Can. J. Math., Vol. XXVII, No. 5, 1975, pp. 1029-1035

THE SECOND CONJUGATES OF CERTAIN BANACH
ALGEBRAS

PAK-KEN WONG

1. Introduction. Let 4 be a Banach algebra and 4** its second conjugate
space. Arens has defined two natural extensions of the product on 4 to 4**.
Under either Arens product, 4** becomes a Banach algebra. Let 4 be a semi-
simple Banach algebra which is a dense two-sided ideal of a B*-algebra B and
R** the radical of (4**, o). We show that 4** = Q @ R**, where Q is a
closed two-sided ideal of (4**, o). This was inspired by Alexander’s recent
result for simple dual 4*-algebras (see [1, p. 573, Theorem 5]). We also obtain
that if 4 is commutative, then 4 is Arens regular. As an application of this
result, we show that if 4 is commutative and B = Cy(M ,), then the following
statements are equivalent:

(1) 4 is a modular annihilator algebra.
(i1) For each maximal modular ideal M of (4**, o) such that M 2 7,(4),
M is weakly closed.
(iii) For each Fin A**, F belongs locally to 4 at each point of A ,.

2. Notation and preliminaries. Definitions not explicitly given are taken
from Rickart’s book [7].

Let 4 be a semi-simple commutative Banach algebra with carrier space M 4.
Then Co(M4) will denote the algebra of complex-valued functions on M4,
which vanish at infinity and 4 the function algebra on 3, isomorphic to 4 in
the Gelfand theory.

For any subset E of a Banach algebra 4, let /,(£) and 7,(E) denote the
left and right annihilators of E in 4, respectively. Then 4 is called a modular
annihilator algebra if, for every maximal modular left ideal I and for every
maximal modular right ideal J we have 7 ,(I) = (0) if and only if I = 4 and
1a(J) = (0) if and only if J = 4. It is well-known that a semi-simple com-
mutative Banach algebra A is a modular annihilator algebra if and only if its
carrier space M 4 is discrete (see [4] and [9]).

Let 4 be a Banach algebra, A* and A** the conjugate and second conjugate
spaces of 4, respectively. The two Arens’ products on A** are defined in stages
according to the following rules (see [2]). Letx,y € 4, f € A*and F, G € A**.

(a) Definefox by (fox)(y) = f(xy). Then fox € A*.

(b) DefineGofby (Gof)(x) =G(fox). Then Gof € A*.

(¢) Define FoGby (FoG(f) = F(Gof). Then FoG € A**.
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A** with the Arens product o is denoted by (4**, 0).

(a’) Definex o fby (x o' f)(y) = f(yx). Then x o' f € A*.

(b’) Define fo' Fby (fo' F)(x) = F(x o f). Then fo' F € 4*.

(c’) Define Fo' Gby (Fo'G)(f) = G(fo' F). Then Fo' G € A**.

A** with the Arens product o is denoted by (4**, o).

Each of these products extends the original multiplication on 4 when 4 is
canonically embedded in 4**. In general, o and o’ are distinct on 4**. If they
coincide on A**) then A4 is called Arens regular.

Notation. Let A be a Banach algebra. The mapping =, will denote the
canonical embedding of A into A4**.

In this paper, all algebras and linear spaces under consideration are over
the field C of complex numbers.

3. The Algebra (A**, o). In this section, let 4 be a semi-simple Banach

algebra which is a dense two-sided ideal of a B*-algebra B. We write || - || for
the norm on 4 and | - | for the norm on B. By [3, p. 3, Proposition 2.2], there
exists a constant K such that K||- || = |- |. ITence by [3, p. 3, Theorem 2.3],

there exists a constant M such that
(3.1)  l[ad]| = Mllal| || and ||ba|| = M|lal] [b],

for all @ in 4 and b in B. For each g € B*, let g4 denote the restriction of ¢ to
A. Then g, € A*. For each F € A**, define 6(F) on B* by 0(F)(g) = F(ga)
(g € B*). Then 6(F) € B**.
Forall f € 4* and y € B, define
(foy)(x) = flyx) (x€ 4).

Then by (8.1), foy € A* and || fo || < M| S|l |y].
For each F € A** and f € 4*, define

(Fxf)(y) = F(foy) (y€ B).
Then Fx f € B*. For any H € B**, define
Hx«F(f) =H(F«f) (f€cA* FecA*).

Then H % F € A**,

Let R** (respectively R,**) be the radical of (4**, o) (respectively (4**,
0’)). B** with the Arens product will be denoted by (B**, - ). It is well-known
that (B**, .) is a B*-algebra.

LeEmMmA 3.1. Let A be a semi-simple Banach algebra which is a dense two-sided
ideal of a B*-algebra B. Then

(i) Ri** is the left and right annihilator of (A**, o),

(i1) Ry** cotncides with Ro**.

Proof. (i) Put 6(R**) = {6(R) : R € R\**}. For any H € B** and R € R **,
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we show that H x R € R,**. Suppose this is not so. Then by the proof of
[7, p. 55, Theorem (2.3.2) (iii)], we can choose some F € A** such that
Fo (H * R) is not quasi-regular in (4**, o). Easy calculations show that
Fo (H*R) = FyoR, where Fy is defined as in the proof of [10, p. 446,
Theorem 5.7 (ii)]. Since Fy o R € Ry** is quasi-regular in (4**, o), so is
Fo (H*R); a contradiction. Therefore H * R € R,** and consequently
6(H % R) € 6(R**). Hence H-0(R) = (H x R) € 8(R,**). It is easy to see
that #(R.**) is a quasi-regular left ideal of (B**, -). Since (B**, -) is a
B*-algebra, it follows that §(R,**) = (0). Since §(R,**) = (0), we have

RoF)(f) =06R)(Fxf) =0 (f€ A% Fe 4™ Re R™).

Consequently R** 0 4** = (0). For each x € 4 and f € A*, define f* x on
Bby (f*x)(y) = f(xy) (y € B). Then it follows from (3.1) that f x x € B*.
Since 8(R,**) = (0), we have

(3.2) (ma(x)oR)(f) = R(fox) =0(R)(f*x) =0 (R€ R™).

Since 74 (A4) is weakly dense in A**, it follows from (3.2) that A** o R** = (0).
Hence it is now easy to see that R,** is equal to the left and right annihilator
of (4**, o) and this proves (i).

(ii) By a similar argument as in (i), we can show that R,** is the left and
right annihilator of (4**, o’). Since by (i), Ri** o r4(4d) = R** o' n4(4) =
(0), it follows that Ri** o’ 4** = (0). Hence R,** C Ry**. Similarly R.** C
R** and so they are equal. This completes the proof.

Notation. Let R¥* = R** = R,**,

THEOREM 3.2. Let A be a semi-simple Banach algebra which is a dense lwo-
sided ideal of a B*-algebra B. Then
(i) A** = Q ® R**, where Q is a closed two-sided ideal of (A**, o).
(ii) There exists a continuous algebraic homomorphism 6 of (A**, o) into
(B**, - ) such that the restriction of 0 to Q 1s an isomorphism.

Proof. (i) Let A be the collection of all finite subsets of A ordered by in-
clusion. Since 4 is a dense two-sided ideal of B, by the proof of [7, p. 245,
Theorem (4.8.14)], we can show that there exists an approximate identity
{ex: N € A} for Bsuch that {ex : A € A} C 4. Let F € A**. Since||r,(er) 0 F|
< M]||F||, there exists a subnet {e,} of {ex} and F; € A** such that 7,(e,) 0 F
— F, weakly. Then for all f in 4**, we have

Fi(f) = lizn male)o F(f) = litrxn malea)(Fof)

(3.3) = lim mp(e) (Ff) = Ig(F*f),

where I denotes the identity of (B**, - ) (see [5, p. 855, Lemma 3.8]). Now
it follows easily from (3.3) that F; is the unique limit point of {7, (ex) o F} in
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A** For all ¢ in 4 and f in 4%, by (3.1) we have

lmalaer) o F(f) — wa(a) o F(f) = |F(fo (aex — a))|
MIFI[ | f I laex — al.

I\

Hencen,(aer) o F— 74(a) o F weaklyin A** andsor4(a) o F1 = m4(a) o F.
Consequently 4** o (F, — F) = (0) and therefore by Lemma 3.1, F — F; €
R**. Let

Q = {Fy: F € A%},

If there exists some F in A** such that F; € R** then by Lemma 3.1,
m4(en) o F = m4(en) o F; = 0 and consequently F; = 0. Therefore Q @ R** =
A**. We show that Q is a closed two-sided ideal of (4**, 0). Let F, G € 4. Then

(34) FoG = (F]"I" (}"— ]’11))O(Gl+ (}"—Gl)) = F10G1.
Also

3.5) (FoG); =Ilimm,(e\)o (FoG) = F10G = F,0G,.
X

It follows from (3.4) and (3.5) that Q is a two-sided ideal of (4**, o). It is
easy to see that Q is closed and this proves (i).

(i) We show that the mapping 8 : F — 0(F) (F € A**) is such a mapping.
In fact, for all F, G € A** and g € B*, we have

(3.6) (0(F)-0(G))(g) = F(Goga) =6(FoG)(g).

Hence by (3.6), 6(F) - (G) = 6(F o G). Therefore we see easily that 6 is an
algebraic homomorphism from (4**, o) into (B**, - ). Since ||g4|| £ K]g|, we
have |6(F)| < K||F|| and consequently 6 is continuous. It remains to show
that the restriction of 6 to Q is an isomorphism. Suppose F € Q and (F) = 0.
Then for all f in 4%, we have

F(f) =lim (ra(e) 0 F)(f) = lim 6(F)(f* &) = 0.

Therefore /¥ = 0 and so 6 is an isomorphism. This completes the proof of the
theorem.

By using the proofs of Theorem 3.2 and [10, p. 446, Theorem 5.7 (ii)], we
have the following result:

COROLLARY 3.3. A**/R** is a semi-simple Banach algebra which is a dense
two-sided ideal of some B*-algebra.

THEOREM 3.4. Let A be a semi-simple Banach algebra which is a dense two-
sided ideal of a B*-algebra B. Then A is Arens regular if any of the following
conditions holds:

(1) A s a modular annihilator algebra.

(i1) 4 is a commutative algebra.
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Proof. We show that
87) Foms(@)oG=Fod m4(a)d G (F,Gec A**, a € 4).

In fact, this is true if condition (i) holds, because m4(4) is a two-sided ideal
of (4**, 0) by Theorem 3.4 in [11]. Now suppose A is commutative. Then for
all f in 4*, we have
(Foms(a) oG — Fo' mu(a) O G)(f)
= (r4(a) o (FoG — Fo' G))(f)
(FoG — Fo G)(foa) = (6(F)-6(G) —0(F)-6(G))(fxa)
= 0.

Therefore (3.7) holds. Now by using the proofs of Theorem 3.2 and [10, p. 446,
Theorem 5.7], we can show that Fo G = F o’ G. Therefore 4 is Arens regular.

We remark that condition (i) in Theorem 3.3 does not imply that 4 is an
annihilator algebra. For example, the algebra &y given in [6, p. 141, Theorem
14.1] is a modular annihilator 4*-algebra which is a dense two-sided ideal of
the dual B*-algebra &,. However &y is not an annihilator algebra. Therefore
Theorem 3.3 (i) is a generalization of [10, p. 446, Theorem 5.7 (i)].

We believe that Theorem 3.4 is true without conditions (i) or (ii).

4. A characterization of modular annihilator algebras. In this section,
we shall give an application of Theorem 3.4. Unless otherwise stated 4 will be
a commutative Banach algebra which is a dense ideal of Co(M 4) where M, is
the carrier space of 4. Then by (7, p. 57, Corollary (2.3.7)], 4 is semi-simple.
Hence by Theorem 3.4, A is Arens regular and so (4**, o) is a commutative
Banach algebra.

LEmMa 4.1. Let f € My and { fo} a net in M 4 such that fo — f and f, # f for
all a. Then there exists an element F in A** such that F(f) # 0and F(f,) = 0
for all a.

Proof. This follows easily from the proof of [9, p. 829, Lemma 5.1].

For each ¢ in 174, let ¢’ be the multiplicative linear functional on 4** such
that ¢’ (F) = F(¢) for all Fin 4** (see [5, p. 854, Lemma 3.6]).

For each maximal modular ideal 37 in A**, let f,, be the multiplicative linear
functional on A** such that M = {F € A**: f,,(F) = 0}.

Lemma 4.2. Let M be a maximal modular ideal of (A**, o) such that
M 2 w,(A). Then the following statements are equivalent:
(1) M 1is weakly closed in A**.
(i) M = {F € A* . F(¢) = 0} for some ¢ in M ,.
(iii) fa = ¢ for some ¢ in M 4.
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Proof. (i) = (ii). Suppose M is weakly closed in A**. Let ¢ be the restriction
of fartoms(A4). Then¢ = Oand ¢ € M ,. Clearly {74(x) € 7,(4) : ¢(x) = 0}
C M. Let N be the weak closure of {m (x) € 7,(4) : ¢(x) = 0} in A**.
Then N C M. Also by the proof of [5, p. 865, Theorem 5.3], N is a maximal
modular ideal of A** and N = {F € A** : F(¢) = 0}. Hence it follows from
the maximality of N that M = N and this proves (ii).

(i1) = (iii). Suppose M = {F € A** : F(¢) = 0} for some ¢ in M,. Then
far and ¢’ have the same null space and so f,; = ¢'.

(iii) = (i). Suppose f,; = ¢’ forsome ¢ in M 4. Then M = {F € A**: F(¢) =0}
and consequently M is weakly closed in 4**. This completes the proof.

Let 4 be a commutative Banach algebra with carrier space M 4. A function
fon M, is said to belong locally to 4 at p in M, if there exists a neighborhood
V of p and a function £ in 4 such thatf [v = &|V.

We now have the main result of this section.

THEOREM 4.3. Let A be a commutative Banach algebra which is a dense ideal of
Co(M4). Then the following statements are equivalent:
(1) A 1s ¢ modular annihilator algebra.
(ii) For each maximal modular ideal M of A** such that M 2 w,(A4), M is
weakly closed in A**.
(iii) For each F in A**, F belongs locally to A at each point of M .

Proof. (i) = (ii). Suppose (i) holds. Since M 2 7 4(A4) is a maximal modular
ideal of m,(4), it follows from [12, p. 38, Lemma 3.3] that there exists some
minimal idempotent e in 4 such that 7, (e) ¢ M. By Theorem 3.4 in [11],
m4(4) is an ideal of (A**, o). Since m4(¢) 0 A** = 7,(ed) = Cr,(e), where
C is the field of complex numbers, m4(e) o M C w4(e) 0 A¥* N\ M = (0).
Hence M C (1 — w4(e)) o A* and so by the maximality of M, M =
(1 — wa(e)) o A**. It follows that M is weakly closed and this gives (ii).

(ii) = (i). Suppose (ii) holds. Let ¢ € M, and let {¢.} C M, be a net
converging to ¢ in M 4. Since {¢,'} are multiplicative linear functionals on 4**,
by Alaoglu’s Theorem, we can assume that there exists some f' in A*** such
that ¢,/ (F) — f/(F) for all Fin A**. [tis easy to see that f’ is a multiplicative
linear functional on A** and f |7, (4) = ¢. Therefore by Lemma 4.2, f' = ¢'.
Hence F(¢,) — F(¢) for all Fin 4**. It now follows from Lemma 4.1 that M ,
is discrete and so 4 is a modular annihilator algebra.

(i) = (iii). This is clear because M, is discrete.

(iii) = (i). Suppose (iii) holds. Let ¢ € M, and let {¢,} C M, be a net
converging to ¢ in M,. Then by (iii), we can assume that F(¢,) — F(¢) for
all Fin 4. Therefore it follows from Lemma 4.1 that A 4 is discrete and this
completes the proof of the theorem.

Theorem 4.3 (iii) is a generalization of [8, p. 532, Theorem 4.2 (4)].
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