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Some of the most important G-Structures of the first
kind [1] are those defined by linear operators satisfying
algebraic relations. If the linear operator J acting on the
complexified space of a differentiable manifold V satisfies
a relation of the form

where I is the identity operator, the manifold has an almost
complex structure ([2] [3]). The structures defined by

are the almost product structures ([3] [4]). In the present
paper we investigate the structures defined by nilpotent
operators of degree 2, that is by relations of the form

Some of the results of this investigation are stated in [5].
Recently, an attempt has been made to study the more general
case '
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where r > 2. Sofar, only the integrability of such structures
has been studied [6].

1. General definitions. We consider a differentiable

manifold VZ of class C. Let 'I‘x be the tangent space at
n .

any point x€ V_ , and T; the complexified space of Tx'

2n
' 0
We assume that a field of class C  of linear operators Jx

is defined on V2 , such that, at each point x€ V J maps
; n x

2n’

c . . . .
T 1into itself; moreover J 1is of rank n everywhere in V2 ,
x x n

and it satisfies the relation

for any xe€ V2 , where 0 1is the null operator. In this case
n

we say that J defines an almost tangent structure on the
manifold V_ .
2n

PROPOSITION 1. The image J(T;) and the KerJ

coincide with the space of the eigenvectors of J.
Proof. Iet ace€ T;. Ja is an eigenvector of J, since
2
J(Ja) =Ja = 0.

Hence, the image J(T;) is composed of the eigenvectors of J.
On the other hand, every vector of J(T;) is mapped unto the

zero vector; therefore
c
J(T ) = KerJ .
b4

If Sx is the complementary space of KerJ with respect
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c
to Tx’ we have

TC=KerJ®S s
x x

and J induces an isomorphism between Sx and KerlJ.

Let (ei,ez,...,en; en+1,...,e2n) be a basis of Ti, where
(e. ,...,e ) is a basis of KerJ and (e ,.-.,e_ ) is a basis
1 n n+1 2n
of S . We shall write briefly (e ,e ) where o=1,2,...,n,
x a o%

a* = atn (Greek indices take the values 1...n and Latin indices
the values 1...2n). We can always arrange that

e = Je .
a a*

We call the basis (Je
a¥

,ea*) a basis adapted to the almost

tangent structure or briefly an adapted basis. Let (e  ,e | *)
[»4 [~ 4

be another adapted basis; we have

= AP
e = Aa,'e‘3

B‘3 e +Aﬁ*e
a' * o' * B a'* Bx

®
]

From the latter we have

_ APB*

J‘ea'* = Aa,*Jeg* ’

and hence
p* _ B

A.Q,* = Aa‘ .

Therefore
- AP _ B p*

(1.1) e = Aa_,e‘5 s ea'a= = Ba' *eﬁ + Aa, *eﬁ* ,
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*
with AB' « = Ai, . The transformation matrix for the adapted
a

A 0
B A

where A € GL(n,C), B is an (n,n) matrix aﬁd 0 the null
(n,n) matrix.

bases is of the form

LEMMA 1. The set of all the matrices « is a group

under multiplication, which will be denoted by G(;ln)'

. n
Proof. For any two matrices a, «, € G(nn)’ we have,

1
is we use rmultiplication by blocks,

AA, 0
aa, = € G(n )
! BA +AB. AA nn
1 1 1

and also

-1

1 A 0 a
€ .
@ 1 1 -1> G(nn)

-A" BA~ A

1]

Hence G(in) is a subgroup of the group GL(2n,C). It is

moreover a Lie group.

Consider the operator Jx or J; to this operator there

corresponds a tensor F; defined by

(1.2) vy = F;vj,

and if we use the relation Jz =0, we obtain
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(1. 3) : F,ij=o.

c
If the vector space Tx is referred to an adapted basis, the

components of the tensor Fl are given by

p*

(1.4) FB=F =F‘3*=0, Fﬁ =5‘3=GB* .
a a %*

a* a* a

Hence F] is represented by a matrix of the form
i

0 0
(1.5) ’
E 0
n

where En denotes the unit matrix of order n. Since the
matrix (1. 5) commutes with all the elements of G(En), J will

have the form (1.5) with respect to any adapted basis.

Note. The group G( ) is composed of all the elements

of GL(2n,C) which commute with the matrix (1. 5).

c
For any vector v € Tx referred to an adapted basis

we have

and hence
a a*
Jv =v Je +v Je =V e
a a*

or

a*

) =+, T =o0.
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2. The dual space. Let us consider the dual space

%
(Ti) of the complexified space T; at a point x of the

2n
bases at x, to these there correspond two dual bases

differentiable manifold V_ . If (ei), (ej') are two adapted

4 3!
{® 1), (6J ). From the relation

8% = Ag‘ 0P
for the dual bases. Hence
0% = Ag,eﬁ'm;,*eﬁ'*
and
0% = Agf*e B *

We thus see that if the transformation matrix for the adapted
bases is given by (1. 1), the transformation matrix for the dual
bases is of the form

-1
tA tB A B
(ta)_1 = < ): < 1 i)
0 tA i 0 A,1

On the other hand, if (Ker J)* is the dual space of KerJ, to
the basis (eQ) of KerJ there corresponds the dual basis

o¥*
(8 ) of (KerJ)*.

PROPOSITION 2. An almost tangent structure is defined

&
in the dual space (T;) by the space (KerJ)* , that is, there
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2
exists a linear operator J’1 of rank n satisfying J1 =0, such

that

Ji[(T:{)*] = (KerJ)* .

Proof. Let us define in (T°)

% an operator Ji’ which

with respect to an adapted basis is represented by the matrix

0 E
I, = S
0 o

This operator has the same representation with respect to any
other adapted dual basis. Indeed we have

CoCHC -Comeme =)
Gt ()

J1 has therefore an intrinsic meaning. Since det(E )=1 and
n
all the other submatrices of .'!1 of order greater than n are
: 2
singular, rank .‘)’1 =n. In the other hand \]'1 =0. Itis easy

: ; a a*
to see, by using the components of the vectors 6 and 6 ,
that

c. ¥
For any element v € (Tx) with components v, with respect
1

to the basis (8 1) we have

a a*
v=v0 +v 6 .
a a*
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and hence

a¥*

; J e J 9 9 r
l v =V + v = v € K N
( e J. )

We thus see that the elements of (KerJ)* are the images under

s
Ji of the elements of (T;) .

3. Connections in V_ . Let E_(V_ ) be the set of all
2n T 2n
the adapted bases at the different points of VZn’ and p the

canonical mapping

: A% - ,
P:ELV, )=V,

which associates with an adapted basis at x the point x itself.
ET(VZ ) has, with respect to p, a natural structure of a
n

principal fibre bundle of base V and structural group the

2n
sub-group G(zn) of GL(2n,C).

Definition. @ We will call an almost tangent connection
(briefly A. T. connection) on V2 , every infinitesimal
n

connection defined on the fibre bundle of the adapted bases.

For the definition of an infinitesimal connection one may
consult [7].

Given a covering of V by neighbourhoods endowed

2n

with local cross sections of ET(V }, an A.T. connection

2n
may be defined in each neighbourhood U by a form YU with

values in the Lie Algebra of the group Gf ; such a form may

n
)
nn
be represented at x by means of a matrix of order 2n whose
elements are complex-valued linear forms at x; it will be

denoted by

Ty (-rr‘i) .
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Hence an A. T. connection is represented by the matrix

a
T 0

g

a a*_ o
“ﬁ* Wﬁ* =

PROPOSITION 3. With respect to an A. T. connection
we have

VI =0.

Proof. We refer the tensor J = (P?) to an adapted basis.
i

We have
a a a_p a _p¥ p_a p¥*__a p¥_a*
VF =dF 4+ F. +n7 F -n.F -7 F = -7
g g P B p* P B p B p* B p*
*
=- wa =0,
g
* * * * ok * * %
vFS =dF° + e Fo_+no FP - wb B i

B px " 'p Tpx Tpx px gxp "5* p*

* *
:'rraép:'wa o,

p B g
(3.1)
vF® =dF® +1°F° + 28 PP L oP FO L PR
p* Bp* p BX p¥ px BX¥ p p* p*

p* a* o a¥

a.p
=6 -7 =7 - T
pB T pxlpx  p p*

a* ¥ a*_p a¥_p* o]
VF =dF +17 F +w F -wF
B B p B p*¥pB B

] F = 0.

¥ p* a*
P B p*

ET(V2 ) may be considered as a sub-bundle of the fibre
n

bundle EC(V2 ) of the complex bases. An A.T. connection
n

defines canonically a complex linear connection with which it
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may be identified. Conversely, let us consider a complex linear
connection and a covering of VZn by neighbourhoods equipped
with local cross sections of ET(VZn). This connection may be
defined on each neighbourhood by a local form,, with values in the
Lie Algebra of GIL(2n,C), represented by a matrix (wi) whose

elements are complex-valued local Pfaffian forms. In order that
the given connection may be identified with an A.T. connection it

is necessary and sufficient that (W';) belongs in the Lie Algebra

n .
of the structural group G(nn) of ET(VZn)' That is,

Comparing with (3. 1), we obtain the following

PROPOSITION 4. In order that a complex linear connec-
tion may be identified with an A.T. connection it is necessary and

sufficient that the tensor J = (E‘}.) "have a zero absolute differential

with respect to this connection.

We shall now consider any complex linear connection
referred to an adapted basis. Let

w=(W?.)
1

be the matrix representing this connection. Under transforma-

tions of bases the forms wJ transform according to
1

1 1 b ]
w o= al w?AP 4 al'aa®
m' a b m' s m'
or
i b j j
(3.2) AW, = A W 4 dA)
730
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If we apply the above relation for j={* and m =p we obtain

P P *
(3.3) w = t w"
N S S
On the other hand, substituting in (3.2), first j={, m =q, then
j=t*, m =p%, and substracting the second equation from the
first we obtain
ML MR DR At % AE L

. ;
(3.4) A.)\'Wp' QA)\.'*W}L' - )\'*wp"*-wg p'_wé Ap.'*-wz;’_;=

If we consider the transformation relations given in the Appendix,
we see that the quantities .

A
(3.5) t =0, t =t =w , t =w =W ,
K

are the components of a tensor form of type (1,1). We call it
the tensor form associated to the linear connection. From the
relation (3.5) we have

PROPOSITION 5. In order that a complex linear connec-
tion on V2 be an A.T. connection it is necessary and sufficient
n

that the associated tensor form be equal to zero.

4. The operators C and M in an A.T. manifold.
As in the theory of almost complex manifolds and the almost
product manifolds, we may introduce, in the theory of manifolds
with A. T. structure, operators C and M.

Let V be such manifold and let us denote by A:'(VZn)

2n _
the vector space of all the complex-valued exterior r-forms
defined on VZn‘ We associate with the A. T. structure two

operators C and M defined on (VZn) in the following way:

If (v,,v .,v ) are r vectors of 'I‘c and f an
1 r x

2’
r-form, we denote by f(vi, NN ,vx) the value of f for
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v. AV_A ... Av . C is then defined by the relation
r

1 2

. ® ye s = f , e e .
(4.1) (,f(vi vr) (Jv‘1 .'l'v2 Jvr)
If the components of f are f. . . the components of Cf

_ Igdar 3
will be

i, 3 j
(4.2) co, ., = 5:15}2...F:r £
127 Yol e I ds

It is obvious from (4. 4) that C satisfies the relation
(4. 3) CcC =0.

Definition. A pure form f of type r, can be written

It is obvious that this definition is independent of the adapted
basis to which this form is referred.

PROPOSITION 6. C maps every r-form of /\z (VZ
n

into a pure r-form.

Proof. The relation (4.2) written in an adapted basis

provides
j, J
€ . =FiFr2  FT¢.. . =0,
%2 % ¥ % %yl
J j J
€O, x  =F' . F5...F -0,
1 k r 1 ar Jl JZ
i, ] j
2 r
(Cf) % % « = F o F 4 F * f =
%2 % %@ % I
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=6a60 'saf"ﬁ =f )
1 2 r Bi' P %%
and hence
* *
Qi QZ a
Cf = —f (¢] A® A...ANB .
!' a a
1 r

The operator M will be defined in the following way:

For any vV s € T;, M is defined by the relation

2’

r
(4. 4) Mf(vi’VZ' . ,Vr) =k?1 f(vi,v

Vo),

.V _1,Jvk,vk+1,.. s

2’ k
where the right-hand side obviously defines an r-form.

PROPOSITION 7.

+1
(4.5) C=%;-Mr and M~ = 0.

Proof. By repeated application of the operator M on the
form f we obtain

(4. 6) Mrf(vi,v

e sV )
r

57" r!f(Jvi,Jvz,...,Jvr) ;

using (4. 1), we find

H

r
M f(vi,vz,...,vr) r!Cf(vi,v ,...,vr).

2
The above relation holds for any r-form £, hence

r

C = M .

|-

The same relation (4. 6) provides

r+1

M f(vi,v ,..,,vr) =0,

2
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hence

From the relations (4.5) we obtain
(4.7) MC=CM=0.

If f admits the components fi i i the form M{ has

12 r
the components

(4.8) (Mf). . . =73XTf . . . s
.o e s e F
ottt ok M2 ket e Tix

r S
= Y] €, . R 2 T
(r-1)! L YERE SU PR PO

1 Jydpeei

P
where ¢ .1 .r is the Kronecker tensor.

1 -..1
1 r

PROPOSITION 8. For any 1-form f{ we have
(4.9) Cdf - MdCf = foT

where T is the tensor of the structure of the manifold VZn'

Proof. We consider a i-form f defined in a neighbourhood

U of V, by

Its exterior differential is
df = df A 8" 4+ fda’,
1 1

or
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1 i, j, 1. 1., .k
df = —(0.f -0 f)O AO =fc, 0°AB
2048 - 95N )+ 3t ’
where c;k are the coefficients of d®" in the decomposition

i k , i i
8 Ao, = .
ik (<:jk+ckj 0)

del = %C

Operating by C,: we find

1 ak, B* 1 i _o¥, B*
= =@ f -9 A =
Cdf = - afﬁ Bfa) (® 877) + 550,00 Ae"" .

Similarly,

and

E-3
dcf = df A% +¢ ae
(o3 o

a*

Cf £f6

i

a*

1 N

1 A a%k * a*
= — - —_ -9 -
2(8)\ fo: aaf)\)e Ao +—=(3, f f)\)e A6

Let us put dCf=c.

=0
(Ma)" r

(Ma) o *y

(Ma) oxy

= ¢ a
v *0 L ¥ o

= € a
L ¥ * L ¥k of

2" A¥ o a%*

£ 3 .
+-1-f cfz, 61,1\6J .

2 aij
kg s u*g o
Then (Ma)ij = eij Fkasl = i u*ao_!
oy
= .. a s
ij o2
= eo’*)‘ = =0
- ;*gao-)\ I A
o *\* o o
Cagefo e T ST T
1
=—=(0 £-0£f).
2( ¢ O Lt)
735
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%
In a similar manner, if we put faCia, = ﬁij and

. i
B=a(f T B'AB") we obtain
2 a'i

J
(MB)L a =0,
(MB) =g =£%,
L ¥ v L a1 §
(MB) by = B pw™ Bryw = By ya ™ By
a i g L L*
= 5] 0
hence Mp (fcxcx,g)e AB° + p!. L% A
_ a* L ¥ !; a* V¥ g*
(fa Lg)e AB° + fozC; *ge A B ,
and
1, L * L* a¥ | * z a* L X L*.
= —(0 -
MdACE 2( . fg 34& LE] AB + fd [cL 4,9 A8~ ¢+ cL *ge Ao~
Therefore

a* a¥

Lk, Lk
ct*§+c!’g*])6 AB° }

a¥* v* 1 o
- == e - -
Cdf-MdcCt fa{c";e A + Z(CL r [

* * *
ca o' Gg’
a¥ ¢

1
=1 .
"2
In the other hand, if we apply the relations of p. 5328 of

1
[6] for p=q :Zn, r=1, we obtain for the components of the

tensor of structure

ta -ca ca* ca* ta -ca* ta =0
BN % Bh BEA Bhx’ pEN BN ' BN’
a¥ a¥* a% a*

tﬁ*)\*'ca)\ ’ tp*)\ =0. tp)\ =05

the structure form is then given by
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a a¥ [ L ¥ a a¥ a V¥, L%
T = 8°A8" += A®
° 20 7 Cuwg T SugH) '
a¥% 1 o% B* A%
=— (3] [¢) .
T Zcﬁ A
and finally

a a*
Cdf-MdCf = £ T +£f T = foT.
a a*

The relation (4. 9) can be used in order to obtain, in local
coordinates, an expression of the tensor of the structure in

terms of the tensor EJ of the almost tangent structure.
i

Indeed, (4.9) provides, in local coordinates,

1.1
(4.10) (Cdf—MdCf)jk = Etjkfi .

The form df has, as components in local coordinates,

1
=—(0 f -0 f ,
(df)jk 2( jk k_])

also

1 _a
df = = 9 f
(C )jk ZF'F(

-9 £f).
J ab ba

w o

Hence for MdCf we have, according to the relation (4. 8),
1_a b b 1_a b b
=— 2] f)-20 - - 0 f)-29 f -
(MdCf)jk > Fj [ JF) k(Fafb)] > Fk[ a(FJ. b J.(Fa N

Using the relation Filfla =0, we obtain

1 _a b 1 a_b 1 b
MdCf).. ==F0 += 9 f -=F9 Ff
( )Jk 2 jaFkb ZFijab 2 jkahb
1 _a. b 1 b. _b 1_a_b 1 _a, _b
“=F9 Ff -—F°F9 Ff -—FFO9{f +=-F09 Ff ,
ZFkaFjb ijaFjb 2 kjab 2 kjab
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and

- 1 a b b a b b
- . =" — 0 -9 + F ] F - 0 F f .
(cdf MdCf)jk 2{FJ,( WFam 2. F) ! 2F57 Y% aL)} b

From (4.10) we see that

i a i i a i i
= F° (9 -3 F)Y+F. (® F.-0F),
th = T T, - 0 F) Oy - 9F,)
or
i i a a i a i
= 9 F -9 F)+F. 0 F. -F0F ,
tjk Fa.(jk k?) kaj jak
since

oo

a i i
9 - - F
ijFa F2, ;

PROPOSITION 9. For the almost tangent structures the
Nijenhuis tensor, is the negative of the tensor of the structure.

Proof. The Nijenhuis tensor is defined [8] by

N(u,v) = [Ju, Jv] + Jz[u,v] - J[Ju,v] - J[u,Iv] ,

for any vector fields u,v. For A.T. structures we have

2
J =0, hence
(4. 11) N(u,v) = [Ju, Iv] = J[Ju,v] - J[u,Iv].
The relation (4. 11) may be written explicitly

[N(ux.‘v)]k = [Ju, J'v]ka Fr[Ju,v]! - F};[u, J'V]z s

where

1]

[Ju,v]’l

Fou’o v‘! -va (qua) .
a m m a

[w,Iv] L

uma (FI vb) - Fmvaa u!
m b a m
738
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k m a kb m a k b
s = ) - 0
[Ju, Iv] F LU m(Fbv ) - F SV rn(}:"bu )
= FPFN v - FREN® o F PGP
a b m a b m am b
- Fma Fkvaub .
am b

Hence, after cancellations of opposite terms and rearrangement
of indices, we obtain

k k. k. k
N(u,v) =[F 09 F'-rF@ F+Fr 0 F - F'0d Fk]vfum
r{ m rm { mr /[ { r m

Therefore

k k k

NS =FY0 FT.8 F)+FTOF .-F08 FF,

m/? r £ m m { mr { { r m
and

NE o4k

m/ m/f

COROLLARY. In order that an A.T. structure be
completely integrable it is necessary and sufficient that the
Nijenhuis tensor be equal to zero.

5. Curvature tensor of the almost tangent connection.
Given an A.T. connection, the curvature of this connection is
defined by the relation

(5. 1) _Q!:d'rr'!-l-ﬂ’]»/\?rg,
: 1 1 J 1

where the tensor 2-form (5.1) is the curvature form of the
connection and it satisfies Bianchi' s identity

(5.2) atd =i ad oD At
1 f 1 { i

From the relation (5.1) we have
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% A
_Qﬁ=ci1r§~l-1r[3t\“rr)\1}-'rrﬁ A’n’x =d1rﬁ+‘nﬁl\7r
a o 1N o Nk o a )Y a

p* B* =~ Pp* N p* A * - B*x - p* 1
_Qoz* —dﬁa*+wk Awa*+ﬂk*'\wa* d'n'a*+*n')\*/\?ra*

(Hence .Quﬁ* =ﬁ.ﬁ .)

a¥* a

2

* * *
_Qp* = dn’ﬁ*+ "n'ﬁ A ‘ﬂ')\ + 'n"3 A'n'x =0
a )N a S o

By contraction on @ and f$ we obtain

* *
(5. 3) ,.Q_Q = an® or _QQ = dn” ,
a a a¥* a*
a a¥ 11 a a3k 1 ni
(-n'a = ﬂa* =T /’a'.nd ﬁa = 'ch* =3 ﬂi) .

If we consider a covering of VZn by neighbourhoods

U,V,... equipped with local cross sections of ET(V ), we

see that
a a*
p = =
a a*

is a complex 2-form. We call | the characteristic form of
the A. T. connection. We deduce from (5. 3) that ¢ is a closed

form. " defines on the fibre bundle ET(Vzn) a complex-
[+4

)

valued 1-form and if p*{ is the inverse image of ¥ in ET(VZn

by the projection, we may write
p¥y = do .

Thus, p*} is homologous to 0 on ET(Vzn). The cohomology

class on VZn of the form § does not depend on the connection
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Q
under consideration. If (ﬁﬁ) is another A.T. connection,
~ 4 a
Y-y =d(r -m),
a a

where ?rz - rrZ defines a complex-valued 1-form on VZn'

Then q')- ¢ is homologousto 0 in V The form ¢ defines

2n’
an integral cohomology class of degree 2.

6. The Holonomy group of the A. T. connections. Let

VZn be 2 manifold endowed with an A. T. connection. The

holonomy group of this connection is a sub-group of the

structural group G(zn) of the fibre bundle ET(V?_n) [(2), p. 62].
Conversely, let VZn be a differentiable manifold endowed with
a linear complex connection. Let us consider a point x¢€ VZn

and let us assume that there exists at x, a complex basis b
such that the holonomy group of the connection tbb at b, isa

subgroup of G(ﬁn); the elements of Lbb are matrices of the

form

A 0
B A

Let us now consider, at the point x, the tensor whose
components with respect to the basis b are

It will be invariant under transformations by the elements of

Lpb, since
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A 0 0 0 0 0 A 0

i
-

B A, -E 0 " En 0 B A
and its components satisfy, at x, the relation
j k
(6. 1) FF =0

From this tensor, we obtain by parallel transport in V2 ,
n

a tensor F‘] defined on the whole manifold V?_n with absolute
1

differential equal to zero [(2), p.113]. Moreover the relation
(6.1) remains true at every point of V2 . An A.T. structure
. 2n
is thus defined on V2 . Since VF‘]i =0, by proposition 4, the
n
given connection may be identified with an A. T. connection. We
may thus state the following proposition:

PROPOSITION 10. A necessary and sufficient condition
in order that a complex linear connection in a manifold VZn

be an A. T. connection of an A. T. structure is that the holonomy

group of the linear connection be a sub-group of G(En) .

7. The restricted holonomy group. Before studying
the restricted holonomy group we shall prove the following
lemma.

LEMMA. The set SG(n ) of all the matrices of the form
nn

A 0 '
a= < ) with detA =1 is an invariant subgroup of G(r1 )
nn
B A
Proof. I
‘A0 A, 0
a = ) N 01 = 1 ,
B A B A
1 1
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with detA = detA1 =1, we have
-1
AA 0
1
-1
E-3 A q
1

and det(A.A_i) =detA det(AZi) =1 . Hence aali € SG(n ) and
nn

and SG(n ) is a subgroup of G(n ). It is an invariant sub-
nn nn

n n
group, because for any A€ SG(nn) and any Aié G(nn) we have

det(A”1AA ) =det(a”})(deta)(detA ) =1. Hence o ‘e € SG( ).
1 A8y 1 1 1 9%y n

The SG(;) is obviously a Lie subgroup of the Lie group G(Zn).

Without changing notations we shall now pass to the

universal covering of V2 .
n

Let b be an adapted basis at the point x € VZn’ and let
us assume that the restricted holonomy group o'b is a subg}-oup
of SG(zn). Then this assumption will be true at every poin;c of
ET(VZn)' We introduce at the point xo the covariant tensor
to of orde;: n, whose components with respect to the base b
are

t =s’1*2*...n*

1112. .o ln 1112. . ln
The tensor to is invariant under a'b. Indeed,
i i i
1%2%,. . .n%*
1A 2 A n c 2 n

2131 3 $175031 77 0 T ii i
Il o) T2 I Mk

Hence
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tl 1 t =t| ' v 0,
giz"Z'“t"n Ligz*“'gn _

e 3 ®%  1#2%...n*
t = A A R £ T
IS AR IE ISR * .. ak
t"'i g2 h gn r’i LZ gn a’;ag an
_ ei*Z*...n* .
gi*gé*, .. g;}* .
Therefore
) _ _1¥2%. . .n%*
c' o' -‘ - 'l -‘ -‘
JiJz"‘Jn 31]2"'Jn

By parallel displacement, to generates a tensor t
defined on the whole VZn and Vt=0. If U is an open
neighbourhood of vZn endowed with a local crossf section of
ET(VZn), there exists a differentiable function e with

complex values # 0, defined on U, such that we have in U

1%2%...n* f
€

(7.1) Gi..i T%ii...i
12" "'n 12" "'n
From (7.1) we obtain
1%, ,.n* f 1%, ., .n*
Vt:__,L i =(def)ei .n + e Vg in H
11.2-,.n 1...1n 11...n
but
1%, .. n* *2%, . .n* *...n%*
VS.i ni =-v?si.2 -0 -w? 8.1. s
v o e 1 PP § 1_...1
Yl g Pty 2 NPy
*,,.n¥%
—af e tfeen
i 11...1n_1p
or
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1%...n* _ p*si*...n* p* 1%...n%

Ve * % = = T - T € - . e
* *ag¥*...a% * 0%, , ., a%
Qi o4 CJ!1 PCYZ n 02 Q’ip an
pk 4%, ..n*
- €
% ¥, .. %
an ai _an-ip
* * *
(“1+ “2+ N an)si*Z*...n* a* 1%...n%
= - T e + o = -7 .
va’f oy ax " afat... ax ok ot .ar
Finally
i%,..n* a¥ 1%2%,..n%
Ve . = -TI'*E_i .
PR § a 1 P
YW 12"
We may thus write (7. 2)
f * 4%, ..n%
Vt,i i =e(d£-rr::*)ei ln
11 2..-n i...n
and obtain
a¥ a
= = df,
wa* a
or
2
Yy =dr =df =0.
a

The characteristic form is everywhere equal to zero.

2

Conversely, let us consider a differentiable manifold V2
n

equipped with an A. T. connection and let us assume that the

characteristic form { is zero at every point of V2 . With
n

respect to any local cross section of ET(VZ ), we have
n

*
dwa = d'rra = 0.
a a%

745

https://doi.org/10.4153/CMB-1965-054-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1965-054-5

To every point x of V2 we may associate an open neighbour-
n

hood U(x) and a complex-valued function f defined in U such
that, with respect to the cross section,

We now consider the covariant tensor of order n defined in U,
whose components with respect to the local cross section are

1%...n%
t . = € . € 3
ii .1 i i
12 n 1 n

its absolute differential is given by

1%, ,.n% f
ve o o=e Tel(dfr) = 0
:L1 2... n 11... n [0
If bx is an adapted basis at’ x, the holonomy group cy of
x

the connection at b 1is, as we have seen previously, a sub-
x
). sSince Vt=0 in U, the elements of o
nn b
x
which we obtain by developing the loops at x situated in U,

group of G

leave t invariant. Therefore they belong in SG(:;]), Since

we may associate to every point x, such a neighbourhood U,
it follows from the factorization lemma [(2), p.52], that for

every be ET(V )s @_ is a subgroup of SG(zn), We may

2n b
thus state:

PROPOSITION 11. In order that a manifold with an
A.T. connection has an holonomy group ¢ as sub-group of
SG(;In), it is necessary and sufficient that the characteristic

form of the connection be equal to zero.

Some interesting topics of the theory of manifolds with
A.T. structures are: 1. The compatibility of Euclidean and
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A.T. structures. 2. Compatibility of Hermitian and A. T.
structures. 3. The automorphisms of such manifolds. The
first topic is already studied in [9], the other two will be
investigated in another paper.

APPENDIX

3 1]
If t‘; and t;l are the components of a tensor of type
" (1,1) with respect to two different adaptéd bases, we have the
following relations:

1 1 ' %*
¢ = A% AM S A% BH

AT AT ta T g*ta ’

H'* N a p,'*g* a%* '_L'*g*
B = Britla by Ay A b s

(24
i

RN R

X 1 X 1 g* a
p! _La VAR A a P! gx % u' a* _u' L%
ty T B)\,*Ag t+t By 4t +A.)\,*Ag ta*+Ax'=§=Bg*ta*‘
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