THE SECOND CONJUGATES OF CERTAIN BANACH ALGEBRAS

PAK-KEN WONG

1. Introduction. Let A be a Banach algebra and $A^{* *}$ its second conjugate space. Arens has defined two natural extensions of the product on A to $A^{* *}$. Under either Arens product, $A^{* *}$ becomes a Banach algebra. Let A be a semisimple Banach algebra which is a dense two-sided ideal of a B^{*}-algebra B and $R^{* *}$ the radical of $\left(A^{* *}, \circ\right)$. We show that $A^{* *}=Q \oplus R^{* *}$, where Q is a closed two-sided ideal of ($A^{* *}, ~$ o). This was inspired by Alexander's recent result for simple dual A^{*}-algebras (see [1, p. 573, Theorem 5]). We also obtain that if A is commutative, then A is Arens regular. As an application of this result, we show that if A is commutative and $B=C_{0}\left(M_{A}\right)$, then the following statements are equivalent:
(i) A is a modular annihilator algebra.
(ii) For each maximal modular ideal M of $\left(A^{* *}, \circ\right)$ such that $M \nsupseteq \pi_{A}(A)$, M is weakly closed.
(iii) For each F in $A^{* *}, F$ belongs locally to \hat{A} at each point of M_{A}.
2. Notation and preliminaries. Definitions not explicitly given are taken from Rickart's book [7].

Let A be a semi-simple commutative Banach algebra with carrier space M_{A}. Then $C_{0}\left(M_{A}\right)$ will denote the algebra of complex-valued functions on M_{A}, which vanish at infinity and \hat{A} the function algebra on M_{A} isomorphic to A in the Gelfand theory.

For any subset E of a Banach algebra A, let $l_{A}(E)$ and $r_{A}(E)$ denote the left and right annihilators of E in A, respectively. Then A is called a modular annihilator algebra if, for every maximal modular left ideal I and for every maximal modular right ideal J we have $r_{A}(I)=(0)$ if and only if $I=A$ and $l_{A}(J)=(0)$ if and only if $J=A$. It is well-known that a semi-simple commutative Banach algebra A is a modular annihilator algebra if and only if its carrier space M_{A} is discrete (see [4] and [9]).

Let A be a Banach algebra, A^{*} and $A^{* *}$ the conjugate and second conjugate spaces of A, respectively. The two Arens' products on $A^{* *}$ are defined in stages according to the following rules (see [2]). Let $x, y \in A, f \in A^{*}$ and $F, G \in A^{* *}$.
(a) Define $f \circ x$ by $(f \circ x)(y)=f(x y)$. Then $f \circ x \in A^{*}$.
(b) Define $G \circ f$ by $(G \circ f)(x)=G(f \circ x)$. Then $G \circ f \in A^{*}$.
(c) Define $F \circ G$ by $\left(F \circ G(f)=F(G \circ f)\right.$. Then $F \circ G \in A^{* *}$.

[^0]$A^{* *}$ with the Arens product \circ is denoted by ($A^{* *}, \circ$).
(a^{\prime}) Define $x \mathrm{o}^{\prime} f$ by $\left(x \circ^{\prime} f\right)(y)=f(y x)$. Then $x \circ^{\prime} f \in A^{*}$.
(b') Define $f \circ^{\prime} F$ by $\left(f \circ^{\prime} F\right)(x)=F\left(x \circ^{\prime} f\right)$. Then $f \circ^{\prime} F \in A^{*}$.
(c^{\prime}) Define $F \circ^{\prime} G$ by $\left(F \circ^{\prime} G\right)(f)=G\left(f \circ^{\prime} F\right)$. Then $F \circ^{\prime} G \in A^{* *}$.
$A^{* *}$ with the Arens product o^{\prime} is denoted by ($A^{* *}, \circ^{\prime}$).
Each of these products extends the original multiplication on A when A is canonically embedded in $A^{* *}$. In general, o and \circ^{\prime} are distinct on $A^{* *}$. If they coincide on $A^{* *}$, then A is called Arens regular.

Notation. Let A be a Banach algebra. The mapping π_{A} will denote the canonical embedding of A into $A^{* *}$.

In this paper, all algebras and linear spaces under consideration are over the field C of complex numbers.
3. The Algebra ($A^{* *}, ~$ o). In this section, let A be a semi-simple Banach algebra which is a dense two-sided ideal of a B^{*}-algebra B. We write $\|\cdot\|$ for the norm on A and $|\cdot|$ for the norm on B. By [$\mathbf{3}, \mathrm{p} .3$, Proposition 2.2], there exists a constant K such that $K\|\cdot\| \geqq|\cdot|$. Hence by [3, p. 3, Theorem 2.3], there exists a constant M such that

$$
\begin{equation*}
\|a b\| \leqq M| | a \||b| \quad \text { and } \quad\|b a\| \leqq M| | a|\||b|, \tag{3.1}
\end{equation*}
$$

for all a in A and b in B. For each $g \in B^{*}$, let g_{A} denote the restriction of g to A. Then $g_{A} \in A^{*}$. For each $F \in A^{* *}$, define $\theta(F)$ on B^{*} by $\theta(F)(g)=F\left(g_{A}\right)$ $\left(g \in B^{*}\right)$. Then $\theta(F) \in B^{* *}$.

For all $f \in A^{*}$ and $y \in B$, define

$$
(f \circ y)(x)=f(y x) \quad(x \in A)
$$

Then by (3.1), $f \circ y \in A^{*}$ and $\|f \circ y\| \leqq M\|f\||y|$. For each $F \in A^{* *}$ and $f \in A^{*}$, define

$$
(F * f)(y)=F(f \circ y) \quad(y \in B) .
$$

Then $F * f \in B^{*}$. For any $H \in B^{* *}$, define

$$
H * F(f)=H(F * f) \quad\left(f \in A^{*}, F \in A^{* *}\right)
$$

Then $H * F \in A^{* *}$.
Let $R_{1}{ }^{* *}$ (respectively $R_{2}{ }^{* *}$) be the radical of ($A^{* *}$, ○) (respectively ($A^{* *}$, $\left.o^{\prime}\right)$). $B^{* *}$ with the Arens product will be denoted by $\left(B^{* *}, \cdot\right)$. It is well-known that $\left(B^{* *}, \cdot\right)$ is a B^{*}-algebra.

Lemma 3.1. Let A be a semi-simple Banach algebra which is a dense two-sided ideal of a B^{*}-algebra B. Then
(i) $R_{1}{ }^{* *}$ is the left and right annihilator of $\left(A^{* *}, \mathrm{O}\right)$,
(ii) $R_{1}{ }^{* *}$ coincides with $R_{2}{ }^{* *}$.

Proof. (i) Put $\theta\left(R_{1}{ }^{* *}\right)=\left\{\theta(R): R \in R_{1}{ }^{* *}\right\}$. For any $H \in B^{* *}$ and $R \in R_{1}{ }^{* *}$,
we show that $H * R \in R_{1}{ }^{* *}$. Suppose this is not so. Then by the proof of [7, p. 55, Theorem (2.3.2) (iii)], we can choose some $F \in A^{* *}$ such that $F \circ(H * R)$ is not quasi-regular in $\left(A^{* *}, \circ\right)$. Easy calculations show that $F \circ(H * R)=F_{H} \circ R$, where F_{H} is defined as in the proof of $[\mathbf{1 0}, \mathrm{p} .446$, Theorem 5.7 (ii)]. Since $F_{H} \circ R \in R_{1}{ }^{* *}$ is quasi-regular in ($A^{* *}, \circ$), so is $F \circ(H * R)$; a contradiction. Therefore $H * R \in R_{1}{ }^{* *}$ and consequently $\theta(H * R) \in \theta\left(R_{1}{ }^{* *}\right)$. Hence $H \cdot \theta(R)=\theta(H * R) \in \theta\left(R_{1}{ }^{* *}\right)$. It is easy to see that $\theta\left(R_{1}{ }^{* *}\right)$ is a quasi-regular left ideal of ($\left.B^{* *}, \cdot\right)$. Since ($\left.B^{* *}, \cdot\right)$ is a B^{*}-algebra, it follows that $\theta\left(R_{1}{ }^{* *}\right)=(0)$. Since $\theta\left(R_{1}{ }^{* *}\right)=(0)$, we have

$$
(R \circ F)(f)=\theta(R)(F * f)=0 \quad\left(f \in A^{*}, F \in A^{* *}, R \in R_{1}^{* *}\right)
$$

Consequently $R_{1}{ }^{* *} \circ A^{* *}=(0)$. For each $x \in A$ and $f \in A^{*}$, define $f * x$ on B by $(f * x)(y)=f(x y)(y \in B)$. Then it follows from (3.1) that $f * x \in B^{*}$. Since $\theta\left(R_{1}{ }^{* *}\right)=(0)$, we have

$$
\begin{equation*}
\left(\pi_{A}(x) \circ R\right)(f)=R(f \circ x)=\theta(R)(f * x)=0 \quad\left(R \in R_{1}^{* *}\right) \tag{3.2}
\end{equation*}
$$

Since $\pi_{A}(A)$ is weakly dense in $A^{* *}$, it follows from (3.2) that $A^{* *} \circ R_{1}{ }^{* *}=(0)$. Hence it is now easy to see that $R_{1}{ }^{* *}$ is equal to the left and right annihilator of ($A^{* *}, \mathrm{o}$) and this proves (i).
(ii) By a similar argument as in (i), we can show that $R_{2}{ }^{* *}$ is the left and right annihilator of ($A^{* *}, \circ^{\prime}$). Since by (i), $R_{1}^{* *} \circ \pi_{A}(A)=R_{1}^{* *} \circ^{\prime} \pi_{A}(A)=$ (0), it follows that $R_{1}{ }^{* *} o^{\prime} A^{* *}=(0)$. Hence $R_{1}{ }^{* *} \subset R_{2}{ }^{* *}$. Similarly $R_{2}{ }^{* *} \subset$ $R_{1}{ }^{* *}$ and so they are equal. This completes the proof.

Notation. Let $R^{* *}=R_{1}{ }^{* *}=R_{2}{ }^{* *}$.
Theorem 3.2. Let A be a semi-simple Banach algebra which is a dense twosided ideal of a B^{*}-algebra B. Then
(i) $A^{* *}=Q \oplus R^{* *}$, where Q is a closed two-sided ideal of $\left(A^{* *}, \circ\right)$.
(ii) There exists a continuous algebraic homomorphism θ of $\left(A^{* *}\right.$, 0) into ($\left.B^{* *}, \cdot\right)$ such that the restriction of θ to Q is an isomorphism.

Proof. (i) Let Λ be the collection of all finite subsets of A ordered by inclusion. Since A is a dense two-sided ideal of B, by the proof of $[7, \mathrm{p} .245$, Theorem (4.8.14)], we can show that there exists an approximate identity $\left\{e_{\lambda}: \lambda \in \Lambda\right\}$ for B such that $\left\{e_{\lambda}: \lambda \in \Lambda\right\} \subset A$. Let $F \in A^{* *}$. Since $\left\|\pi_{A}\left(e_{\lambda}\right) \circ F\right\|$ $\leqq M\|F\|$, there exists a subnet $\left\{e_{\alpha}\right\}$ of $\left\{e_{\lambda}\right\}$ and $F_{1} \in A^{* *}$ such that $\pi_{A}\left(e_{\alpha}\right) \circ F$ $\rightarrow F_{1}$ weakly. Then for all f in $A^{* *}$, we have

$$
\begin{align*}
F_{1}(f) & =\lim _{\alpha} \pi_{A}\left(\mathrm{e}_{\alpha}\right) \circ F(f)=\lim _{\alpha} \pi_{A}\left(e_{\alpha}\right)(F \circ f) \\
& =\lim _{\alpha} \pi_{B}\left(e_{\alpha}\right)(F * f)=I_{B}(F * f) \tag{3.3}
\end{align*}
$$

where I_{B} denotes the identity of $\left(B^{* *}, \cdot\right)$ (see [5, p. 855, Lemma 3.8]). Now it follows easily from (3.3) that F_{1} is the unique limit point of $\left\{\pi_{A}\left(e_{\lambda}\right) \circ F\right\}$ in
$A^{* *}$. For all a in A and f in A^{*}, by (3.1) we have

$$
\begin{aligned}
\mid \pi_{A}\left(a e_{\lambda}\right) \circ F(f)-\pi_{A}(a) \circ F(f) & =\left|F\left(f \circ\left(a e_{\lambda}-a\right)\right)\right| \\
& \leqq M| | F\| \| f \|\left|a e_{\lambda}-a\right| .
\end{aligned}
$$

Hence $\pi_{A}\left(a e_{\lambda}\right) \circ F \rightarrow \pi_{A}(a) \circ F$ weakly in $A^{* *}$ and so $\pi_{A}(a) \circ F_{1}=\pi_{A}(a) \circ F$. Consequently $A^{* *} \circ\left(F_{1}-F\right)=(0)$ and therefore by Lemma 3.1, $F-F_{1} \in$ $R^{* *}$. Let

$$
Q=\left\{F_{1}: F \in A^{* *}\right\} .
$$

If there exists some F in $A^{* *}$ such that $F_{1} \in R^{* *}$, then by Lemma 3.1, $\pi_{A}\left(e_{\lambda}\right) \circ F=\pi_{A}\left(e_{\lambda}\right) \circ F_{1}=0$ and consequently $F_{1}=0$. Therefore $Q \oplus R^{* *}=$ $A^{* *}$. We show that Q is a closed two-sided ideal of $\left(A^{* *}, \mathrm{o}\right)$. Let $F, G \in A$. Then

$$
\begin{equation*}
F \circ G=\left(F_{1}+\left(F-F_{1}\right)\right) \circ\left(G_{1}+\left(F-G_{1}\right)\right)=F_{1} \circ G_{1} . \tag{3.4}
\end{equation*}
$$

Also

$$
\begin{equation*}
(F \circ G)_{1}=\lim _{\lambda} \pi_{A}\left(e_{\lambda}\right) \circ(F \circ G)=F_{1} \circ G=F_{1} \circ G_{1} . \tag{3.5}
\end{equation*}
$$

It follows from (3.4) and (3.5) that Q is a two-sided ideal of $\left(A^{* *}, 0\right)$. It is easy to see that Q is closed and this proves (i).
(ii) We show that the mapping $\theta: F \rightarrow \theta(F)\left(F \in A^{* *}\right)$ is such a mapping. In fact, for all $F, G \in A^{* *}$ and $g \in B^{*}$, we have

$$
\begin{equation*}
(\theta(F) \cdot \theta(G))(g)=F\left(G \circ g_{A}\right)=\theta(F \circ G)(g) . \tag{3.6}
\end{equation*}
$$

Hence by (3.6), $\theta(F) \cdot \theta(G)=\theta(F \circ G)$. Therefore we see easily that θ is an algebraic homomorphism from ($A^{* *}, ~$) into ($B^{* *}, \cdot$). Since $\left\|g_{A}\right\| \leqq K|g|$, we have $|\theta(F)| \leqq K| | F| |$ and consequently θ is continuous. It remains to show that the restriction of θ to Q is an isomorphism. Suppose $F \in Q$ and $\theta(F)=0$. Then for all f in A^{*}, we have

$$
F(f)=\lim _{\lambda}\left(\pi_{A}\left(e_{\lambda}\right) \circ F\right)(f)=\lim _{\lambda} \theta(F)\left(f * e_{\lambda}\right)=0 .
$$

Therefore $F=0$ and so θ is an isomorphism. This completes the proof of the theorem.

By using the proofs of Theorem 3.2 and [$\mathbf{1 0}$, p. 446, Theorem 5.7 (ii)], we have the following result:

Corollary 3.3. $A^{* *} / R^{* *}$ is a semi-simple Banach algebra which is a dense two-sided ideal of some B^{*}-algebra.

Theorem 3.4. Let A be a semi-simple Banach algebra which is a dense twosided ideal of a B^{*}-algebra B. Then A is Arens regular if any of the following conditions holds:
(i) A is a modular annihilator algebra.
(ii) A is a commutative algebra.

Proof. We show that

$$
\begin{equation*}
F \circ \pi_{A}(a) \circ G=F \circ^{\prime} \pi_{A}(a) \circ^{\prime} G \quad\left(F, G \in A^{* *}, a \in A\right) . \tag{3.7}
\end{equation*}
$$

In fact, this is true if condition (i) holds, because $\pi_{A}(A)$ is a two-sided ideal of ($A^{* *}$, o) by Theorem 3.4 in [11]. Now suppose A is commutative. Then for all f in A^{*}, we have

$$
\begin{aligned}
(F \circ & \left.\pi_{A}(a) \circ G-F \circ^{\prime} \pi_{A}(a) \circ^{\prime} G\right)(f) \\
& =\left(\pi_{A}(a) \circ\left(F \circ G-F \circ^{\prime} G\right)\right)(f) \\
& =\left(F \circ G-F \circ^{\prime} G\right)(f \circ a)=(\theta(F) \cdot \theta(G)-\theta(F) \cdot \theta(G))(f * a) \\
& =0 .
\end{aligned}
$$

Therefore (3.7) holds. Now by using the proofs of Theorem 3.2 and [10, p. 446, Theorem 5.7], we can show that $F \circ G=F \circ^{\prime} G$. Therefore A is Arens regular.

We remark that condition (i) in Theorem 3.3 does not imply that A is an annihilator algebra. For example, the algebra $\Im_{\text {II }}$ given in [6, p. 141, Theorem 14.1] is a modular annihilator A^{*}-algebra which is a dense two-sided ideal of the dual B^{*}-algebra \Im_{∞}. However $\Im_{\text {II }}$ is not an annihilator algebra. Therefore Theorem 3.3 (i) is a generalization of [$\mathbf{1 0}$, p. 446, Theorem 5. 7 (i)].

We believe that Theorem 3.4 is true without conditions (i) or (ii).
4. A characterization of modular annihilator algebras. In this section, we shall give an application of Theorem 3.4. Unless otherwise stated A will be a commutative Banach algebra which is a dense ideal of $C_{0}\left(M_{A}\right)$ where M_{A} is the carrier space of A. Then by $[7, \mathrm{p} .57$, Corollary (2.3.7)], A is semi-simple. Hence by Theorem 3.4, A is Arens regular and so ($A^{* *}, \circ$) is a commutative Banach algebra.

Lemma 4.1. Let $f \in M_{A}$ and $\left\{f_{\alpha}\right\}$ a net in M_{A} such that $f_{\alpha} \rightarrow f$ and $f_{\alpha} \neq f$ for all α. Then there exists an element F in $A^{* *}$ such that $F(f) \neq 0$ and $F\left(f_{\alpha}\right)=0$ for all α.

Proof. This follows easily from the proof of [9, p. 829, Lemma i. 1].
For each ϕ in M_{A}, let ϕ^{\prime} be the multiplicative linear functional on $A^{* *}$ such that $\phi^{\prime}(F)=F(\phi)$ for all F in $A^{* *}$ (see [5, p. 854, Lemma 3.6]).

For each maximal modular ideal M in $A^{* *}$, let f_{M} be the multiplicative linear functional on $A^{* *}$ such that $M=\left\{F \in A^{* *}: f_{M}(F)=0\right\}$.

Lemma 4.2. Let M be a maximal modular ideal of $\left(A^{* *}\right.$, 0$)$ such that $M \nsupseteq \pi_{A}(A)$. Then the following statements are equivalent:
(i) M is weakly closed in $A^{* *}$.
(ii) $M=\left\{F \in A^{* *}: F(\phi)=0\right\}$ for some ϕ in M_{A}.
(iii) $f_{M}=\phi^{\prime}$ for some ϕ in M_{A}.

Proof. (i) \Rightarrow (ii). Suppose M is weakly closed in $A^{* *}$. Let ϕ be the restriction of f_{M} to $\pi_{A}(A)$. Then $\phi \neq 0$ and $\phi \in M_{A}$. Clearly $\left\{\pi_{A}(x) \in \pi_{A}(A): \phi(x)=0\right\}$ $\subset M$. Let N be the weak closure of $\left\{\pi_{A}(x) \in \pi_{A}(A): \phi(x)=0\right\}$ in $A^{* *}$. Then $N \subset M$. Also by the proof of [$\mathbf{5}, \mathrm{p} .865$, Theorem 5.3], N is a maximal modular ideal of $A^{* *}$ and $N=\left\{F \in A^{* *}: F(\phi)=0\right\}$. Hence it follows from the maximality of N that $M=N$ and this proves (ii).
(ii) \Rightarrow (iii). Suppose $M=\left\{F \in A^{* *}: F(\phi)=0\right\}$ for some ϕ in M_{A}. Then f_{M} and ϕ^{\prime} have the same null space and so $f_{M}=\phi^{\prime}$.
(iii) $\Rightarrow\left(\right.$ i). Suppose $f_{M}=\phi^{\prime}$ for some ϕ in M_{A}. Then $M=\left\{F \in A^{* *}: F(\phi)=0\right\}$ and consequently M is weakly closed in $A^{* *}$. This completes the proof.

Let A be a commutative Banach algebra with carrier space M_{A}. A function f on M_{A} is said to belong locally to \hat{A} at p in M_{A} if there exists a neighborhood V of p and a function \hat{x} in \hat{A} such that $f|v=\hat{x}| V$.

We now have the main result of this section.
Theorem 4.3. Let A be a commutative Banach algebra which is a dense ideal of $C_{0}\left(M_{A}\right)$. Then the following statements are equivalent:
(i) A is a modular annihilator algebra.
(ii) For each maximal modular ideal M of $A^{* *}$ such that $M \nsupseteq \pi_{A}(A), M$ is weakly closed in $A^{* *}$.
(iii) For each F in $A^{* *}, F$ belongs locally to \hat{A} at each point of M_{A}.

Proof. (i) \Rightarrow (ii). Suppose (i) holds. Since $M \nsupseteq \pi_{A}(A)$ is a maximal modular ideal of $\pi_{A}(A)$, it follows from [12, p. 38, Lemma 3.3] that there exists some minimal idempotent e in A such that $\pi_{A}(e) \notin M$. By Theorem 3.4 in [11], $\pi_{A}(A)$ is an ideal of $\left(A^{* *}, \circ\right)$. Since $\pi_{A}(e) \circ A^{* *}=\pi_{A}(e A)=C \pi_{A}(e)$, where C is the field of complex numbers, $\pi_{A}(e) \circ M \subset \pi_{A}(e) \circ A^{* *} \cap M=(0)$. Hence $M \subset\left(1-\pi_{A}(e)\right) \circ A^{* *}$ and so by the maximality of $M, M=$ $\left(1-\pi_{A}(e)\right) \circ A^{* *}$. It follows that M is weakly closed and this gives (ii).
(ii) \Rightarrow (i). Suppose (ii) holds. Let $\phi \in M_{A}$ and let $\left\{\phi_{\alpha}\right\} \subset M_{A}$ be a net converging to ϕ in M_{A}. Since $\left\{\boldsymbol{\phi}_{\alpha}{ }^{\prime}\right\}$ are multiplicative linear functionals on $A^{* *}$, by Alaoglu's Theorem, we can assume that there exists some f^{\prime} in $A^{* * *}$ such that $\phi_{\alpha}{ }^{\prime}(F) \rightarrow f^{\prime}(F)$ for all F in $A^{* *}$. It is easy to see that f^{\prime} is a multiplicative linear functional on $A^{* *}$ and $f^{\prime} \mid \pi_{A}(A)=\phi$. Therefore by Lemma $4.2, f^{\prime}=\phi^{\prime}$. Hence $F\left(\phi_{\alpha}\right) \rightarrow F(\phi)$ for all F in $A^{* *}$. It now follows from Lemma 4.1 that M_{A} is discrete and so A is a modular annihilator algebra.
(i) \Rightarrow (iii). This is clear because M_{A} is discrete.
(iii) \Rightarrow (i). Suppose (iii) holds. Let $\phi \in M_{A}$ and let $\left\{\phi_{\alpha}\right\} \subset M_{A}$ be a net converging to ϕ in M_{A}. Then by (iii), we can assume that $F\left(\phi_{\alpha}\right) \rightarrow F(\phi)$ for all F in A. Therefore it follows from Lemma 4.1 that M_{A} is discrete and this completes the proof of the theorem.

Theorem 4.3 (iii) is a generalization of [8, p. 532, Theorem 4.2 (4)].

References

1. F. E. Alexander, The dual and bidual of certain A^{*}-algebras, Proc. Amer. Math. Soc. 38 (1973), 571-576.
2. R. Arens, The adjoint of a linear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
3. B. A. Barnes, Banach algebras which are ideals in a Banach algebra, Pacific J. Math. 38 (1971), 1-7.
4. - Modular annihilator algebras, Can. J. Math. 18 (1966), 566-578.
5. P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870.
6. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonself-adjoint operators, Transl. Math. Monographs, vol. 18 (Amer. Math. Soc., Providence, R. I., 1969).
7. C. E. Rickart, General theory of Banach algebras (University Series in Higher Math., Princeton, N.J. 1960).
8. B. J. Tomiuk and P. K. Wong, The Arens product and duality in B^{*}-algebras, Proc. Amer. Math. Soc. 25 (1970), 529-535.
9. P. K. Wong, Modular annihilator A^{*}-algebras, Pacific J. Math. 37 (1971), 82i--834.
10. - On the Arens products and certain Banach algebras, Trans. Amer. Math. Soc. 180 (1973), 837-848.
11. -A note on annihilator and complemented Banach algebras, J. Austral. Math. Soc. (to appear).
12. B. Yood, Ideals in topological rings, Can. J. Math. 16 (1964), 28-45.

Seton Hall University, South Orange, New Jersey

[^0]: Received February 21, 1974 and in revised form, September 20, 1974.

