arbitrary graphs, under a clean and

stylized model of interactions. For a natural formulation of cultural dynamics on

an arbitrary influence graph (which we refer to as the global model, for reasons

explained later), we prove convergence results and precisely characterize the set of

all stable equilibria. We then consider generalizations of the global model, extending

some of our convergence and stability results to these more general settings and

posing several open questions.

2 We may expect transitions between other states to happen, albeit with much smaller probability. We
will discuss this issue more in Section 5.1.
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1.4 The global model

We now describe the global model in more detail. Because the models from the

earlier lines of work discussed above differ in many of their details, there is no

meaningful way to simultaneously generalize all of them in a precise syntactic sense.

Instead, our goal is to formulate a version of cultural dynamics that exhibits the

same basic interplay of selection and influence—specifically, the idea that influence

only happens among types that are “close together’—while allowing for an arbitrary

graph on the set of types.

Let T be a graph on a finite set of types V of cardinality n = |V |; for each type

u ∈ V , let Tu ⊆ V denote the set of u’s neighbors in T. As is standard in many

of the approaches to cultural dynamics, we model the population as a continuum3:

at the start of the process, each type u ∈ V has a non-negative population mass

associated with it, corresponding to the fraction of the population that initially has

this type. (Consider, for example, the fraction of the world’s population that belongs

to a certain religion or speaks a certain language.) Time evolves continuously4 and

xu(t) denotes the mass on type u at time t. The full state of the population at time t

is thus given by the mass vector x(t), the vector of values xu(t) for all u ∈ V .

We define a continuous-time dynamical system in which the direction in which

the populations move is determined in terms of the mass vector x(t). The dynamical

system is motivated by imagining that each person chooses a random other person

to interact with. Selection effects are captured in two ways by the model: first, people

are more likely to interact with their type; second, they only have the potential to

be influenced when they interact with an individual of their own or a neighboring

type. Specifically, each person is α times more likely to choose an interaction partner

of their own type than someone of a different type, for a parameter α � 1. When

a person of type u chooses to interact with a person of type v, such that v ∈ Tu,

with probability p, he will switch to type v, where p ∈ (0, 1] is a fixed parameter. To

express this dynamic numerically, we let Mu(t) = αxu(t)+
∑

v∈V\{u} xv(t). A person of

type u chooses to interact with his own type with probability αxu(t)/Mu(t), and with

any other type v �= u with probability xv(t)/Mu(t). Thus, the fraction of the entire

population which is moving from u to v is p · xu(t)xv(t)/Mu(t). At the same time as

this mass of p ·xu(t)xv(t)/Mu(t) is moving from u to v, a mass of p·xv(t)xu(t)/Mv(t) is

moving from v to u. These movements partially cancel each other out, and motivate

the following definition of the (directed) flow on the edge (v, u) ∈ T:

fv→u(t) = p · xv(t) xu(t)
(

1

Mv(t)
− 1

Mu(t)

)
. (1)

The change in mass at a node u can then be written as

ẋu(t) =
∑
v∈Tu

fv→u(t) = p · xu(t)
∑
v∈Tu

xv(t)

(
1

Mv(t)
− 1

Mu(t)

)
. (2)

Notice that because the system is characterized by a system of differential

equations and that for all u the derivative of xu(t) is finite (by Equation (2)),

we obtain that xu(t) is continuous for all u.

3 This and other modeling choices are discussed in more detail in Section 5.1.
4 Again, refer to Section 5.1 for a discussion.
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It is natural to think of the parameter p as generally being very small, since most

interactions between people do not lead to a change of type. However, as it turns

out, the value of p does not have a major qualitative effect on our results. This is not

surprising, since introducing p < 1 (as opposed to p = 1) just slows down the flow

between any two types by a factor of 1/p. We include p in the model in order to

capture the range of possible speeds at which transitions can happen. For example,

if the types in our model correspond to dialects of a language, we can choose a small

p (since the probability that a person changes his dialect is very small). However,

if instead the types represent opinions in the period before an election, people may

switch much more rapidly, and a larger p is appropriate.

1.5 Convergence, equilibria, and stability in the global model

Our first result is that for any influence graph T and any initial mass vector x the

system converges to a limit mass vector x∗. We prove this by establishing a system of

invariants on the population masses over time, capturing a certain “rich-get-richer”

property of the process—essentially, that the types of large mass will tend to grow

at the expense of the types of small mass.

We next consider the equilibria of this model: we say that a mass vector x is an

equilibrium if it remains unchanged after one application of the update rule. It is

easy to construct examples of equilibria that are not stable, in the sense that an

arbitrarily small perturbation of the masses x∗
u can—after further applications of

the update rule—push the masses far away from the equilibrium. Such equilibria are

less natural as predicted outcomes of the cultural dynamics being modeled, since

the population would be unlikely to hold its position near this equilibrium.

To make this statement precise, we use the notion of Lyapunov stability. We say

that an equilibrium x∗ is Lyapunov stable if given any ε > 0, there exists a δ > 0

such that if ||x(t0) − x∗||1 < δ, then ||x(t) − x∗||1 < ε, for all t � t0.
5 For simplicity,

we use the L1 norm throughout. Since our vectors have finite dimensionality, the

different Lp norms only differ by constant factors, so all stability results apply to

other norms by scaling ε, δ appropriately.

We prove that x∗ is a Lyapunov-stable equilibrium if and only if the set of active

types A(x∗) = {u : x∗
u > 0} is an independent set in the influence graph T. The

proof is based on the rich-get-richer properties of the process; these properties are

used to show that after a sufficiently small perturbation to the population masses,

the amount by which any type with positive mass can grow is bounded.

1.6 Interpretations of the basic results

The basic results discussed above establish a precise sense in which the natural

equilibria tend to break the population into non-interacting islands.

5 One could ask about stronger notions of stability, in particular, asymptotic stability, which requires
that there exists a δ1 > 0 such that if ||x(t0)−x∗||1 < δ1, then x(t) → x∗ as t → ∞. Asymptotic stability
is not a useful definition for our purposes; for example, if the underlying influence graph T has no
edges, then any assignment of population masses is an equilibrium, but none are asymptotically stable,
since there is no way for a small perturbation to converge back to the original state. On the other
hand, all equilibria are Lyapunov-stable in this simple example.
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In addition to offering a qualitative statement about fragmentation of opinions

under the proposed stylized model, the results also suggest a way of reasoning about

the phenomenon by which opinions on different issues tend to become aligned, with

an individual’s views on one issue providing evidence for his or her views on another

(Poole & Rosenthal, 1991; Spector, 2000). To take a concrete example that already

appears on the two-dimensional hypercube (i.e. the 4-node cycle), consider a setting

in which each individual has either a liberal or conservative view on fiscal issues

and either a liberal or conservative view on social issues. If we assume that people

only influence each other when they agree on at least one of these two categories

of issues, then the graph on the set of types is a 4-node cycle. Since our results on

Lyapunov-stable equilibria indicate that independent sets are favored as outcomes,

we can interpret the conclusion in this example as predicting that under the proposed

model, either the whole population will converge on a single node (representing a

uniform choice of views), or on an independent set of two nodes, in which case an

individual’s opinion on fiscal issues has become correlated with his or her opinion

on social issues.

It is also instructive to compare our results to the main result of

Abrams & Strogatz (2003) discussed above. Recall that they consider the influence

graph T = K2 (two connected nodes), and they find that the two stable equilibria

are the outcomes in which all the population mass is gathered at a single node.

The family of dynamical systems they consider strictly subsumes ours in the special

case of a two-node graph, but for the specific system we study, our results imply

that their basic finding extends to arbitrary graphs: in any graph, the Lyapunov-

stable equilibria correspond to the non-empty independent sets, just as Abrams and

Strogatz showed for the two-node graph K2.

1.7 A generalization: Limiting both interaction and influence

We now discuss a natural generalization of the model that is significantly more

challenging to analyze. In the global model, the members of type u can interact with

members of all other types, even though they are influenced only by the types in Tu.

However, there are settings in which it is more natural to assume that the members

of a type only ever interact with members of a subset of the other types; for example,

this may be a reasonable assumption when types represent different languages. This

is somewhat similar to the approach Centola et al. (2007) in studying a variant of

the Axelrod model. Under this variant, there is a social network among the agents;

whenever two agents become so different that they cannot influence one another

any more, the tie between them is broken, and new ties are formed. Centola et al.

(2007) use simulations to show that multi-cultural equilibria form readily and stably

under this model.

To capture the idea that some types may simply be too different to interact, we

now assume that there are two potentially distinct graphs on the set of types V :

the influence graph T (as before), as well as an undirected interaction graph S,

where T is a subgraph of S. Rather than interacting with a person chosen from

the full population, a member of type u selects an interaction partner from the set

Su of u’s neighbors in S. It is straightforward to write the new update rule for this

more general dynamical system, by summing over types in Su instead of V \ {u}.
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Specifically, we can now define

Mu(t) = αxu(t) +
∑
v∈Su

xv(t). (3)

With this new definition of Mu(t), the definitions of flows and updated masses at

nodes from Equations (1), (2) stay exactly the same. Hence, the Mu(t) terms emerge

as crucial quantities that determine the direction of the flow; for that reason, we will

call Mu(t) the interaction mass of node u at time t.

The global model is simply the special case in which the interaction graph S
is the complete graph. The name global model emphasizes that each type interacts

“globally,” with all other types.6

The behavior of this general model is significantly more complex than the behavior

of the global model; for instance, for arbitrary S and T, it is not even clear whether

the process will always converge. Intuitively, much of the difficulty comes from the

fact that when we consider two neighboring types u and v, the sets of types that

they are interacting with, Su and Sv , can be quite different, whereas in the global

model they are both the full set V . Among other things, this can lead to violations

of the rich-get-richer property that was so useful for reasoning about the dynamics

of the global model.

For the general model, we first establish a necessary condition for equilibria, as

well as sufficient conditions for convergence and stability. We then focus further on

the special case in which S = T. This is in a sense the opposite extreme from the

global model; instead of making S as large as it can be, we make it as small as

possible subject to the constraint that it contains T as a subgraph. Accordingly,

we refer to the case S = T as the local model. There are many interesting open

questions surrounding the behavior of the local model; we make progress on these

through initial convergence results and the identification of a large class of equilibria

that are Lyapunov-stable for all α > 1: non-empty independent sets for which all

nodes in the set are at a mutual distance of at least three. In fact, this is an “if and

only if” characterization for an important class of influence graphs: those whose

connected components are trees or, more generally, bipartite graphs.

An interesting observation is that the local and global models can have genuinely

different behaviors starting from the same initial conditions: Figure 2 shows an

example of an initial mass distribution on the 3-node path for which the global

model converges to an outcome in which the mass is divided evenly between the two

endpoints, while the local model converges to the outcome in which all the mass is

on the middle node.

At a higher level, formalizing the distinction between interaction (S) and influence

(T) is a potentially promising activity more broadly, particularly in light of the

considerable recent interest in the effects of information filtering on the political

process. (See Pariser (2011); Sunstein (2009) for popular media accounts, and

Bakshy et al. (2012) for recent experimental research.) The concern expressed in

6 There are clearly many other potential generalizations which could incorporate notions of non-uniform
interaction, including different interaction strengths between different pairs of types. Such extensions
would lead to interesting questions as well. In the present work, we focus on the generalization with
two unweighted graphs S and T because it captures in a direct way some of the additional complexity
that is introduced by simultaneously modeling limited interaction and influence.
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Fig. 2. An instance in which different models predict convergence to different

equilibria. The global model predicts an outcome in which two non-interacting types

survive (polarization), whereas the local model predicts that only a single types

survives (consensus).

all these lines of work is that personalization on the Internet makes it possible to

sharply restrict the diversity of information one sees, and thus risks accentuating

the degree of polarization and fragmentation in political discourse—essentially, the

risk is that people will only ever be exposed to those who already agree with them,

making any kind of consensus almost impossible to achieve.

In this context, our general model also brings into the discussion the interesting

contrast between interaction and influence. Personal filtering of information by

Internet users can restrict the set of people they interact with (affecting the sets Su),

and it can also, separately, restrict the set of people who may be able to influence

them (affecting the sets Tu). These two different effects are often bundled together

in discussions of information filtering; it will be interesting to see whether treating

them as genuinely distinct can shed additional light on this set of issues.

1.8 Additional related work

Steglich et al. (2010) (see also Snijders et al. (2007)) provide a general model of

social networks that combines selection and influence. While we focus on deriving

structural properties of a network, these papers pursue a different goal: statistically

valid inference of network parameters from real-life observations. More broadly,

inferring latent properties of a social network from observations has been an active

line of work. Some of the notable directions in this work, aside from the one

taken in Steglich et al. (2010); Snijders et al. (2007), include latent “social space”

reconstruction (e.g. Handcock et al. (2007); Hoff et al. (2002)) and community

detection (e.g. see Brandes & Erlebach (2005); Schaeffer (2007); Fortunato (2010)).

2 Observations on the general model

In this section, we develop several observations that apply to the fully general model

with an arbitrary interaction graph S. In the subsequent sections, we utilize these

observations to analyze the global model (where S is the complete graph) and the

local model (where S = T).

We say that a node u is active at time t if xu(t) > 0, and inactive if xu(t) = 0.

We occasionally refer to a node u as x-active if it is active in x and x-inactive

otherwise. The set of all active nodes under x is denoted by A(x). Much of our

analysis concerns the structure of the subgraph Tact(x) of the influence graph T
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induced by the active nodes A(x). We begin by characterizing when mass vectors

are in equilibrium.

Proposition 2.1

A vector x∗ is an equilibrium if and only if each connected component C of Tact(x
∗)

has the property that all nodes u ∈ C have the same interaction mass Mu.

Proof

x∗ is at equilibrium if and only if the flow on all edges is 0. In turn, from Equation (1),

we see that the flow on the edge (u, v) is 0 if and only if at least one of the following

two conditions holds: (1) Mu = Mv , (2) x∗
u · x∗

v = 0.

If x∗ satisfies the assumptions, then each edge (u, v) is either inside a component

(and thus Mu = Mv) or has at least one inactive endpoint (and thus x∗
u · x∗

v = 0).

Conversely, if x∗ is an equilibrium, each edge satisfies (1) or (2). When u, v lie in the

same component C , there is a path between them in C , and along that path, (1)

must hold for all edges, so u and v must have the same interaction mass. �

The following useful lemma relates convergence and the change in directions of

flows:

Lemma 2.2

If there exists a time t0 such that the flows do not change direction after time t0,

then the system converges.

Proof

Let G be the directed graph obtained by directing each edge (u, v) of T according to

the direction of the corresponding flow fu→v(t0). By the assumption, these directions

stay constant after time t0. As flow always goes from types with smaller interaction

mass to types with larger interaction mass, G must be acyclic. Let v1, v2, . . . , vn be

a topological sorting of the graph, so that all directed edges of G are of the form

(vi, vj), i < j.

We define Xk(t) =
∑k

i=1 xvi (t) to be the total mass at time t � t0 on the k first nodes

in the topological sorting. Because the total mass in the system is constant, and all

flow goes from nodes with lower indices to nodes with higher indices, each of the

Xk(t) must be non-increasing as a function of t. Since they are also lower-bounded

by 0, each Xk(t) must converge to some value Zk as t → ∞. Therefore, each xvi (t)

converges to Zi − Zi−1 as t → ∞. �

Recall that we are interested in characterizing Lyapunov-stable equilibria. We next

provide a sufficient condition.

Proposition 2.3

An equilibrium x∗ is Lyapunov-stable if it satisfies the following two properties:

1. The active nodes form an independent set in the influence graph T.

2. The interaction mass of every active node is strictly greater than the interaction

mass of each of its inactive neighbors in the influence graph T.
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Proof

Let x∗ be an equilibrium for which both properties hold. A node u is called x∗-active

if it is active in x∗ and x∗-inactive otherwise. Let A be the set of all x∗-active nodes,

and let M∗
u denote the interaction mass of node u with respect to x∗. Define

δ = 1
2α+1

min
u∈A, v /∈A, (u,v)∈T

(M∗
u − M∗

v ) > 0 (4)

by the second property of x∗. To show stability, we prove that whenever ||x∗ −
x(t0)||1 � δ, the system will satisfy ||x∗ − x(t)||1 � δ for all times t � t0.

The key step of the proof is to establish that for each node u ∈ A, the mass

xu(t) is non-decreasing over time, i.e. that ẋu(t) � 0 for all t � t0. The initial

condition implies that xu(t0) � x∗
u − δ for all u ∈ A,

∑
u∈A xu(t0) �

∑
u∈A x

∗
u − δ and∑

v /∈A xv(t0) � δ. We will show that these invariants are maintained for all t � t0.

Consider any time t � t0 and edge (u, v) with u ∈ A and v /∈ A. The invariants

imply that Mu(t) � M∗
u − αδ and Mv(t) � M∗

v + αδ, so we obtain that

Mu(t) − Mv(t) � (M∗
u − M∗

v ) − 2αδ
(4)

� (2α + 1)δ − (2α)δ > 0.

In particular, this implies that fv→u(t) � 0; because this holds for all v /∈ A, we have

established that ẋu(t) � 0. By summing overall nodes u ∈ A, we have shown that the

invariant continues to hold.

Finally, because each of the xu(t), u ∈ A is non-decreasing, mass can only move

among x∗-inactive nodes, or from x∗-inactive nodes to x∗-active ones. Therefore,∑
u∈A |xu(t) − xu(t0)| =

∑
u/∈A xu(t0) −

∑
u/∈A xu(t). Thus,

||x(t) − x∗||1 �
∑
u∈A

|xu(t) − xu(t0)| +
∑
u∈A

|xu(t0) − x∗
u| +

∑
u/∈A

xu(t)

=
∑
u∈A

|xu(t0) − x∗
u| +

∑
u/∈A

xu(t0) = ||x(t0) − x∗||1 � δ,

so the system is Lyapunov-stable. �

3 The global model

In this section, we analyze the global model. The definition of the general model

states that flows are always directed from nodes with smaller interaction mass to

nodes with larger interaction mass. For the global model, this property is simplified

significantly: flow is always directed from types with smaller mass to types with

larger mass. This property lets us achieve an almost complete understanding of the

global model. We show that for this model, the system always converges, and we

present a complete characterization of which equilibria are Lyapunov-stable. First,

we characterize equilibria by applying Proposition 2.1 to the global model.

Corollary 3.1

Under the global model with α > 1, the system is at equilibrium x∗ if and only if

the following holds: for every connected component C of Tact(x
∗), all nodes u ∈ C

have the same mass.
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Proof

Proposition 2.1 guarantees that x∗ is at equilibrium if and only if for each edge

(u, u′) ∈ Tact(x
∗): αx∗

u +
∑

v∈Su x
∗
v = αx∗

u′ +
∑

v∈Su′ x
∗
v . In the global model, for any

node u, the set Su consists of all types but u itself, implying that the sum cancels

out, and we obtain (α − 1)x∗
u = (α − 1)x∗

u′ . For α > 1, this implies x∗
u = x∗

u′ . �

We next show that the system always converges; the proof relies on the key

invariant that for any 1 � k � n, the total mass of the k smallest types never

increases over time. More formally, we define the following quantities:

Definition 3.2

Let y1(t) � y2(t) � . . . � yn(t) be the node masses sorted in non-decreasing order.

Define

Yk(t) =
∑
i�k

yi(t) = min
R:|R|=k

∑
v∈R

xv(t) (5)

to be the sum of the masses of the k smallest nodes at time t.

The following lemma formally captures the notion that the rich get richer in the

global model.

Lemma 3.3

For every k, the function Yk(t) is non-increasing in t, i.e. Ẏk(t) � 0.

Proof

Let t, k be arbitrary. Consider any set S of k nodes achieving the minimum in

Equation (5) at time t; notice that there could be multiple such sets S . Consider any

u ∈ S, v /∈ S; by definition of S , we have that xu(t) � xv(t), and hence fu→v(t) � 0.

Because this holds for all such edges (u, v), we obtain that the total weight on

nodes of S cannot increase. As this holds for all candidate sets S , we get that

Ẏk(t) � 0. �

Theorem 3.4

Under the global model, the system converges for any influence graph and any

starting mass vector x(0).

Proof

By Lemma 3.3, each function Yj(t) is non-increasing in t. As all masses are non-

negative, the Yj(t) are also bounded below by 0. Hence, each function Yj(t) must

converge to some value Zj . Thus, each function yj(t) must converge to Zj −Zj−1 =:

zj . It remains to show that this also implies convergence of x(t).

Let δ > 0 be at most the smallest difference between any two distinct zj , i.e.

δ � mini,j:zi �=zj |zi − zj |. Let t0 be large enough that |yi(t) − zi| < δ
3

for all i and t � t0.

We will show that the only cases in which there could be nodes v and times

t′ > t � t0 such that xv(t) = yj(t) and xv(t
′) = yj ′ (t′) is to have zj = zj ′ . If not,

then let t̂ be such that |xv(t) − zj | < δ/3 for t < t̂ arbitrarily close to t̂, and

|xv(t) − zj ′ | < δ/3 for t′ > t̂ arbitrarily close to t̂. Because |zj ′ − zj | � δ, this implies

that xv(t) must be discontinuous at t = t̂, which it cannot be. �
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3.1 Characterization of Lyapunov-stable equilibria

For the global model, the properties required for Proposition 2.3 hold for any

independent set, since the interaction mass of active types is always greater than the

interaction mass of inactive types. Therefore, any equilibrium in which the set of

active nodes is independent is Lyapunov-stable. To complete the characterization,

we show that the converse is also true.

Theorem 3.5

In the global model with α > 1, an equilibrium x∗ is Lyapunov-stable if and only if

the active nodes form an independent set.

Proof

It remains to prove the “only if” direction. Assume that the active nodes in an

equilibrium x∗ do not form an independent set. We will prove that x∗ is not

Lyapunov-stable.

Let C be a connected component of size |C| � 2 in Tact(x
∗). By the assumption

that the active nodes in x∗ do not form an independent set, such a connected

component exists. Notice that each component of Tact(x
∗) evolves in isolation, so

we can focus on only C for the rest of the proof. Therefore, by Corollary 3.1, x∗
v = μ

for all v ∈ C , for some value μ.

Let u, v ∈ C be two arbitrary nodes, and δ > 0 be arbitrarily small. Consider

the following perturbation: xu = x∗
u + δ, xv = x∗

v − δ, and xw = x∗
w for all w �= u, v.

By Theorem 3.4, the system, starting from the perturbed vector x, will converge to

some new equilibrium y. By Lemma 3.3, the smallest mass of any node in C will

always be at most μ − δ during the process. All y-active nodes must have the same

mass; therefore, if all nodes were active in y, they would all have to have mass at

most μ − δ, which would imply that mass has disappeared from C , a contradiction.

Hence, at least one node of C must end up inactive in y. In particular, this means

that ||x∗ − y||1 is not bounded in terms of δ, and x∗ is not Lyapunov-stable. �

4 The local model

In the previous section, we have given essentially complete characterizations of

convergence and stability of equilibria under the global model, in which all types

have the potential to interact, even though only certain pairs of types can influence

each other (according to the graph T).

We now consider the local model, which is at the other extreme of our general

family: here, the interaction graph S is the same as the influence graph T;

hence, interactions occur only between individuals who also have the potential

to influence each other. (We will generally denote this underlying graph by T, with

the understanding that S = T.) We find that the problems of convergence and

stability are much more challenging in this case. For the global model, we were able

to extract very useful organizing structures in the dynamical system that gave us

a natural progress measure toward convergence. But as is well known, in general,

a dynamical system on even a small number of variables may have convergence

properties that are extremely difficult to analyze or express. For example, not only

does Lemma 3.3 not hold for the node masses; a reformulation for interaction masses

does not hold, either.
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Given the complex behavior of the update rules for the local model, we find that

the convergence and stability questions are already difficult on graphs T with a

small number of nodes, and we focus our results here on such cases. (Of course,

based on the motivating premise of the model, even systems with a small number of

variables are frequently natural, corresponding to selection and influence dynamics

in societies with, for example, a small number of languages, a small number of

political parties, or a small number of dominant religions or cultures.)

We begin by considering the case α > 1 and first prove the following theorem:

Theorem 4.1

Under the local model, if the influence graph is a 3-path, then the system converges

from any starting state.

The full proof is provided in Appendix A, but we provide a brief outline here.

The subtle difficulty arises due to the fact that the flow between two types u and v

does not necessarily go in the same direction at all times, but instead may change its

direction. To keep track of the changes in direction, we define a configuration of the

system to be a labeling of all edges (u, v) in T by the direction along which flow is

traveling (i.e. whether from u to v or from v to u). In the case of a 3-node path, there

are four possible configurations. We study transitions among the configurations as

the system evolves over time; we show that each configuration is either a sink, which

cannot transition to any other configuration, or it has the property that any change

in the direction of an edge leads to a sink configuration. This ensures that there can

be at most one change in the direction of flow as the system evolves; hence, there

is a time t0 such that for any t > t0, no flow changes its direction. After this point,

Lemma 2.2 guarantees that the system converges. For the case α � 2, we show this

fact only for the 3-path; for α < 2, we establish a more general result, showing the

same fact for arbitrary star graphs.

For α = 1, we are able to prove convergence if the active subgraph is a path of

n � 5 nodes. The proof requires different techniques than the ones we use for α > 1:

for paths of more than 3 nodes, flows on edges can change their direction infinitely

often. The proof is provided in Appendix B.

4.1 Characterization of universally stable equilibria

Next, we turn our attention to Lyapunov-stable equilibria. We focus on a very

strong notion of stability: stability of an equilibrium x simultaneously for all α > 1.7

Formally, we call a mass vector x a universally stable equilibrium if x is a Lyapunov-

stable equilibrium for every α > 1. Our goal here is to investigate which equilibria

are universally stable. Such equilibria are robust to (a very idealized notion of) a

change in the environment, as expressed by varying α.

Our main result for universally stable equilibria is a complete characterization

for influence graphs that are forests, and more generally for influence graphs whose

connected components are bipartite graphs.

7 Contrast this with the notion of stability used in the previous section—there, we characterized
Lyapunov-stable equilibria for any given fixed α.
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Theorem 4.2

Assume that all connected components of the influence graph T are bipartite graphs.

Then, a mass vector x∗ is a universally stable equilibrium under the local model if

and only if the distance between any two active nodes in x∗ is at least 3.

The proof of Theorem 4.2 consists of several sub-results, all of which hold for

arbitrary influence graphs, and imply the desired characterization under the assump-

tion in the theorem. It is worth noting that these sub-results constitute significant

progress towards understanding the structure of universally stable equilibria for

arbitrary influence graphs, as we discuss later. For brevity, if x is a mass vector such

that the distance between any two active nodes is at least 3, we will say that x is

3-separated.

The first proposition proves the “if” direction of Theorem 4.2. Its proof follows

from our analysis in Section 2.

Proposition 4.3

Under the local model with α > 1, any 3-separated mass vector x∗ is a Lyapunov-

stable equilibrium.

Proof

x∗ is an equilibrium by Proposition 2.1 since its active nodes form an independent

set. By Proposition 2.3, an equilibrium whose active nodes form an independent set

is Lyapunov-stable if the interaction mass of each active node is greater than the

interaction mass of each of its neighbors. For α > 1, this property holds when each

inactive node has at most one active neighbor. In turn, this holds if and only if the

distance between every two active nodes is at least 3; thus, all such equilibria are

Lyapunov-stable for every α > 1. �

The “only if” direction of Theorem 4.2 is more complicated to prove. First, we

show that if the active nodes of an equilibrium do form an independent set, then

being 3-separated is necessary to ensure universal stability.

Proposition 4.4

Let x∗ be a universally stable equilibrium, and assume that the active nodes under

x∗ form an independent set. Then, x∗ is 3-separated.

Proof

For the sake of contradiction, suppose that x∗ is not 3-separated. Then, there exists

an inactive node u with at least two active neighbors. Let Au be the set of all active

neighbors of node u. We use the following notation:

s =
∑

v∈Au
x∗
v ; η = minv∈Au

x∗
v ; μ = maxv∈Au

x∗
v .

Define α = 1 + η2. We will show that x∗ is not Lyapunov-stable for this α.

To prove instability, consider a perturbation x which coincides with x∗ on all

nodes not in {u} ∪ Au, and satisfies⎧⎪⎪⎨
⎪⎪⎩
xv � x∗

v for all v ∈ Au

xu = δ for some δ ∈ (0, s − μ − η2)

xu +
∑

v∈Au
xv =

∑
v∈Au

x∗
v = s.

(6)

https://doi.org/10.1017/nws.2015.36 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.36


16 D. Kempe et al.

(Note that s − μ − η2 > 0 because Au consists of at least two nodes.)

Under such an x, the interaction mass of node u is

Mu = αxu +
∑
v∈Au

xv = η2 · xu + s,

while the interaction mass of any node v ∈ Au is

Mv = αxv + xu � αx∗
v + xu � (1 + η2)μ + xu.

Since xu < s − μ − η2, we have that Mv < (1 + η2)μ + s − μ − η2 < s, and hence,

Mu > Mv . Thus, under this perturbation, mass starts flowing from all nodes v ∈ Au

to u, and this continues until xu � s−μ−η2. Consequently, the system cannot reach

any equilibrium with xu < s − μ − η2; in particular, it cannot reach any equilibrium

with ||x∗ −x||1 < s−μ−η2. Since this holds for arbitrarily small δ, and s−μ−η2 > 0

is a constant independent of δ, we conclude that x∗ is not Lyapunov-stable for

this α. �

With Proposition 4.4 in place, all that remains to complete the proof of the “only

if” direction of Theorem 4.2 is to ensure that the active nodes in any universally

stable equilibrium x∗ of a bipartite graph form an independent set, i.e. that each

connected component C of Tact(x
∗) consists of a single node. This is implied by

Lemma 4.5, which shows in general that if x∗ is a universally stable equilibrium,

then all the non-trivial connected components of the subgraph of its active nodes

are not bipartite graphs. This completes the proof of Theorem 4.2, as any connected

subgraph of a bipartite graph is a bipartite graph itself.

An additional benefit of Lemma 4.5 is that it applies to arbitrary influence graphs,

and significantly limits the topologies a connected component of Tact(x
∗) can have

for a universally stable equilibrium x∗. To state this lemma in the most general

form, we define a class of regular graphs which in particular subsumes all bipartite

graphs, all cliques, and all cycles whose length is a multiple of 3. We say that a

d-regular graph is locally balanced if its vertices can be partitioned into k disjoint

sets V1, V2, . . . , Vk such that each vertex v ∈ Vi has exactly d/(k − 1) edges to each of

the sets Vj, j �= i.

Lemma 4.5

Let x∗ be a universally stable equilibrium and C a non-trivial connected component

of its active subgraph Tact(x
∗). Then:

a. C is a regular graph, and x∗ is uniform on C (i.e. x∗
u = x∗

v for all u, v ∈ C).

b. C is not a bipartite graph, and, more generally, C is not locally balanced.

Proof

We begin by proving part (a). Let u, v ∈ C be a pair of adjacent nodes. The

equilibrium conditions for α = 2 imply that 2x∗
v +

∑
w∈Tv

x∗
w = 2x∗

u +
∑

w∈Tu
x∗
w , and

the ones for α = 3 that 3x∗
v +

∑
w∈Tv

x∗
w = 3x∗

u +
∑

w∈Tu
x∗
w . Subtracting the first

equation from the second shows that x∗
v = x∗

u. Because C is a connected component,

applying this argument along all edges in C proves that all nodes in C must have

the same mass μ.

The interaction mass of node v with α = 2 is therefore Mv = μ · (|Tv ∩ C| + 1).

Considering again a pair u, v of adjacent nodes, the equilibrium condition Mu = Mv
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implies that |Tu ∩ C| = |Tv ∩ C|. Again by connectivity of C , this implies that all

nodes in C have the same degree, so C is regular.

Next, we prove part (b). Because x∗ is universally stable, part (a) implies that C

is d-regular for some d � 1, and x∗
u = μ (for some μ) for all u ∈ C . Assume for

contradiction that C is locally balanced, and let V1, . . . , Vk be the k partitions of C .

Because8 T[Vi ∪ Vj] is a d/(k − 1)-regular bipartite graph for each pair i �= j, all

partitions Vi must have the same size s = |C|/k.
Set α = d + 1, and let δ > 0 be arbitrary. Consider perturbed vectors of the

following form: xv = x∗
v + 1

s
· δ for every v ∈ V1 and xu = xu − 1

s(k−1)
· δ for every

u /∈ V1. (That is, a total mass of δ is removed uniformly from nodes not in V1, and

added uniformly over the nodes in V1.)

In moving from x∗ to x, the interaction mass of each node v ∈ V1 changes by

α · 1
s

· δ − d · 1
s(k−1)

· δ > 0, while the interaction mass of each node u /∈ V1 changes by

− α · 1

s(k − 1)
· δ − d(k − 2)

k − 1
· 1

s(k − 1)
· δ +

d

k − 1
· 1

s
· δ

=
(

− (d + 1) − d(k − 2)

k − 1
+ d

)
· 1

s(k − 1)
· δ < 0.

Thus, for any such vector x(t) = x, all flows are directed from nodes not in

V1 to nodes in V1. Furthermore, by symmetry of the original vector x∗ and the

perturbation, the mass vectors x(t′) for t′ > t will be of the same form, for a different

δ′ > δ. Thus, the same argument will apply at all times. Hence, the direction of

flows never changes, and Lemma 2.2 guarantees that the system converges. Since

the interaction mass of all nodes in V1 is only increasing, and the interaction mass

of all nodes not in V1 is only decreasing, the only equilibrium y the system can

converge to is one in which all nodes outside of V1 have zero mass. In particular,

this means that even starting from ||x∗ −x||1 = δ′ (which would correspond to using

δ = δ′/2 in our analysis), ||x∗ − y||1 is not bounded in terms of δ′, so x∗ is not

Lyapunov-stable. �

Lemma 4.5 considerably narrows down the set of equilibria for which the question

of whether or not they are universally stable remains open.

More specifically, it only remains to consider mass vectors x in which there is a

non-trivial connected C of Tact(x) such that C is a d-regular graph (for some d � 1),

is not a locally balanced graph (in particular not a bipartite graph), and for every

u, v ∈ C , xv = xu. We conjecture that such mass vectors are not universally stable; it

would then follow that in any universally stable equilibrium, all components have

size 1, and hence by Proposition 4.4 the active nodes would be at mutual distance

3. Accordingly, we formulate the following:

Conjecture 4.6

Under the local model, a mass vector is a universally stable equilibrium if and only

if its active nodes are at pairwise distance at least 3 in the influence graph.

8 Recall that T[S] denotes the induced subgraph of T on the node set S .
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4.2 Characterization of Lyapunov stable equilibria for α = 1

For α > 1, we have shown that any equilibrium whose active nodes form an

independent set of pairwise node distance at least 3 is Lyapunov-stable. Perhaps

surprisingly, this ceases to be true for α = 1. Indeed, on the path of length 4, the

equilibrium x∗ = (1
2
, 0, 0, 1

2
) is not Lyapunov-stable.

We can see this instability as follows. Consider vectors of the form x(δ) =

( 1
2

− δ, δ, δ, 1
2

− δ). Under x(δ), for any δ ∈ (0, 1
2
), the interaction mass of nodes

1 and 4 is strictly smaller than the interaction mass of nodes 2 and 3 (whose

interaction masses are equal). This implies that no vector x(δ) can be an equilibrium

for δ ∈ (0, 1
2
), and that flow will always be directed from nodes 1 and 4 to nodes

2 and 3. Furthermore, the flow from node 1 to node 2 is equal to the flow from

node 4 to node 3, implying that at later times, the mass vector will be of the form

x(δ′) with δ′ > δ. As we know by Theorem B.1 that the 4-path always converges,

the system converges to some mass vector y = x(δ∗) such that δ∗ > 0.9 Since the

update rule is continuous, this y must be an equilibrium. We have proved that the

only such equilibrium is the one with δ∗ = 1
2
. Thus, starting from the perturbation

x(δ) of x∗, the system can only converge to a state y in which y1 = y4 = 0.

While a pairwise distance of 3 between active nodes is not enough to guarantee

stability, a pairwise distance of 4 is sufficient.

Theorem 4.7

Let x∗ be a mass vector whose active nodes have pairwise distance at least 4. Then,

x∗ is a Lyapunov-stable equilibrium for α = 1.

Proof

The proof is much more involved than the proof of Proposition 2.3, for the following

reason: even for arbitrarily small perturbations to x∗, it is possible that inactive

neighbors v of an active node u have higher interaction mass; thus, the conditions

of Proposition 2.3 do not apply, and in fact, u could lose mass over time. However,

we will be able to show that the total mass u loses, starting from a perturbation of

magnitude at most δ, is bounded by a function g(δ) → 0 as δ → 0.

Let A be the set of all x∗-active nodes, and let x(0) be a perturbation of x∗ with

||x∗ − x(0)||1 � δ � 1
8

· minu∈A x
∗
u. We will show below that for each node u ∈ A, and

all times t, we have that |xu(t) − x∗
u| � 2δ. Because∑

v /∈A

|xv(t) − x∗
v | =

∑
v /∈A

xv(t) =
∑
u∈A

(x∗
u − xu(t)) �

∑
u∈A

|xu(t) − x∗
u|,

we obtain that

||x(t) − x∗||1 =
∑
u∈V

|xu(t) − x∗
u| � 2

∑
u∈A

|xu(t) − x∗
u| � 4nδ → 0 as δ → 0.

It remains to prove the inequality |xu(t) − x∗
u| � 2δ for all nodes u ∈ A and times

t. Define W = V \ (A∪
⋃

u∈A Tu) to be the set of all nodes at distance at least 2 from

all active nodes. We will prove the inequality by showing that any flow from u to

its neighbors v can be “charged” against flow from W to v. More formally, we will

9 This also follows directly from our argument with x(δ).
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simultaneously prove the following invariants for all times t and any set U ⊆ A:

∑
w∈W

xw(t) �
∑
w∈W

xw(0), (7a)

∑
u∈U

xu(t) �
∑
u∈U

xu(0) −
∑
w∈W

(xw(0) − xw(t)) for any set U ⊆ A. (7b)

Let t be an arbitrary time and assume that the invariants hold at time t. First,

we notice some useful consequences of the invariants, including the desired fact that

|xu(t) − x∗
u| � 2δ.

From Inequality (7a), we get that
∑

w∈W xw(t) �
∑

w∈W xw(0) �
∑

v /∈A xv(0) � δ.

Substituting this bound into Inequality (7b) with U = {u}, and using that xu(0) �
x∗
u −δ gives us that xu(t) � x∗

u −2δ. Similarly, using Inequality (7b) with U = A\ {u}
gives us an upper bound of xu(t) � x∗

u +2δ. So we have shown that |xu(t)−x∗
u| � 2δ.

Let (w, v), w ∈ W, v /∈ W be an arbitrary edge, and u the unique active neighbor

of v in T. The flow on the edge (w, v) is fw→v(t) = p · xw(t) xv(t)(Mv(t)−Mw(t))
Mw(t) Mv(t)

. We have

just seen that x∗
u − 2δ � xu(t) � x∗

u + 2δ, so we can also bound Mv(t) � x∗
u − 2δ.

Applying Inequality (7b) with U = A \ {u} also gives us an upper bound of

Mv(t) � 1 −
∑

u′∈A,u′ �=u xu′ (t) � x∗
u + 2δ. Furthermore, using the definition of W and

Inequality (7b) for U = A,

Mw(t) �
∑
v /∈A

xv(t) �
∑
v /∈A

xv(0) +
∑
w∈W

(xw(0) − xw(t)) � 2δ.

Substituting these bounds, we get that

fw→v(t) � p · xw(t) xv(t)(x
∗
u − 4δ)

2δ(x∗
u + 2δ)

. (8)

By definition of δ, this quantity is always non-negative. In particular, this means

that flow goes from w to v; since the edge (w, v) was arbitrary, we have established

the invariant (7a).

Next, fix an arbitrary node pair u ∈ A, v ∈ Tu. The flow from u to v is

fu→v(t) = p · xu(t) xv(t)(Mv(t) − Mu(t))

Mu(t) Mv(t)
� p ·

xu(t) xv(t)
∑

w∈W∩Tv
xw(t)

(xu(t))2

= p· 1

xu(t)

∑
w∈W∩Tv

xw(t) xv(t) � p · 1

x∗
u − 2δ

∑
w∈W∩Tv

xw(t) xv(t).

On the other hand, summing the bound (8) overall nodes w ∈ W ∩ Tv , we get that

∑
w∈W∩Tv

fw→v(t) � p · x∗
u − 4δ

2δ(x∗
u + 2δ)

·
∑

w∈W∩Tv

xw(t) xv(t).

Because δ � x∗
u/8, we get that 1

x∗
u−2δ

� x∗
u−4δ

2δ(x∗
u+2δ)

, so the flow from u to v is at most

the total flow from all w ∈ W ∩Tv to v. For any set U ⊆ A, summing this inequality

overall u ∈ U (and noticing that we never double-count the same edge) now shows

that the total flow out of U is no more than the total flow out of W ; hence, the

decrease in U’s mass can be charged to a corresponding decrease of mass in W , and

we have established Invariant (7b). �
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5 Discussion and conclusions

In this paper, we presented a novel model of cultural dynamics that captures the

essential aspect of several previously studied models: the interplay between selection

and influence. We concentrated on two instances of this model. In the basic version,

the global model, each person selects another person from the entire population

to interact with. In the local model, a person selects an interaction partner from a

subset of the population consisting of similar people. We provided a nearly complete

treatment of the global model, showing that the system always converges from any

initial mass vector, and providing a complete characterization of Lyapunov-stable

equilibria.

5.1 Modeling choices

5.1.1 Continuum of individuals

We assumed a continuum of individuals, rather than a finite population. With finite

populations, convergence to equilibrium states is quite immediate. The directed

Markov Chain of all possible assignments of individuals to nodes of the graph is

finite. For any state in which the occupied nodes do not form an independent set,

there is a sequence of finitely many moves (which has strictly positive probability

of occurring) which will result in the individuals being located at an independent

set; the latter states are sinks of the Markov Chain. Thus, convergence in finite time

is always guaranteed with probability 1. The primary focus of studying such finite

Markov Chains would be a focus on the amount of time it would take to reach a

sink state.

For very large populations, the predictions of the convergence time may be of less

interest, and we believe that a focus on the stability of equilibria, and the convergence

guarantees in the limit of large populations, are of interest in understanding the

outcomes of the influence-selection process.

While several papers such as the early work of Kurtz (1970) and the more

refined analysis of Wormald (1999) establish precise connections between discrete-

time processes with finite populations and the mean-field continuous-time limit as

both time and the population are scaled, we do not believe that these approaches

are sufficiently powerful to easily imply results presented here; they may, however,

establish that with high probability, the discrete version of the problem stays close

to the mean-field approximation. These results also motiviate the continuous-time

version of the problem studied here.

5.1.2 Continuous time

In keeping with much of the literature on population dynamics, we treat time as

continuous. However, all results proved here hold equally for discrete time; indeed,

an earlier version of this paper—still available on the arXiv at http://arxiv.org/abs/

1304.7468 (v.1)—carried out all proofs in discrete time. In discrete time, the flows

defined in Equation (1) do not correspond to continuous derivatives of the node

masses, but rather to discrete changes from step t to t + 1. The proofs of all

results stay essentially the same, requiring only the obvious modifications. The main
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exceptions are Lemma 3.3 and Theorem 3.4, whose proofs become slightly more

intricate: a simple continuity argument cannot be applied, as discrete changes may

lead to jumps in the xu(t). However, careful accounting and judicious choices of

interval sizes δ still make the proofs go through.

One argument frequently raised against discrete-time analysis is that it may lead

to oscillations in states, in particular when states are updated synchronously. In our

proofs, we have not observed such oscillations, and indeed conjecture that both the

discrete-time and continuous-time versions will always converge to an equilibrium.

In the cases where a proof of this convergence has been difficult, this difficulty has

persisted in both continuous and discrete time.

5.1.3 Discrete graph structures

Throughout, we have assumed that the interaction and influence graphs are “dis-

crete,” in the sense that the propensity of individuals to interact with (or be influenced

by) individuals of adjacent types is the same for all adjacent types. In reality, the

world will not be as black-and-white; rather, there will be some types v adjacent to

u that are more likely than others to succeed in convincing individuals from node

u to switch. For instance, in the introductory example from Section 1, while radical

protestants may be most likely to become moderate protestants (or stay radical), a

small fraction may directly become atheists.

In a more general form of the model, the probability p for switching between

types would depend on the specific types, i.e. be of the form pu,v , where it is expressly

possible that pu,v �= pv,u. pu,v = 0 would correspond to the absence of an edge from

u to v. Similarly, we could assign weights to the edges of the interaction graph, and

have meeting probabilities follow those weights.

This more general model becomes significantly more complex to analyze. When

pu,v = pv,u for all pairs (u, v), much of the analysis in the present work carries over,

but for asymmetric versions, a more complex approach may be needed. Similarly,

given the difficulties caused even by the simple local model, a more general weighted

interaction graph model looks like a rather formidable challenge.

5.2 Open questions

An open question is to predict the equilibrium to which the system converges starting

from a given initial mass vector. We suspect that with probability 1 over possible

starting states, the system converges to an equilibrium in which the active nodes

form an independent set.

The local model involves, at its heart, a dynamical system on the population

fractions that is complicated even for small numbers of variables. As such, it raises

many interesting and challenging questions, and we have made progress on some of

these. In particular, we know that on paths of length 3 (for α > 1) and at most 5 (for

α = 1), the system converges from any starting state. However, it is open whether

convergence occurs for all graphs. On the stability frontier, for α > 1, we conjecture

that the only Lyapunov-stable equilibria are those in which the active nodes have

pairwise distance at least 3. We showed that such equilibria are indeed Lyapunov-

stable, and that a number of other equilibria are not Lyapunov-stable—including
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ones in which the active nodes form any other independent set, or ones in which

they form a locally balanced graph (a class that includes bipartite graphs). Finally, we

would like to raise an even more challenging question: does the dynamical system

defined by the general model—or even the general model—always converge?
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Appendix A: Convergence on a 3-node path (Proof of Theorem 4.1)

Observe that the flow between two types u and v does not necessarily go in the

same direction at all times, but instead may change its direction. To keep track of

the changes in direction, we define a configuration of the system to be a labeling of

all edges (u, v) in T by the direction along which flow is traveling (i.e. whether it

travels from u to v or from v to u). A configuration which cannot transition to any

other configuration is called a sink configuration. Sink configurations are important

because they guarantee convergence by Lemma 2.2.

In the case of a 3-node path and α � 2, there are four possible configurations. We

study transitions among the configurations as the system evolves over time; we show

that each configuration is either a sink configuration, or it has the property that any

change in the direction of an edge leads to a sink configuration. This ensures that

there can be at most one change in the direction of flow as the system evolves.

For a 3-node path and α < 2, convergence will follow as a special case of the

more general Theorem A.2, which establishes convergence for all star graphs when

α < 2. For a 3-node path and α � 2, we prove the following lemma (which, jointly

with Lemma 2.2, implies Theorem 4.1 for α � 2).
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Lemma A.1

Consider the local model with α � 2 such that the influence graph T is a 3-node

path. Then, there is a time t0 such that for any t > t0, no flow changes its direction.

Proof

Let the nodes of the path be (1, 2, 3), in order. Consider an arbitrary time t, and

recall that M1(t) = αx1(t) + x2(t). Node 1’s interaction mass is decreased at a

rate of αf1→2(t) from flow leaving node 1 to node 2, and increased at a rate of

f1→2(t) + f3→2(t) from flow entering node 2. By applying the same reasoning to

nodes 2 and 3, we get

Ṁ1(t) = f3→2(t) − (α − 1)f1→2(t),

Ṁ2(t) = (α − 1)(f1→2(t) + f3→2(t)),

Ṁ3(t) = f1→2(t) − (α − 1)f3→2(t).

(A 1)

Let xi = xi(t),Mi = Mi(t), fi→j = fi→j(t) for i, j = 1, 2, 3. We will distinguish three

cases based on the relative sizes of M1,M2,M3.

1. If M2 � M1 and M2 � M3, then both f1→2 and f3→2 are non-negative.

According to Equation (A 1), M2 increases by at least as much as both M1

and M3, so the same inequality will subsequently as well. Thus, we have

reached a sink configuration.

2. If M2 < M1 and M2 < M3, then both f1→2 and f3→2 are negative. By

Equation (A 1), M2 decreases by at least as much as both M1 and M3, so again,

the inequalities will hold forever, and we have reached a sink configuration.

3. The remaining case is that M2 < M1 and M2 � M3. (The case M2 <

M3,M2 � M1 is symmetric.) Here, M3 decreases, M1 increases, and M2

may increase or decrease. If the relative order of M1,M2,M3 stays the same

for all times after t, then we have reached a sink configuration. Otherwise,

at some time t′ � t, we must reach either a configuration with M2(t
′) <

M1(t
′),M2(t

′) < M3(t
′) or with M2(t

′) � M1(t
′),M2(t

′) � M3(t
′). Either of

those configurations is a sink configuration by the preceding two cases.

In summary, each configuration is either a sink configuration, or will reach a sink

configuration at the next transition to a different order of interaction masses. �

Next, we prove that for α < 2 the process converges on every star graph (and in

particular on the 3-path).

Theorem A.2

Under the local model with α < 2, if the influence graph is a star graph, then the

system converges from any starting state.

In the remainder of this section, we prove Theorem A.2. More specifically, we

show that eventually the system enters a sink configuration. The first lemma towards

the proof holds for arbitrary values of α.

Lemma A.3

Consider the local model with an arbitrary α � 1 such that the influence graph T is

a star graph. Then, at any time, the number of edges with flow directed away from

the center is at most �α
.
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Proof

Denote the central node by u. Fix some time t, and let R be the set of all peripheral

nodes v such that the flow on the edge (u, v) is directed from u to v. Because the

flow is directed towards v, Mv > Mu for all v ∈ R. Rearranging this inequality gives

us that (α − 1)(xv − xu) >
∑

w �=u,v xw , which implies in particular that xv >
∑

w �=u,v xw

α−1
.

Summing overall v ∈ R now implies that

∑
v∈R

xv >
∑
v∈R

∑
w �=u,v xw

α − 1
� (|R| − 1)

∑
v∈R xv

α − 1
.

Thus, we have that |R| � �α
. �

Lemma A.4

Consider the local model such that the influence graph T is a star graph, and with

α < 2. Then, any configuration in which flow on exactly one edge is directed away

from the center node is a sink configuration.

Proof

Let u be the center node. Suppose that at time t, the system is in a configuration

in which the flow on exactly one edge (u, v) is directed away from the center; so

Mu(t) < Mv(t). By Lemma A.3, there can be at most one edge on which the flow is

directed away from u, and (u, v) is such an edge. The changes in interaction masses

are

Ṁu(t) = (α − 1)
∑
w �=u,v

fw→u(t) − (α − 1)fu→v(t)

Ṁv(t) = (α − 1)fu→v(t) +
∑
w �=u,v

fw→u(t).

Their difference is

Ṁu(t) − Ṁv(t) � (α − 2)
∑
w �=u,v

fw→u(t) − 2(α − 1)fu→v(t).

Because α < 2, the right-hand side is negative, so u’s interaction mass grows more

slowly (or decreases faster) than v’s, implying that the edge (u, v) remains directed

from u to v. Hence, the configuration is a sink configuration. �

Theorem A.2 now follows from Lemmas 2.2, A.3, and A.4, as follows. If the system

ever enters a configuration in which exactly one edge has flow directed away from

the center, then by Lemma A.4, it subsequently stays in this configuration forever,

so by Lemma 2.2, the system converges. By Lemma A.3, the only other alternative

is that the system is always in the configuration with all edges directed inwards;

then, again, it converges by Lemma 2.2.

Appendix B: Local model with α = 1: Convergence on a path

Assume that the active subgraph is an n-node path with nodes (1, 2, . . . , n). The

endpoints of the path, nodes 1 and n, always have interaction masses no larger

than their neighbors (nodes 2, n − 1), implying that their masses x1(t), xn(t) are

monotonically non-increasing. This implies convergence of x1(t), xn(t) as t → ∞. In

the following proposition, we will exploit the convergence at the endpoints to show
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that x2(t) and xn−1(t) must also converge. For a path of length at most 5, this implies

convergence of the vector x to an equilibrium, as the total mass stays constant. Our

technique does not apply beyond length 5; we do not know of a direct way to

generalize the argument inductively to paths of arbitrary lengths.

Theorem B.1

Consider the local model with α = 1. If the influence graph is a path of n � 5 nodes,

then the system converges.

Proof

We already argued above that x1(t) and xn(t) converge. If the path has three nodes,

then x2(t) = 1 − x1(t) − x3(t) (by mass conservation), so x2(t) converges as well. So

assume that n ∈ {4, 5}. Below, we show that x2(t) converges as well; a symmetric

argument applies to xn−1(t). If the path has four nodes, we are done at this point. If

the path has five nodes, then x3(t) = 1 − x1(t) − x2(t) − x4(t) − x5(t) must converge

as well. Thus, x(t) converges in all cases.

To prove that x2(t) converges, we distinguish two cases, based on y1 = limt→∞ x1(t).

1. If y1 = 0, there are two subcases. If x1(t) � x2(t) for all t, then clearly, x2(t) → 0

as well. Otherwise, there exists a t0 with x2(t0) > x1(t0). By Equation (2),

specialized to the local model and α = 1, we obtain that for any t,

ẋ1(t) = p · x1(t) ·
(

x1(t)

M1(t)
+

x2(t)

M2(t)
− 1

)
,

ẋ2(t) = p · x2(t) ·
(

x1(t)

M1(t)
+

x2(t)

M2(t)
+

x3(t)

M3(t)
− 1

)
.

Then, clearly, x1(t) < x2(t) implies ẋ1(t) < ẋ2(t). In particular, this means that

x2(t) > x1(t) for all t � t0. In turn, this inequality is used in the last step of the

following derivation:

max(f3→2(t), 0) � p · x2(t) x3(t)

M2(t) M3(t)
· x1(t)

= p · x1(t) x2(t) x3(t)

M1(t) M2(t)
· M1(t)

M3(t)

= f1→2(t) · x1(t) + x2(t)

x2(t) + x3(t) + x4(t)

� 2 f1→2(t).

Thus, the total amount of flow entering node 2 after time t0 is at most

3
∫ ∞
t0

f1→2(t)dt � 3 x1(t0). The reason for the last inequality is that flow never

enters node 1, so the total amount of flow that can leave node 1 for node 2

after t0 is at most the amount that was at node 1 at time t0.

Let F+(t) (resp., F−(t)) be the total amount of flow that has entered (resp.,

left) node 2 up to time t. We have just proved that F+(t) − F+(t0) � 3x1(t0).

Therefore, F+(t), being monotone and bounded, must converge. Because flow

can only leave node 2 when it was already there, we get that F−(t) �
x2(0) + F+(t) is also bounded, and must also converge. Hence, x2(t) =

x2(0) + F+(t) − F−(t), being the difference between two convergent functions,

must also converge.
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2. If y1 > 0, we will pursue a similar argument, but this time bounding the

cumulative flow out of node 2 instead of into it. Because x2(t) � 1 for

all times t, this means that the cumulative flow into node 2 must also be

bounded. Then, an identical argument to the previous paragraph shows that

x2(t) = x2(0) + F+(t) − F−(t) must converge.

No flow can ever leave node 2 for node 1, so we just need to bound the flow

from node 2 to node 3. Flow leaves node 2 for node 3 at time t if and only

if x4(t) � x1(t). Since x1(t) � y1, it follows that M2(t),M3(t) � y1 as well.

Therefore, we can bound the non-negative flow from node 2 to node 3 as

follows:

max(f2→3(t), 0) � p · x2(t) x3(t)

M2(t) M3(t)
· x4(t) � p · x2(t) x3(t)

y2
1

� p · x1(t) x2(t) x3(t)

y3
1

�
1

y3
1

· p · x1(t) x2(t) x3(t)

M1(t)M2(t)
=

1

y3
1

· f1→2(t).

Thus, the total positive flow from node 2 to node 3 is bounded above by a

constant times the total flow from node 1 to node 2, which in turn is at most

x1(0). �
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