Buckwheat phenolic metabolites in health and disease

Marko Kreft1,2*
1Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
2LN-MCP, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia & Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia

Abstract
Buckwheat (Fagopyrum esculentum Moench, F. tataricum Gaertner) groats and flour have been established globally as nutritional foods because of their high levels of proteins, polyphenols and minerals. In some regions, buckwheat herb is used as a functional food. In the present study, reports of in vitro studies, preclinical and clinical trials dealing with the effect of buckwheat and its metabolites were reviewed. There are numerous reports of potential health benefits of consuming buckwheat, which may be in the form of food, dietary supplements, home remedies or possibly pharmaceutical drugs; however, adverse effects, including those resulting from contamination, must be considered. There are reports of antioxidative activity of buckwheat, which contains high levels of rutin and quercetin. On the other hand, both cytotoxic and antigenotoxic effects have been shown. Reduction of hyperlipidaemia, reduction of blood pressure and improved weight regulation have been suggested. Consuming buckwheat may have a beneficial effect on diabetes, since lower postprandial blood glucose and insulin response have been reported. In addition, buckwheat metabolites, such as rutin, may have intrinsic protective effects in preserving insulin signalling. Rutin has also been suggested to have potential therapeutic applications for the treatment of Alzheimer’s disease. The literature indicates that buckwheat is safe to consume and may have various beneficial effects on human health.

Key words: Buckwheat; Rutin; Adverse effects; Flavonoids; Tartary buckwheat

Introduction
Two types of buckwheat are used globally: common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat (F. tataricum Gaertner). Buckwheat groats and flour have been established as nutritional foods because of their high levels of proteins, rutin, quercetin and minerals1,2, such as Se3. In Europe, buckwheat bread is gaining significance due to its nutritional properties, antioxidant capacity and the possibility of preparing gluten-free bread4. Recently, buckwheat herb was suggested as a functional food. Milled dried plants may be added as colorant to pasta and other products5. There are numerous reports of potential health benefits of consuming buckwheat, which may be in a form of food, dietary supplements, home remedies or possibly pharmaceutical drugs. Safety of any food and drugs is of great importance. Recently, a report of severe adverse effect of taking buckwheat tablets was published6. The authors reported five cases of new-onset polyneuropathy with dyskinesia induced by composite tablets of black tea and Tartary buckwheat used as a hypoglycaemic food supplement. The diagnosed polyneuropathy was relatively rare but severe; for this the present review of known potential health effects of buckwheat products is instrumental to assess the safety of using buckwheat products. First, it is important to note that the medical history of the affected patients revealed that all took tablets from the same batch6. This makes a strong assumption that contamination may have been the cause of reported acute symptoms, which developed quickly after taking this drug and ceased quickly after withdrawing from taking the tablets. The majority of patients had numbness and weakness of the limbs, paraesthesias, hoarseness and bladder dysfunction; one had either shortness of breath, dysphagia or facial paralysis. No heavy metal or other toxic contaminants were found in the tablet. This may indicate that some highly toxic contaminants present in low quantities were missed by the analyses7.

The present review addresses known potential health-related effects of buckwheat products. This topic is especially important in view of recent increased public interest in buckwheat (Fig. 1).

Adverse effects as a result of contamination of herbal medicinal products
The safety and quality of medicinal plant materials and herbal medicinal products are a major concern for health authorities and the public7. However, numerous adverse effects have been found as a result of adulteration or contamination of herbal medicinal products, such as agravulocytosis, meningitis, organ failure, perinatal stroke and heavy metal poisoning8. Reports include neurological adverse effects such as paraesthesia and seizures9. Unfortunately, the data are largely anecdotal. Plant products may be susceptible to attack by pathogenic, often mycotoxigenic, fungi with consequent increase of mycotoxins. Aspergillus flavus may produce aflatoxin B1 (AFB1), the most carcinogenic compound of fungal
Nutrition Research Reviews

The clinical syndrome of botulism includes symptoms such as an expressionless face, dysphagia, dry mouth, shortness of breath, symmetrical cranial nerve palsies and radiation paralysis. This may resemble some signs described in poisoning with buckwheat (21). The signs of botulism resemble some signs described in poisoning with buckwheat product (22). Clostridia spp. bacteria have been previously discovered in traditional Chinese herbal medicines, such as Xiyangshen root and Dangshen root (23). Other than possible contaminants, adverse effects may also be due to plant metabolites, naturally present in food and plant products. Here the current literature to elucidate if there is any previous indication that peripheral nerve damage could appear in patients taking buckwheat is reviewed (24). Bibliographic data, analysed in the year 2015, are summarised in Tables 1, 2 and 3.

Phenolic metabolites in buckwheat

Buckwheat is mainly grown for the production of seeds (20). It is an important functional food, rich in vitamins, essential amino acids and phenolic compounds (21). The content of rutin in Tartary buckwheat herb is as high as 3% dry weight, and up to 1-7% in seeds (22). In common buckwheat milling products rutin content is two orders of magnitude less than in Tartary buckwheat seeds and is highly variable (from 19 to 160 mg/kg in different flour fractions and 480 mg/kg in bran) (23). In milling fractions darker colour was also correlated with higher protein and minerals content (24). This variability indicates that rutin and nutrients are not equally distributed in the seed, and is attributed to specific seed morphology (25, 26).

Therapeutic doses of rutin have been estimated to be between 180 and 350 mg (27). Thus, the daily intake of 100 g of buckwheat flour or bran in food would cover 10% of the therapeutic dose. This contributes to average doses of flavonols and flavans otherwise consumed by at least 2-fold (28).

The composition and differential content of phenolic compounds in seeds of common buckwheat were recently analysed (29). The list of flavonoids, including rutin, is shown in Table 4. The most detected hydroxycinnamic acids in seeds are caffeic and chlorogenic acid derivatives (29).

From Tartary buckwheat (F. tataricum) grains a preparative separation successfully purified five flavonoids: quercetin, kaempferol, quercitin 3-O-rutinoside-3’-O-β-D-glucopyranoside, rutin and kaempferol 3-rutinoside (20). Flavonoid metabolism is related to responses to UVB radiation (30). Recently, a new Tartary buckwheat cultivar, ‘Manten-Kirari’, has been developed, whose grains contain only trace amounts of rutinosidase and lack bitterness. This is a promising variety for preparing non-bitter, rutin-rich foods (32). The bread-baking procedure using Tartary buckwheat has an impact on rutin, quercetin and polyphenol concentration and antioxidant activity. Rutin concentration during the bread-baking process decreases, while the concentration of quercetin remains stable (33). Similarly, there is much less rutin in noodles compared with flour made from buckwheat (34).

A much higher rutin level than in seeds is found in fresh buckwheat shoots, which are consumed as a salad or cooked (35). The buckwheat plant has the highest concentration of rutin and epicatechin in the leaves and flowers (36), depending on UV irradiation (37). Interestingly, shoots grown from seeds soaked in selenite or selenate solution had higher total flavonoids content compared with soaking seeds in water (38). Additionally to flavonoids, found in seeds, common buckwheat sprouts also contain vitexin, isovitexin and quercetin-3-O-robinobioside (39).

It is important to note that before absorption, dietary phenolic compounds may be transformed in the small intestine by digestive enzymes and in the colon by the intestinal microbiota system (40). For example, rutin may be converted to quercetin, depending on its concentration and composition of the gut microflora (41). Although quercetin is metabolised preferentially to carbon dioxide, the biological half-life is very long, ranging from 20 to 72 h (42). Furthermore, the absorption of quercetin taken orally is surprisingly high, ranging from 36 to 53% (42), but relatively slow, since it takes 6 h for the plasma concentration to steadily reach the peak concentration (43, 44).

Other metabolites of buckwheat

In addition, buckwheat sprouts contain naphthodianthrone fagopyrins that can cause photosensitisation (45, 46), manifested...
Table 1. *In vitro* tests of buckwheat activity and activity of its metabolites

<table>
<thead>
<tr>
<th>Compound</th>
<th>Dose</th>
<th>Test used</th>
<th>Main effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common buckwheat water extract</td>
<td>1 mg/ml</td>
<td>In vitro human digestion model and antioxidant activity of lipids in mouse brain</td>
<td>Increase in antioxidative activity</td>
<td>Hur et al.([54])</td>
</tr>
<tr>
<td>Quercetin, isoquercetin and rutin from Tartary buckwheat seeds and bran</td>
<td>12.5–100 μM</td>
<td>Cytotoxicity and antioxidant activity on human hepatoma cell line HepG2</td>
<td>Quercetin exhibited cytotoxic effects via the production of reactive oxygen species. Up-regulation of p53 and p21, and down-regulation of cyclin D1, Cdk2 and Cdk7</td>
<td>Li et al.([55])</td>
</tr>
<tr>
<td>Methanol extracts of common and Tartary buckwheat 70 % aqueous methanol extract of common buckwheat</td>
<td>0-1 μM-rutin, 2-86 μM-quercetin</td>
<td>Induced DNA damage in human hepatoma cell line (HepG2), comet assay</td>
<td>Antigenotoxic effect</td>
<td>Vogrinčič et al.([56])</td>
</tr>
<tr>
<td>Ethanol extracts of Tartary and common buckwheat sprouts</td>
<td>2.5 mg/ml of sprouts</td>
<td>Radical-scavenging activity against DPPH free radical, TEAC and ORAC assay</td>
<td>Tartary buckwheat sprouts possess higher reducing power, free radical-scavenging activity, and superoxide anion-scavenging activity than common buckwheat sprouts</td>
<td>Zhang et al.([57])</td>
</tr>
<tr>
<td>60 % aqueous ethanol extracts from Tartary buckwheat sprouts</td>
<td>Results expressed as μmol Trolox equivalents per g dry weight</td>
<td>Scavenge effects of DPPH, ABTS and superoxide free radicals</td>
<td>Elevated antioxidant activities during germination are related to increases in vitamin C, total flavonoids and rutin, but not vitamin E and quercetin</td>
<td>Zhou et al.([58])</td>
</tr>
<tr>
<td>Hot water rutin-free extract of Tartary buckwheat</td>
<td>Isolates from the acidic fraction (0.5 – 2.5 mg/ml)</td>
<td>Contractile experiment using Sprague – Dawley rat thoracic aorta rings contracted by phenylephrine</td>
<td>The acidic fraction of the extract elicited an endothelium-dependent vasorelaxation effect via NO/cGMP pathways (EC50 value of 0.25 mg/ml)</td>
<td>Matsui et al.([59])</td>
</tr>
<tr>
<td>Hot water rutin-free extract of Tartary buckwheat</td>
<td>Isolates from the acidic fraction (0.5 – 2.5 mg/ml)</td>
<td>Contractile experiment using Sprague – Dawley rat thoracic aorta rings contracted by phenylephrine</td>
<td>The acidic fraction of the extract elicited an endothelium-dependent vasorelaxation effect via NO/cGMP pathways (EC50 value of 0.25 mg/ml)</td>
<td>Ushida et al.([60])</td>
</tr>
<tr>
<td>Buckwheat rutin isolate</td>
<td>0.8–8.8 mg/l rutin</td>
<td>Measurements of Ca2+ , calcineurin and c-fos mRNA expression in cultured neonatal rat cardiomyocytes</td>
<td>Inhibition of angiotensin II-induced hypertrophy in cultured neonatal rat cardiomyocytes via Ca2+ signaling</td>
<td>Chu et al.([61])</td>
</tr>
<tr>
<td>Ethanol extract of buckwheat sprouts</td>
<td>10–500 μg extract/ml</td>
<td>Scavenge effects of DPPH, NO, serum peroxidation and chelating assays</td>
<td>Extract of buckwheat sprouts inhibited serum oxidation and possessed chelating activity. Inhibition of pro-inflammatory mediators IL-6 and TNF-α production in macrophages</td>
<td>Karki et al.([62])</td>
</tr>
<tr>
<td>Rutin</td>
<td>Rutin hydrate 1 μg/ml</td>
<td>HT22 cell viability test after treatment with 200 μM-ethanol</td>
<td>Protection against ethanol neurotoxicity</td>
<td>Song et al.([63])</td>
</tr>
<tr>
<td>Ethanol extract of buckwheat and rutin</td>
<td>50–200 μg/ml extract or 40 μg/ml rutin</td>
<td>Albumin–fructose glycation assay</td>
<td>Attenuation of protein glycation</td>
<td>Lee et al.([64])</td>
</tr>
<tr>
<td>Buckwheat bran extracts and rutin</td>
<td>100 μl of extract/500 ml of enzyme solution</td>
<td>In vitro sucrase enzymic assay</td>
<td>Buckwheat bran extracts and not pure rutin inhibits sucrase activity</td>
<td>Hosaka et al.([65])</td>
</tr>
<tr>
<td>Rutin</td>
<td>0.1–10 μM</td>
<td>RIN-m5F rat insulinoma pancreatic β-cells, ATP detection assay and insulin secretion detection</td>
<td>Attenuate the induced glucotoxicity in β-cells by stimulating insulin receptor substrate 2 signalling</td>
<td>Cai & Lin([66])</td>
</tr>
</tbody>
</table>

DPPH, 1,1-diphenyl-2-picrylhydrazyl; TEAC, Trolox equivalent antioxidant capacity; ORAC, oxygen radical absorbance capacity; ABTS, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid); EC50, half maximal effective concentration.
Table 2. Main published preclinical trials dealing with the effect of buckwheat and its metabolites on experimental animals

<table>
<thead>
<tr>
<th>Compound</th>
<th>Dose</th>
<th>Model animal</th>
<th>Study population</th>
<th>Study design</th>
<th>Main outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol extracts of Tartary and common buckwheat sprouts</td>
<td>2.5 mg/ml of sprouts</td>
<td>Syrian hamsters</td>
<td>Thirty-six animals</td>
<td>Six groups fed for 28 d: control meal, high fat, plus 2.5 % or 25 % of buckwheat seeds, plus 2.5 % or 25 % of sprouts</td>
<td>Buckwheat meals reduced total cholesterol level and serum TAG levels</td>
<td>Lin et al.</td>
</tr>
<tr>
<td></td>
<td>300–600 mg/kg</td>
<td>Spontaneously hypertensive rats and normotensive rats</td>
<td>Sixty animals</td>
<td>Six groups fed for 5 weeks: water, 300 and 600 mg/kg of raw and germinated extract-treated groups, and 2.5 mg/kg captopril-treated (positive control) group</td>
<td>Reduced oxidative damage in aortic endothelial cells by lowering nitrotyrosine immunoreactivity</td>
<td>Kim et al.</td>
</tr>
<tr>
<td>Tarty and common buckwheat protein product</td>
<td>100–200 mg germinated buckwheat extract/kg</td>
<td>Male Sprague–Dawley rats and male ddY mice</td>
<td>Three groups of eight or nine rats, three groups of nine mice</td>
<td>Three groups of rats and mice were given experimental diets. Cholesterol and sodium cholate were added to the diets including casein, common or Tartary buckwheat protein extract</td>
<td>Reductions in serum cholesterol, in rats, enhanced excretion of faecal neutral sterols. Reduction in the lithogenic index</td>
<td>Tomotake et al.</td>
</tr>
<tr>
<td>70 % ethanol extracts of germinated common buckwheat seeds</td>
<td>5 g of pasta per rat per d (contained 30 % of Tartary sprouts)</td>
<td>Two strains of rats were randomly divided into two diet groups: durum wheat flour pasta and Tartary buckwheat sprouts</td>
<td>Twenty animals</td>
<td>Two strains of rats were randomly divided into two diet groups: durum wheat flour pasta and Tartary buckwheat sprouts</td>
<td>Higher plasma levels of vasoactive substances, a lower level of the vasoconstrictor, and improved antioxidant capacity</td>
<td>Merendino et al.</td>
</tr>
<tr>
<td>Tarty and common buckwheat sprouts, used in the production of pasta</td>
<td>100 mg of buckwheat digest/kg body weight</td>
<td>Female ICR/CD-1 mice</td>
<td>260 animals screened, eighty-eight used</td>
<td>The non-prematurely ageing mice as control group, prematurely ageing mice randomly divided into control group (n 26) and wheat germ and buckwheat flour groups</td>
<td>Prematurely ageing mice that received cereal buckwheat showed improved parameters of innate and acquired immune responses</td>
<td>Alvarez et al.</td>
</tr>
<tr>
<td>75 % ethanol extracts from Tartary buckwheat</td>
<td>Extract contained 228.8 mg/g of rutin and 56.6 mg/g of quercetin</td>
<td>Male C57BL/6 mice</td>
<td>Six groups of six rats and six groups of six mice</td>
<td>Increase of liver enzymes in serum was monitored in the ethanol- and carbon tetrachloride-induced animals. Antioxidant enzyme activities were also monitored</td>
<td>Hepatoprotection via promoting antioxidative and anti-inflammatory properties against oxidative liver damage</td>
<td>Lee et al.</td>
</tr>
<tr>
<td>Common buckwheat flower flour</td>
<td>20 % (w/w) of wheat germ and buckwheat flour relative to control diet</td>
<td>Male Sprague–Dawley rats</td>
<td>Two groups of twenty animals</td>
<td>The 7,12-dimethylbenz anthracene-treated rats</td>
<td>Retardation of the development of mammary tumour in rats, correlated with lower serum oestradiol levels</td>
<td>Kayashita et al.</td>
</tr>
<tr>
<td>75 % ethanol extracts from Tartary buckwheat</td>
<td>Extract contained 228.8 mg/g of rutin and 56.6 mg/g of quercetin</td>
<td>Male C57BL/6 mice</td>
<td>Six groups of six rats and six groups of six mice</td>
<td>Increase of liver enzymes in serum was monitored in the ethanol- and carbon tetrachloride-induced animals. Antioxidant enzyme activities were also monitored</td>
<td>Retardation of the development of mammary tumour in rats, correlated with lower serum oestradiol levels</td>
<td>Kayashita et al.</td>
</tr>
<tr>
<td>Common buckwheat protein extract</td>
<td>38.1 % of the daily diet</td>
<td>Female Sprague–Dawley rats</td>
<td>Two groups of twenty animals</td>
<td>The 7,12-dimethylbenz anthracene-treated rats</td>
<td>Retardation of the development of mammary tumour in rats, correlated with lower serum oestradiol levels</td>
<td>Kayashita et al.</td>
</tr>
<tr>
<td>Rutin and n-butanol, extracted from Tartary buckwheat</td>
<td>100 mg/kg per d of rutin; 100–200 mg/kg per d of n-butanol</td>
<td>Male ICR mice</td>
<td>Five groups of five animals</td>
<td>Five groups of five animals</td>
<td>Alleviation of induced cognitive impairments</td>
<td>Choi et al.</td>
</tr>
<tr>
<td>Rutin</td>
<td>25–100 mg/kg per d</td>
<td>Male Wistar rats</td>
<td>Six groups of animals</td>
<td>Six groups of animals</td>
<td>Administration of buckwheat extracts alleviated induced cognitive impairments</td>
<td>Choi et al.</td>
</tr>
<tr>
<td>Ethanol extract of buckwheat, rutin and quercetin</td>
<td>Extract (100 μg/ml, 50 mg/kg), quercetin (6 μg/ml; 3 mg/kg), and rutin (23 μg/ml; 11.5 mg/kg)</td>
<td>Male C57BL/6 mice</td>
<td>Six groups of twelve animals</td>
<td>Oral glucose tolerance test and assay for blood glucose and insulin</td>
<td>Inhibited increases in blood glucose and insulin levels induced by fructose-rich diet</td>
<td>Lee et al.</td>
</tr>
<tr>
<td>Buckwheat leaf and flower</td>
<td>5 % buckwheat in the diet</td>
<td>Male Wistar rats</td>
<td>Forty animals in five groups</td>
<td>Rats fed a high-fat diet were analysed for weight gain, plasma lipid levels and differential plasma fatty acid concentration</td>
<td>Reduction of weight gain, plasma lipid concentrations and atherogenic index</td>
<td>Durendić-Brenesel et al.</td>
</tr>
</tbody>
</table>
Table 3. Main published clinical trials dealing with the effect of buckwheat consumption on human health

<table>
<thead>
<tr>
<th>Compound</th>
<th>Disorder</th>
<th>Study design</th>
<th>Study population</th>
<th>Route of administration</th>
<th>Main outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyneuropathy Yang et al.</td>
<td>Not known</td>
<td>Double-blind cross-over study</td>
<td>60 patients</td>
<td>Tablets of black tea and Tartary buckwheat</td>
<td>Decrease in myeloperoxidase (indicator of inflammation) in Tartary buckwheat group and decrease in serum cholesterol in both groups</td>
<td>Wieslander, et al. (67)</td>
</tr>
<tr>
<td>Compound Dose Disorder Study population Study design Main outcome Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No treatment for cough frequency, dextromethorphan was not better than no treatment</td>
<td>A partially double-blind, randomised study</td>
<td>105 children aged 2-18 years</td>
<td>5 ml</td>
<td>Reduction of mucosal symptoms (ocular, nasal and throat), decreased headache and tiredness</td>
<td>Ihme et al. (78)</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>Clinical trial</td>
<td>Sixty-two healthy men</td>
<td>Bread of buckwheat, Tartary buckwheat and wheat flour</td>
<td>Lower postprandial blood glucose and insulin response</td>
<td>Skrabanja et al. (93)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bread corresponding to 50 g carbohydrate, 50 % of buckwheat groats in bread</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

as skin irritation after sunlight exposure. The highest levels of fagopyrins have been found in flowers and leaves (47). Levels of fagopyrins increase gradually in sprout growth, especially in the light (48).

Products prepared from common buckwheat grains have a characteristic aroma, which is attributed mainly to salicylaldehyde (49). Other significant odors are (E, E)-2,4-decadienal, (E)-2-nonenal, 2-phenylethanol, (E, E)-2,4-nonadienal, hexanal, decanal, nonanal, and, in Tartary buckwheat, naphthalene (50-53). The pharmacological and medical effects of these volatile compounds need to be further investigated.

Antioxidant activity of buckwheat

Experiments using an in vitro human digestion model showed that the antioxidative activity of common buckwheat is increased by digestion in the small intestine via an increase in the antioxidants rutin and quercetin (54). The antioxidative activity of common buckwheat is thoroughly studied. An epidemiological study on 738 men showed that intake of flavonoids does not predict a reduced risk of cancer in elderly men (55).

The potential anti-tumour effect of quercetin from Tartary buckwheat has been shown (56). It has been shown that in the human hepatoma cell line, common and Tartary buckwheat has antigenotoxic effects (57). The pharmacological and medical effects of these volatile compounds need to be further investigated.

Table 4. Flavonoids from common buckwheat seeds (29)

<table>
<thead>
<tr>
<th>Flavonoid Type</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catechin</td>
<td>Epiafzelechin-epicatechin</td>
</tr>
<tr>
<td>Epicatechin</td>
<td>Epiafzelechin-epicatechin</td>
</tr>
<tr>
<td>Quercetin</td>
<td>Quercetin-3-gallate</td>
</tr>
<tr>
<td>Quercitrin</td>
<td>Quercetin-3-rutinoside</td>
</tr>
<tr>
<td>Rutin</td>
<td>Quercetin-3-rutinoside</td>
</tr>
<tr>
<td>Hyperin</td>
<td>Quercetin-3-rutinoside</td>
</tr>
<tr>
<td>Orientin</td>
<td>Quercetin-3-glucoside</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>Quercetin-3-glucoside</td>
</tr>
<tr>
<td>Vitexin</td>
<td>Quercetin-3-glucoside</td>
</tr>
<tr>
<td>Isorhamnadin</td>
<td>Quercetin-3-glucoside</td>
</tr>
<tr>
<td>Kaempferol</td>
<td>Quercetin-3-glucoside</td>
</tr>
<tr>
<td>Epicatechin</td>
<td>Quercetin-3-glucoside</td>
</tr>
<tr>
<td>Epiafzelechin</td>
<td>Quercetin-3-glucoside</td>
</tr>
<tr>
<td>Catechin</td>
<td>Quercetin-3-glucoside</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Quercetin-3-glucoside</td>
</tr>
</tbody>
</table>

With germination of buckwheat seeds, phenolic compounds, such as rutin, vitexin, isovitexin, orientin, isoorientin, chlorogenic acid, trans-3-hydroxycinnamic acid and ρ-hydroxybenzoic acid increased significantly, which may be due to the activation of phenylalanine ammonia-lyase (59). This leads to significant
with enhanced excretion of faecal neutral sterols bile acids in mice and rats(68). Extract of germinating common buckwheat seeds, administered orally to mice, reduces hepatic TAG and total cholesterol, and down-regulates the expression of adipogenic transcription factors PPARγ and C/EBPα in hepatocytes(69). Some earlier studies indicated reduced senile hyperlipidaemia, reduced blood pressure and reduction of weight; however, these trials were without control groups (for a review, see Wieslander & Norbäck(70)).

It has been shown that spontaneously hypertensive rats fed Tartary buckwheat sprouts exhibit higher plasma levels of the endogenous vasodilators bradykinin and NO, a lower level of the vasoconstrictor endothelin-1, and an improved antioxidant capacity, which may collectively reduce hypertension and oxidative stress in vivo(71). A potent vasorelaxant effect was found in the (+)-osebeckic acid dimer, which was isolated from rutin-free Tartary buckwheat extract(72). Tartary buckwheat rutin-free extracts exert endothelium-dependent vasorelaxation action in isolated rat aorta rings, probably by NO/cGMP signalling pathways(73). Buckwheat rutin exhibits an inhibitory effect on angiotensin II-induced hypertrophy in cultured neonatal rat cardiomyocytes via Ca2+ antagonism action, thus blocking the calcineurin-dependent signal pathway(74). Tartary buckwheat protein and not rutin exhibit angiotensin I-converting enzyme inhibition. Oral administration of Tartary buckwheat digest has been found to lower the blood pressure of hypertensive rats(75).

Immune system and inflammation

Dietary supplementation with buckwheat flour appears to have a protective effect on immune cell functions in mice with premature senescence(76). Several parameters of innate immune response were increased: macrophage chemotaxis, phagocytosis, microbicidal activity, natural killer activity, as well as parameters of acquired immune response: lymphoproliferative response to concanavalin A and lipopolysaccharide, and IL-2 release(77). Flavonoids including quercetin have shown viral inhibition properties such as antipicornavirus activity against Herpes simplex virus, types 1 and 2(78). A survey on parents of 105 children with upper respiratory tract infections was performed to compare the effects of a single dose of buckwheat honey or honey-flavoured dextromethorphan with no treatment. Significant differences in symptom improvement were detected between treatment groups, with honey consistently scoring the best and no treatment scoring the worst(78). However, it was not yet established if honey in general or buckwheat honey specifically was favourable for the relief of coughing.

Ihne et al.(79) investigated the effect of buckwheat herb tea in treating leg oedema in patients with chronic venous insufficiency. Results of a randomised double-blind placebo-controlled clinical trial indicated potential use in patients to prevent the further development of oedema. As importantly, the study on sixty-seven patients confirmed the safety of this treatment(79).

Rutin has potential anti-inflammatory properties(80). It is a potent inhibitor of phorbol-12-myristate 13-acetate (PMA), TNF-α, IL-1β, and caecal ligation and puncture (CLP)-mediated endothelial cell protein C receptor shedding(80). Extract of

CVD, hypertension and plasma cholesterol

Food rich in polyphenols possess cardiovascular protective properties(85), and antihypertensive properties(86). Specifically, buckwheat products reduce the serum levels of myeloperoxidase and cholesterol(87). The reduction of serum cholesterol by common and Tartary buckwheat protein products is associated

Fig. 2. Structures of main flavonoids found in buckwheat. Flavones have A, C and B ring structures, with substitutions as indicated at B4’ (R1), C3 (R2), B5’ (R3), A5 (R4), A8 (R5) and B3’ (R6).
buckwheat sprouts was shown to inhibit pro-inflammatory mediators IL-6 and TNF-α production in macrophages(61). Extracts from Tartary buckwheat were shown to exert hepatoprotection via promoting antioxidative and anti-inflammatory properties against oxidative liver damage in mice. This was manifested as inhibiting the increase in serum aspartate transaminase, alanine transaminase and alkaline phosphatase levels in challenged animals(82). A buckwheat protein diet may retard the development of mammary tumours in female rats, which was found to be correlated with lower serum oestradiol(83).

A double-blind cross-over intervention study was conducted to study the effects of common and Tartary buckwheat consumption on mucosal symptoms, i.e. ocular, nasal and throat symptoms; further, headache and tiredness were evaluated(84). Both types of buckwheat had generally positive effects on these symptoms.

Neurological disorders

It was recently shown that the n-butanol fraction and rutin extracted from Tartary buckwheat are protective against and have possible therapeutic applications for the treatment of Alzheimer’s disease(85). This was confirmed by studying learning and memory deficits in a mouse model of amyloid β-induced Alzheimer’s disease. Animals’ impaired cognition and memory were alleviated by the oral administration of an n-butanol fraction and rutin extracted from Tartary buckwheat(86).

Rutin’s protective effects against acetaldehyde-based ethanol neurotoxicity have been found. Rutin protects hippocampal neuronal cells against ethanol-induced neurotoxicity by increasing aldehyde dehydrogenase 2 (ALDH2) activity. Its metabolite, acetaldehyde, is critically toxic. ALDH2 metabolises acetaldehyde into non-toxic acetate(86). Rutin was suggested as a protective compound against the haloperidol-induced motor disorder orofacial dyskinesia, resulting from the chronic neuroleptic treatment of schizophrenia(87). Haloperidol induces oxidative damage in all regions of the brain in rats, which was prevented by rutin, which may be a possible therapeutic to treat this motor disorder(87).

Weight regulation and diabetes

Tartary buckwheat is used for the treatment of type 2 diabetes mellitus in Taiwan. It has been shown that the ethanol extract of buckwheat and rutin attenuates protein glycation to lower the generation of advanced glycation endproducts through the suppression of fructosamine and α-dicarbonyl compounds; hence it may be used as a protection agent in diabetic patients(88). The ethanol extract of buckwheat, rutin and quercetin improved glucose uptake via promoting Akt phosphorylation and preventing PPARγ degradation in a hepatocyte cell line(89). Buckwheat bran extracts and not pure rutin inhibit sucrase activity in vitro, which may have a beneficial effect on diabetes(90). Similarly, it seems that buckwheat concentrate has insulin-mimetic effects on select protein phosphorylation events in rat hepatoma cells; however, α-chiro-inositol and myo-inositol are not probably active components responsible for the observed effects(91, 92). Rutin was found to attenuate the induced glucotoxicity in β-cells by stimulating insulin receptor substrate 2 signalling in rat pancreatic β-cells. The intrinsic protective effects of rutin in preserving insulin signalling may lead to novel strategies for the prevention of type 2 diabetes(93).

In healthy subjects consuming bread with buckwheat and wheat flour, lower postprandial blood glucose and insulin response were measured, compared with a group eating wheat bread(94). Proanthocyanidins in buckwheat flour can reduce salivary nitrite to NO in the stomach. This may improve the activity of the stomach, helping the digestion of ingested foods(95). Proanthocyanidins from persimmon inhibit oxidative stress and the digestive enzymes related to diabetes, such as α-amylase and α-glucosidase(96).

Buckwheat leaf and flower food supplementation apparently reduces weight gain, plasma lipid concentrations and atherogenic index in rats fed a high-fat diet; buckwheat products are thus suggested for the potential prevention and curing of hyperlipidaemia(97).

Summary

Numerous reports have shown the potential health benefits of consuming buckwheat, which may be in the form of food, dietary supplements, home remedies or possibly pharmaceutical drugs. There are reports of the antioxidative activity of buckwheat; on the other hand, both cytotoxic and anti-genotoxic effects have been shown. Reduction of hyperlipidaemia, reduction of blood pressure and improved weight regulation have been suggested. Consuming buckwheat may have beneficial effect on diabetes. Rutin was also suggested to have potential therapeutic applications for the treatment of Alzheimer’s disease. It can be concluded that the literature indicates that buckwheat is safe to consume and may have various beneficial effects on human health.

Acknowledgements

Valuable comments and the help of Professor Ivan Kreft (Biotechnical Faculty, University of Ljubljana & Slovenian Forestry Institute) and Professor Samo Kreft (Faculty of Pharmacy, University of Ljubljana) are gratefully acknowledged.

This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

There are no conflicts of interest.

References

Buckwheat in health and disease

