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THE SECOND CONJUGATES OF CERTAIN BANACH 
ALGEBRAS 

PAK-KEN WONG 

1. I n t r o d u c t i o n . Let A be a Banach algebra and A** its second conjugate 
space. Arens has denned two natural extensions of the product on A to A**. 
Under either Arens product, A** becomes a Banach algebra. Let A be a semi-
simple Banach algebra which is a dense two-sided ideal of a i3*-algebra B and 
R** the radical of (A**, o ) . We show tha t A** = Q © R**, where Q is a 
closed two-sided ideal of 04**, o ) . This was inspired by Alexander 's recent 
result for simple dual ^4*-algebras (see [1, p. 573, Theorem 5]). We also obtain 
t ha t if A is commutat ive , then A is Arens regular. As an application of this 
result, we show tha t if A is commutat ive and B = Co(MA), then the following 
s ta tements are equivalent: 

(i) A is a modular annihilator algebra. 
(ii) For each maximal modular ideal M of (^4**, o) such tha t M ~£_ wA(A), 

M is weakly closed. 
(iii) For each F in A**, F belongs locally to A a t each point of MA. 

2. N o t a t i o n a n d pre l iminar ies . Definitions not explicitly given are taken 
from Rickart ' s book [7]. 

Let A be a semi-simple commutat ive Banach algebra with carrier space MA. 
Then CQ(MA) will denote the algebra of complex-valued functions on MA, 
which vanish a t infinity and A the function algebra on MA isomorphic to A in 
the Gelfand theory. 

For any subset £ of a Banach algebra A, let lA{E) and rA(E) denote the 
left and right annihilators of E in A, respectively. Then A is called a modular 
annihilator algebra if, for every maximal modular left ideal / and for every 
maximal modular right ideal J we have rA(I) = (0) if and only \i I = A and 
lA(J) = (0) if and only if / = A. I t is well-known tha t a semi-simple com­
muta t ive Banach algebra A is a modular annihilator algebra if and only if its 
carrier space MA is discrete (see [4] and [9]). 

Let A be a Banach algebra, A* and A** the conjugate and second conjugate 
spaces of A, respectively. T h e two Arens' products on A** are defined in stages 
according to the following rules (see [2]). Let x,y £ A, f Ç A* and F, G £ A**. 

(a) Define f o x by ( / o x) (y) = f(xy). Then fox G A*. 
(b) Define G of by (Gof)(x) = G(fox). Then G of G A*. 
(c) Define F o G by (FoG(f) = F(Gof). Then FoG e A**. 
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,4** with the Arens product o is denoted by (/I**, o). 
(a') Define x o ' / by (x o ' / )(y) = f{yx). Then x o ' / G ^4*. 
(b') Define/ o' F by ( / o ' f ) (x) = F(xo'f). T h e n / o ' F G 4*. 
(c') Define F o' G by (Fo'G)(f) = G ( / o ' F). Then f o ' G ^ 4**. 
A** with the Arens product o' is denoted by (̂ 4**, o'). 
Each of these products extends the original multiplication on A when A is 

canonically embedded in ^4**. In general, o and o' are distinct on ^4**. If they 
coincide on A**, then A is called Arens regular. 

Notation. Let A be a Banach algebra. The mapping 7rA will denote the 
canonical embedding of A into A**. 

In this paper, all algebras and linear spaces under consideration are over 
the field C of complex numbers. 

3. The Algebra (A**, o). In this section, let A be a semi-simple Banach 
algebra which is a dense two-sided ideal of a 5*-algebra B. We write || • || for 
the norm on A and | • | for the norm on B. By [3, p. 3, Proposition 2.2], there 
exists a constant K such that K\\ • || ^ | • |. Hence by [3, p. 3, Theorem 2.3], 
there exists a constant M such that 

(3.1) ||afr|| g M||a|| |6| and ||6a|| g M||a|| |6|, 

for all a in 4̂ and & in B. For each g G J3*, let gA denote the restriction of g to 
A. Then gA G 4*. For each F G 4**, define 6(F) on £* by 6(F) (g) = F(gA) 
(g G B*). Then 0(F) G £**• 

For all / G ^4* and y G -B, define 

( /o ;y ) (x ) = / (3w) (x G 4 ) . 

Then by (3.1), foy G A* and | | / o y | l ^ Af| | / | | \y\. 
For each T7 G A** a n d / G ^4*, define 

(F* / )Cy) = F(foy) (y £ B). 

Then F * / G 5*. For any LT G £**, define 

H* F(f) = H(F*f) ( / G 4*, F G -4**). 

Then H* F £ A**. 
Let i?i** (respectively i?2**) be the radical of (̂ 4**, o) (respectively (A**, 

o')). £** with the Arens product will be denoted by (£**, • ). It is well-known 
that (5**, • ) is a £*-algebra. 

LEMMA 3.1. Le/ A be a semi-simple Banach algebra which is a dense two-sided 
ideal of a B*-algebra B. Then 

(i) Ri** is the left and right annihilator of (A**, o), 
(ii) Ri** coincides with J\2**. 

Proof, (i) Put 6(R!**) = {d(R) : R G Ri**}. For any H G £** and R G 2?i**, 
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we show tha t H * R £ i?i**. Suppose this is not so. Then by the proof of 
[7, p . 55, Theorem (2.3.2) (iii)], we can choose some F £ A** such tha t 
F o (H * R) is not quasi-regular in (A**, o ) . Easy calculations show tha t 
F o (H * R) = FH o R, where FH is defined as in the proof of [10, p . 446, 
Theorem 5.7 (ii)]. Since FH o R £ Ri** is quasi-regular in (A**, o ) , so is 
F o (H * R); a contradiction. Therefore H * R Ç i^i** and consequently 
d(H*R) G 0(i?i**). Hence H • 6{R) = 6(H * R) G 0(i?i**). I t is easy to see 
t ha t 0(i?i**) is a quasi-regular left ideal of (5**, • ). Since (5**, • ) is a 
5*-algebra, it follows tha t 6(Ri**) = (0). Since 6(Ri**) = (0), we have 

(RoF)(f) =6(R)(F*f) = 0 ( / U * , F Ç ,4**, 7?£ * ! * * ) . 

Consequently i?i** o A** = (0). For each x £ A and / G A*, d e f i n e / * x on 
5 by (f*x)(y) = f(xy) {y £ B). Then it follows from (3.1) t h a t / * * G 5 * . 
Since 0(i?i**) = (0), we have 

(3.2) {irA{x)oR){f) = R(fox) = 6(R)(f*x) = 0 (2? G Ri**). 

Since 7rA(yl) is weakly dense in ^4**, it follows from (3.2) tha t A** oi?i** = (0). 
Hence it is now easy to see tha t Ri** is equal to the left and right annihilator 
of (A**, o) and this proves (i). 

(ii) By a similar argument as in (i), we can show tha t R2** is the left and 
right annihilator of (4**, o ' ) . Since by (i), Rf* OTA(A) = Rf* o' TA(A) = 
(0), it follows tha t Rf* o' A** = (0). Hence Rf* C ^2**. Similarly R2** C 
Ri** and so they are equal. This completes the proof. 

Notation. Let R** = i?i** = i?2**. 

T H E O R E M 3.2. Le/ A be a semi-simple Banach algebra which is a dense two-
sided ideal of a B*-algebra B. Then 

(i) A** = Q © R**, wfrere Q is a closed two-sided ideal of (A**, o ) . 
(ii) There exists a continuous algebraic homomorphism 6 of (A**, o) into 

(B**, - ) such that the restriction of 6 to Q is an isomorphism. 

Proof, (i) Let A be the collection of all finite subsets of A ordered by in­
clusion. Since A is a dense two-sided ideal of B, by the proof of [7, p. 245, 
Theorem (4.8.14)], we can show tha t there exists an approximate identi ty 
{ex : X G A) for B such tha t {ex : X £ A} C A. Let F £ A**. Since \\wA(ex) o F\\ 
^ Af| |F| | , there exists a subnet {ea} of {ex} and Li Ç ^4** such tha t 7i\4(ea) o L 
—» /^i weakly. Then for all / i n A**, we have 

F i ( / ) = lim irA(ea)o F(f) = lim irA{ea){Fof) 

( 3 ' 3 ) = lim T T s f e H F * / ) = lB(F*f), 
a 

where IB denotes the identi ty of (B**, • ) (see [5, p. 855, Lemma 3.8]). Now 
it follows easily from (3.3) tha t F\ is the unique limit point of {irA(e\) o F) in 
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A**. For all a in A a n d / in A*, by (3.1) we have 

\7rA(aex) o F(f) - TA(a) o F(f) = \F(fo (aex - a))\ 

^M\\F\\\\f\\\aex-a\. 

Hence irA (aex) o F —> irA (a) o F weakly in A** and so wA (a) o Fx = TTA (a) o F. 
Consequently A** o (Fi — F) = (0) and therefore by Lemma 3.1, F — F\ £ 
R**. Let 

Q = {Ft : F G 4 * * } . 

If there exists some F in A** such t ha t .Fi G R**, then by L e m m a 3.1, 
irA(ex) o F = irA(ex) o Fi = 0 and consequently F\ = 0. Therefore Q © i?** = 
^4**. We show tha t Q is a closed two-sided ideal of (A**, o ) . Let F} G £ A. Then 

(3.4) FoG = (F1+ (F- F i ) ) o ( d + ( F - d ) ) = ftoft. 

Also 

(3.5) ( F o G)i = lim T T A ( ^ ) O (FO G) = FiO G = FioGi. 
x 

I t follows from (3.4) and (3.5) t h a t Q is a two-sided ideal of (A**, o ) . I t is 
easy to see tha t Q is closed and this proves (i). 

(ii) W e show tha t the mapping 6 : F —> 6(F) (F £ ^4**) is such a mapping. 
In fact, for all F, G G ^4** and g G £*, we have 

(3.6) (6(F) -6(G)) (g) = F(GogA) = 8(FoG)(g). 

Hence by (3.6), 6(F) • 6(G) = 6(F o G). Therefore we see easily t ha t 6 is an 
algebraic homomorphism from (A**, o) into (B**, • ). Since llg^ll ^ K\g\, w e 

have \6(F)\ ^ i £ | | F | | and consequently 6 is continuous. I t remains to show 
tha t the restriction of 6 to Q is an isomorphism. Suppose F Ç Q and 6(F) = 0. 
Then for all / in A*, we have 

F(f) =\im(TrA(ex)oF)(f) = lim 0(F)(f * ex) = 0. 
x x 

Therefore F = 0 and so # is an isomorphism. This completes the proof of the 
theorem. 

By using the proofs of Theorem 3.2 and [10, p. 446, Theorem 5.7 (ii)], we 
have the following result: 

COROLLARY 3.3. ^4**/i?** {s a semi-simple Banach algebra which is a dense 
two-sided ideal of some B*-algebra. 

T H E O R E M 3.4. Let A be a semi-simple Banach algebra which is a dense two-
sided ideal of a B*-algebra B. Then A is Arens regular if any of the following 
conditions holds: 

(i) A is a modular annihilator algebra. 
(ii) A is a commutative algebra. 
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Proof. We show tha t 

(3.7) FoirA(a) oG = F o' TA(a) o' G (F, G 6 A**, a G A). 

In fact, this is t rue if condition (i) holds, because TTA(A) is a two-sided ideal 
of (A**, o) by Theorem 3.4 in [11]. Now suppose A is commutat ive. Then for 
a l l / in A*, we have 

(FoirA(a)oG- F o' irA{a) o' G) ( / ) 

= W a ) o ( F o G - Fo'G))U) 

= (FoG - Fo' G)(foa) = (6(F) -6(G) - 0(F) -d(G))(f*a) 

= 0. 

Therefore (3.7) holds. Now by using the proofs of Theorem 3.2 and [10, p. 446, 
Theorem 5.7], we can show tha t FoG = F o' G. Therefore A is Arens regular. 

We remark tha t condition (i) in Theorem 3.3 does not imply tha t A is an 
annihilator algebra. For example, the algebra @n given in [6, p. 141, Theorem 
14.1] is a modular annihilator ^4*-algebra which is a dense two-sided ideal of 
the dual i3*-algebra ©œ . However @n is not an annihilator algebra. Therefore 
Theorem 3.3 (i) is a generalization of [10, p. 446, Theorem 5.7 (i)]. 

We believe tha t Theorem 3.4 is true without conditions (i) or (ii). 

4. A characterization of modular annihilator algebras. In this section, 
we shall give an application of Theorem 3.4. Unless otherwise stated A will be 
a commutat ive Banach algebra which is a dense ideal of CQ(MA) where MA is 
the carrier space of A. Then by [7, p. 57, Corollary (2.3.7)], A is semi-simple. 
Hence by Theorem 3.4, A is Arens regular and so (^4**, o) is a commuta t ive 
Banach algebra. 

LEMMA 4.1. Let f £ MA and { fa) a net in MA such that fa —>/ and fa ^ / for 
all a. Then there exists an element F in A** such that F(f ) ^ 0 and F(fa) = 0 
for all a. 

Proof. This follows easily from the proof of [9, p. 829, Lemma 5.1]. 

For each <f> in MA, let <t>' be the multiplicative linear functional on .4** such 
tha t <t>f(F) = F(<t>) for all F in A** (see [5, p. 854, Lemma 3.6]). 

For each maximal modular ideal M in ^4**, l e t / M be the multiplicative linear 
functional on yl** such tha t M = j F Ç ^** : fM(F) = 0}. 

LEMMA 4.2. Let M be a maximal modular ideal of (^4**, o) such that 
M ~£>_ TA(A). Then the following statements are equivalent: 

(i) M is weakly closed in ^4**. 
(ii) M = {F £ A** : F(<f>) = 0} for some </> in MA. 

(iii) fM = <// for some </> in MA. 
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Proof, (i) =» (ii). Suppose M is weakly closed in A**. Let <j> be the restriction 
o f / M t 0 7rA(^).Then</> ^ 0 and 0 G MA. Clearly {irA(x) £ TTA(A) : </>(x) = 0} 
C M. Let iV be the weak closure of {TTA(X) <E rA(A) : </>(x) = 0} in A**. 

Then N (Z M. Also by the proof of [5, p . 865, Theorem 5.3], TV is a maximal 
modular ideal of A** and N = {F G A** : F (0) = 0}. Hence it follows from 
the maximali ty of N t ha t M = N and this proves (ii). 

(ii) =» (iii). Suppose M = {F £ A** : F(<t>) = 0} for some <j> in MA. Then 
fM and 0' have the same null space and s o / M = <j>'. 

(iii) => (i). Suppose fM = </>' for some </> in M A. Then M= {F£ A** : F(<j>) = 0} 

and consequently M is weakly closed in A**. This completes the proof. 

Let A be a commuta t ive Banach algebra with carrier space MA. A function 
/ on MA is said to belong locally to A at p in MA if there exists a neighborhood 
F of p and a function x in 4̂ such t h a t / |z/ = x| F . 

We now have the main result of this section. 

T H E O R E M 4.3. Let A be a commutative Banach algebra which is a dense ideal of 
Co(MA). Then the following statements are equivalent: 

(i) A is a modular annihilator algebra. 
(ii) For each maximal modular ideal M of A** such that M 2 ^A(A), M is 

weakly closed in A**. 
(iii) For each F in A**, F belongs locally to A at each point of MA. 

Proof, (i) => (ii). Suppose (i) holds. Since M ^ TTA(A) is a maximal modular 
ideal of irA(A), it follows from [12, p . 38, Lemma 3.3] t ha t there exists some 
minimal idempotent e in A such t ha t 7rA(e) $ M. By Theorem 3.4 in [11], 
TA(A) is an ideal of (^4**, o ) . Since irA(e) o A** = irA{eA) = CirA(e), where 
C is the field of complex numbers , -KA{e) o M C 7rA(e) o A** C\ M = (0). 
Hence M C (1 — TTAW) O A** and so by the maximali ty of M, M = 
(1 — TTAW) O ^ 4 * * . I t follows tha t M is weakly closed and this gives (ii). 

(ii) => (i). Suppose (ii) holds. Let <t> £ Af4 and let {<£«} C i ^ i be a net 
converging to </> in MA. Since {<£«'} are mult iplicative linear functionals on A**, 
by Alaoglu's Theorem, we can assume t h a t there exists some / ' in A*** such 
tha t <t>J {F) —* f ' (F) for all F m ^4**. I t is easy to see t h a t / ' is a multiplicative 
linear functional on A** a n d / r\irA(A) = </>. Therefore by Lemma 4 . 2 , / ' = <//. 
Hence F(0 a ) —-> F(<£) for all T7 in ^4**. I t now follows from Lemma 4.1 t ha t MA 

is discrete and so A is a modular annihilator algebra. 
(i) => (iii). This is clear because MA is discrete. 
(iii) => (i). Suppose (iii) holds. Let <j> £ ikTA and let {</>«} C Af4 be a net 

converging to </> in M A . Then by (iii), we can assume t h a t F(<f>a) —> F(4>) for 
all F in A. Therefore it follows from Lemma 4.1 tha t MA is discrete and this 
completes the proof of the theorem. 

Theorem 4.3 (iii) is a generalization of [8, p . 532, Theorem 4.2 (4)]. 
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