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Abstract

We are interested here in the Ramsey number (T, C), where C is a complete k-uniform hypergraph
and T is a “tree-like” k-graph. Upper and lower bounds are found for these numbers which lead, in
some cases, to the exact value for /(7, C) and to a generalization of a theorem of Chvatal on
Ramsey numbers for graphs. In other cases we show that a determination of the exact values of
r(T, C) would be equivalent to obtaining a complete solution to existence question for a certain class
of Steiner systems.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 05 C 35; secondary 05 B 35.

1. Introduction

By a k-graph F we mean a k-uniform hypergraph, i.e. a finite set, V(F), of
vertices and a collection of edges which are distinct k-subsets of V(F). We shall
call a k-graph T tree-like if T has exactly k vertices and a single edge or if 7 can
be obtained from any tree-like k-graph T' by adjoining a single k-edge which
shares exactly one vertex with T’. (We might have preferred the term “k-tree”,
but this has been used extensively, as in Beineke and Pippert (1971), to denote a
single (k + 1)-edge, or a (k + 1)-graph formed by adding to a smaller k-tree T”
a (k + l)-edge sharing k vertices with T'.) We shall use 7(m, k) to denote a
tree-like k-graph with m = g(k — 1) + 1 vertices (and hence g edges) and
5 (m, k) to denote the class of all tree-like k-graphs of this size. The complete
k-graph on n vertices in which each k-subset of the vertex-set is an edge will be
denoted by C(n, k).

For k-graphs F and G, the Ramsey number r(F, G) is the smallest integer ¥
such that, for any partition (E,, E;) of the edges of C(¥, k), either F is a
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subgraph of the k-graph induced by E;, or G is a subgraph of the k-graph
induced by E,. As is often done, we will usually think of these partitions as
arising from 2-colorings of the edges of C(¥, k) with, say, the edges of E,
colored blue and those of F, red. We are interested here in the Ramsey numbers
r(T, C), where T is tree-like and C is a complete k-graph, and in the function
Sf(m, n; k) which we define to be the smallest integer N such that for each
partition (E,, E,) of C(N, k) either the k-graph induced by E, contains some
member of J(m, k) or the k-graph induced by E, contains C(n, k). Hence
Sf(m, n; k) is the “Ramsey number” of C(n, k) and the class J(m, k).

Some of the first results on Ramsey numbers for k-graphs were obtained by
Burr, Erdos and Spencer (1975) and by Duke and Harary (1976). The present
investigation was suggested in part by the study of 3-graphs in Duke (1975) and
by the following result for graphs (k = 2) due to Chvatal (1977).

THEOREM (Chvatal). Let T be a tree with m vertices and K, the complete graph
on n vertices. Then (T, K,) = (m — 1)}(n — 1) + 1.

Our basic techniques have their origin in Chvatal’s original proof of this
theorem. The bounds which we obtain for f(m, n; k) and ~(T(m, k), C(n, k))
are, in many cases, generalizations of the formula in Chvatal’s theorem. We find,
however, that for k > 2 the exact values of these functions depend in many
cases on the congruence class of n modulo & — 1 and that in some instances
determining f(m, n; k) precisely would be equivalent to settling a well-known
existence problem in the theory of block designs.

2. Some basic inequalities

We begin by obtaining bounds for r(T(m, k), C(n, k)) and f(m, n; k) which
are valid for all of the values for which these functions are defined. The proof of
the first theorem is a direct generalization of the methods first used by Chvatal
to obtain the result mentioned above.

THEOREM 1. Let m=p(k — D)+ land n=q(k — 1) + t, where k > 2, p, q
> 1, and let t be any integer such that 1 < t < k — 1. Then for any T(m, k) in
5 (m, k) we have

(1) (m—1)(n—1)

< 5
P +t < flm,n; k)

< r(T(m, k), C(n, k)) < Qn%l(nl_—_l_) + 1.
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Proor. The lower bound for r follows immediately from the existence of a
“canonical” 2-coloring of the edges of C(N, k), where N = ((m — 1}(n — 1)/
(k — 1)) + ( — 1). In this coloring all of the edges of (n — f)/(k — 1) disjoint
copies of C(m — 1, k) are blue and all of the remaining edges are red. No
T(m, k) exists in the blue subgraph and, since each set of n vertices includes at
least k vertices in some one of the blue C(m — 1, k), there is no red C(n, k).

(This result could also be obtained by using this coloring in each case where
t = 1, together with the easily obtained fact that r(T(m, k), C(n + 1, k)) >
r(T(m, k), C(n, k)) + 1 for any T(m, k).)

The upper bound is established by an inductive argument on the size of
m + n. The inequality becomes an equality when either m = k or n = k, so we
may assume that the result holds for all T(m’', k) and C(n’, k) where m’ + n’ <
m + n with k < m, n. It follows that for N = ((m — I}n — 1)/(k — D)) + 1,
each 2-coloring of C(N, k) must produce either a blue 7(m, k) or a red
C(n — 1, k). In the second case we may remove the vertices of such a
C(n — 1, k) obtaining a 2-colored C(N’, k) with

N =({((m—-(k—-1)—=Dn-1)/(k-1)+1L

Let T'(m — (k — 1), k) denote a tree-like k-graph obtained by deleting from
T(m, k) one “terminal” edge which shares a single vertex x with the remainder
of T(m, k). Then C(N’, k) must contain a blue copy of T’ or a red C(n, k). If
there exists a blue 77, then either all of the edges of the original C(¥, k) having
x as a vertex and their remaining vertices in the red C(n — 1, k) are red, which
would produce a red C(n, k), or one of these edges is blue, producing a blue
copy of T(m, k).

COROLLARY 1. For m and n as in Theorem 1 we have the following whenever
t=1:

(m-1(n-1)
(k—1)

r(T(m, k), C(n, k)) = + 1.

We shall denote the lower bound in (1) by g(m, n; k) and the upper bound by
h(m, n; k). It follows that

2) g(m, n; k) < f(m, n; k) < h(m, n; k).
The following two lemmas provide additional inequalities which will be
useful.

LEMMA 1. For m and n as in Theorem 1 and any tree-like k-graph T(m, k) in
5 (m, k) we have

3) r(T(m, k), C(n, k)) > r(T(m, k), C(n — (k — 1), k)) + (m — 1).
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ProofF. Let R = r(T(m, k), C(n — (k — 1), k)) and let the edges of a
C(R + (m — 2), k) be 2-colored in such a way that for some R — 1 vertices the
C(R — 1, k) induced by these vertices contains no blue T(m, k) and no red
C(n — (k — 1), k), the edges of the complete subgraph induced by the remain-
ing m — 1 vertices are all blue, and all other edges are red. This coloring
produces no blue 7T(m, k). Any set of n vertices either contains k or more
vertices in the blue C(m — 1,k) or at least n — (k — 1) in the chosen
C(R — 1, k) and so has at least one blue edge.

LEMMA 2. Suppose m =pk — 1)+ 1, p>2, and n=qlk— 1)+ ¢, q > 1,
1<t <k -1 1If Tm— (k — 1), k) is obtained from T(m, k) by deleting one
terminal edge, then

4) r(T(m, k), C(n, k)) < r(T(m — (k — 1), k), C(n, k)) + (n — 1).

PrROOF. Let N = r(T(m ~ (k — 1), k), C(n, k)) + (n — 1). Then by (1), N >
g(m — (k — 1), n; k) + (n — 1). By direct computation we obtain

gm—(k—1),nmk)+n—-1
=h(mn—(k—13k)+20t -1+ ({(m—- Ik —-21)/(k—1)).

Since 1 < ¢ < k — 1, it follows that a 2-coloring of C(N, k) which yields no blue
T(m, k) must have a red C(n — (k — 1), k). In this case we may remove the
vertices of a red C(n — (k — 1), k) from the C(N, k) to obtain a 2-colored
C(N,, k) with Ny=N—n+ (k= 1)=r(T(m — (k — 1), k), C(n, k)) + (k —
2). If this 2-coloring of C(N,, k) has no red C(n, k), then it has a blue
T(m — (k — 1), k). If there is a blue T(m — (k — 1), k) it is disjoint from the
red C(n — (k — 1), k) and, as in the proof of the upper bound in Theorem 1,
either the one can be extended to a blue T(m, k) or the other to a red
Cln—(k+ 1)+ 1,k)in C(N, k). If a red C(n — (k — 1) + 1, k) is obtained,
its vertices can be removed from the C(N, k) to yield a C(N,, k), where
N, =N — n+ (k — 2), which has either a blue T(m — (k — 1), k) or a red
C(n, k). This argument can be repeated until either a red C(n, k) has been
obtained or a red C(n — 1, k) is removed from the C(N, k) to obtain a
C(N,_,, k), where N,_, =N —(n—1)=r(T(m — (k = 1), k), C(n, k)). Fi-
nally, if a C(N, _,, k) is obtained which does not have a red C(n, k), then it does
have a blue T(m — (k — 1), k) which is disjoint in C(N, k) from the red
C(n — 1, k). Either this C(n — 1, k) is contained in a red C(n, k) or the
T(m — (k — 1), k) is contained in a blue T(m, k) in the C(N, k), which com-
pletes the proof.

Note that if for some T(m, k) and some n, (T(m, k), C(n, k)) = h(m, n; k),
then by (3) r(T(m, k), C(n + q(k — 1), k) = h(m, n + g(k — 1); k)) for each
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g > 1. On the other hand, if r(T(m, k), C(n, k)) < h(m, n; k), then by (4)
H(T(m + p(k — 1), k), C(n, k)) < h(m + p(k — 1), n; k) for any member of
S (m + p(k — 1), k) which contains T(m, k) as a subgraph.

3. Results for 3-graphs

For odd n(t =1) and any T(m, 3), Corollary 1 yields g(m, n; 3) =
r(T(m, 3), C(n, 3)) = h(m, n; 3).

For even n, however, (1) gives only 3(m — I)n — 2) + 2 <
r(T(m, 3), C(n, 3)) < %(m — 1)}(n — 1) + 1. For some tree-like 3-graphs, but not
all, we can show that r(T(m, 3), C(n, 3)) = g(m, n; 3) when n is even. The first
result in this direction was established by Duke (1975).

LeEMMA 3 (Duke (1975)). We note that 5 (5, 3) has only one member T(5, 3). For
n even and this unique member of 9 (5, 3) we have

r(T(5, 3), C(n, 3)) = g(5,n; 3) = 2n - 2.

By a k-path on m vertices, denoted by P(m, k), we mean that unique member
of 9 (m, k) in which no vertex is contained in more than two edges and in which
no edge is incident to more than two other edges. The only member of
JQ2k — 1, k) is the k-path P(2k — 1, k). A vertex contained in one of the two
terminal edges of a k-path P and contained in no other edge of P will be called
a terminal vertex of P.

LeEmMaA 4. For each 3-path P(m, 3) we have
r(P(m,3), C(4,3)) = g(m 4;,3)=m+ 1.

Proofr. Clearly r(P(3, 3), C4, 3)) = g(3,4; 3) =4 and by Lemma 3,
r(P(, 3), C(4, 3)) = g(5, 4; 3) = 6. The result for m = 2p + 1, p > 3, is estab-
lished by induction on p.

Let Q be an integer, Q > 3, and assume that r(P(m, 3), C4, 3)) = m + 1 for
each m=2p + 1 with p < Q. Consider a 2-coloring of the edges of
C(m + 1, 3), where m = 2Q + 1, which has no red C(4, 3). There must be a
blue P(m — 2, 3). Let x be a terminal vertex of such a blue P(m — 2,3)and y a
terminal vertex in the other terminal edge. Let the vertices of C(m + 1, 3) not in
this P(m — 2, 3) be a, b and c. If there is a blue edge with one vertex in {x, y}
and two in {a, b, c}, we have a blue P(m, 3). Assume, then, that each such edge
is red. Since there is no red C(4, 3), {a, b, c} is blue. Similarly, one of the edges
{x,y, b} and {x, y, c} must be blue. Hence there is a blue P(m, 3) consisting of
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the blue P(m — 2, 3) with one terminal edge deleted, and {q, b, ¢} and one of
the edges {x, y, b} and {x, y, ¢} added.

THEOREM 2. For each 3-path P(m, 3) and each n > 3 we have
&) r(P(m, 3), C(n, 3)) = g(m, n; 3).

ProoF. For odd n the result follows from Corollary 1. For even n we proceed
by induction on n + m. The result is immediate for m = 3 and was established
above forn =4, Let M > 5 and N > 6 be integers with M odd and N even.
Suppose r(P(m, 3), C(n, 3)) = g(m, n; 3) for each odd m and even n with
m+n< M+ N. Consider a 2-coloring of C(g(M, N; 3),3) with no red
C(N, 3). Since g(M, N; 3) > g(M — 2, N; 3), there is a blue P(M — 2, 3). If the
vertices of such a 3-path are removed, we obtain a 2-colored complete 3-graph
withg(M,N;3) — M + 2 = g(M, N — 2; 3) + 1 vertices. If this 3-graph has no
blue P(M, 3), it has a red C(N - 2, 3), say C,. Let the vertices of one terminal
edge of the P(M — 2, 3) be x, y and z, with x and y the terminal vertices, and let
w be a terminal vertex of the other terminal edge. There is a vertex, say a, of C,
such that {a, x, y} is blue. Consider the original 2-colored C(g(M, N; 3), 3)
with a and the vertices of the blue P(M — 2,3) removed. The resulting
C(g(M, N — 2; 3),3) has ared C(N — 2, 3), C,. As before there is a vertex b of
C, for which the edge {b,y, w} is blue. Note that a # b. Then the blue
P(M - 2, 3) with {x, y, z} deleted and the edges {a, x, y} and {b, y, w} added
yields a blue P(M, 3).

COROLLARY 2. For each m and n in the domain of f(m, n; 3) we have
(6) f(m, n; 3) = g(m, n; 3).

The class (7, 3) contains only two members, the 3-path P(7, 3) and a 3-graph
having three edges with a single vertex as their common intersection. We shall
call the one k-graph in 9(m, k) which has a vertex which is contained in every
one of its edge the k-star on m vertices and denote this k-star by S(m, k).
Hence PQk — 1, k) = SQk — 1, k) and 93k — 2, k) = {PBk — 2, k),
Sk — 2, k)}.

LEMMA 5. For each integer n, n > 3, we have
r(S(7, 3), C(n, 3)) = g(7, n; 3).

PRrROOF. Again the result follows for odd n from Corollary 1.

For even n we wish to show that r(S(7, 3), C(n, 3)) = 3n — 4. Consider a
2-coloring of C(3N — 4, 3) where N is even and N > 4, and assume this
2-coloring produces no blue S(7, 3). Since 3N —4=g(7l, N—1;3)+ 1 and
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N — 1 is odd, there is a red C(N — 1, 3). Call this red 3-graph 4 and consider
the 2-colored C(2N — 3, 3) obtained by removing the vertices of A from the
C(3N — 4, 3). Since g(5, N — 1; 3) = 2N — 3, it follows from Theorem 2 that
there is a blue S(5, 3) or a red C(N — 1, 3) disjoint from 4 in the C3N — 4, 3).
If there is a blue S(5, 3), then the vertex in both of its edges is either on a blue
edge whose remaining vertices are in 4 producing a blue S(7, 3), or, with 4, it
forms a red C(N, 3).

Thus we may assume that there is a red C(N — 1, 3) disjoint from A. Call it B.
Let C denote the C(N — 2, 3) obtained when the vertices of both 4 and B are
removed. For any vertex not in 4 we may assume that there is a blue edge
containing this vertex and having its other vertices in 4. The same is true for B.
Let the vertices of A be {a,, a, ...,ay_,}, the vertices of B be
{by; by, ..., by_;}, and of C be {¢}, ¢y, ..., cy_,}. It follows that for each c,
there are blue edges {c, a;, a;} and {c, b, b;}. I {¢, a;, a;} and {c,, q;, g},
t # s, are both blue, then either {q;, a;} = {a,, a,} or these pairs are disjoint, for
otherwise there would be a blue S(7,3) with edges of the form {c, g, g},
{¢> a, a;} and {a;, b, b;}. Similarly, if {c,, b, b;} and {c,, by, b}, t # s, are both
blue, then the intersection of {b;, b;} and {b,, b,} is empty or has two vertices.
Thus if we choose one pair {a;, 4;} for each ¢, such that {c, a;, g;} is blue, we
obtain a list of pairs of vertices of 4 no two of which intersect in a single point.
Since N — 1 is odd, there is a vertex a* of A which is in none of the chosen
pairs. Let b* in B be selected in the same way.

Now for each ¢, in C there is a blue edge {¢,, a;, a;} which does not contain a*
and a blue edge {c,, b, b,} not containing b*. Since there is no blue S(7, 3), any
other blue edge containing ¢, must meet one of these two blue edges in more
than one point. It now follows that every edge is red in the C(N, 3) induced by
a*, b*, and the vertices of C, which completes the proof.

The next result follows immediately from this lemma and Theorem 2.

THEOREM 3. For each member of I (7, 3) we have
r(T(7, 3), C(n, 3)) = g(7, n; 3).

This Theorem, together with (4), yields

THEOREM 4. For n even and each T(m, 3), m > 7, we have

H(T(m, 3), C(n, 3)) < %(m )= 1) = 1 < h(m, n; 3).

For each member of ¥(9, 3), other than S(9, 3), it can be shown that
r(T(9, 3), C(4, 3)) = g(9, 4; 3) = 10. We have not been able to show, however,
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that r(S(9, 3), C4, 3)) = 10, and do not know whether r(S(m, 3), C(4, 3)) =
g(m, 4; 3) = m + 1 in general.

4. Results for k-graphs, k > 4

All of our results for k£ = 3 suggest the possibility that r(7T(m, 3), C(m, 3)) =
g(m, n; 3) in every case. From Corollary 1 we have that r(T(m, 4), C(n, 4)) =
g(m, n; 4) whenever n is of the formn=3p + ¢, t # 1.

LEMMA 6. /(T(7, 4), C(5, 4)) = h(7, 5; 4) = 9.

Proof. From (1) we have r(T(7, 4), C(5, 4)) < 9. It suffices, therefore, to
show that there is a 2-coloring of C(8, 4) in which there is no blue 7(7, 4) and no
red C(5, 4). Such a coloring is obtained as follows: Let the vertices of C(8, 4) be
the integers i, 1 < i < 8. Color the edges in the following table blue and all
other edges red.

(1,2,3,4) {1,2,5,6} {1,3,57} {1,4,5,8)
(5,6,7,8) {1,2,7,8} {1,3,6,8) {1,4,6,7)
{2,3,6,7}) {2,4,6,8) {3,4,7,8)}
(2,3,58) {2,457} {3,4,5,6}

Each C(5, 4) in this C(8, 4) contains one of {1, 2, 3, 4} and {5, 6, 7, 8} or has
two vertices in one of these and three in the other. In the latter case it may be
checked that the C(5, 4) must contain one of the remaining blue edges. Since
each pair of these 4-sets meet in either 0 or 2 vertices, there is no blue 7(7, 4).

It can be shown that this 2-coloring is essentially the only one producing no
blue 7(7, 4) and no red C(5, 4).
Lemma 6 and (3) yield the following:

THEOREM 5. For n = 3p + 2,p > 1, we have
r(T(7,4), C(n, 4)) = h(m,n; 4) = 2n — 1.

The next result provides our first example in which the Ramsey number is
strictly between the bounds of (1).

THEOREM 6. g(7, 6; 4) < r(T(7, 4), C(6, 4)) = 10 < h(7, 6; 4).
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Proor. Since, in general, r(T(m, k), C(n + 1, k) > r(T(m, k), C(n, k))) + 1,
we need only show that r(7(7, 4), C(6, 4)) < 10. Consider a 2-coloring of the
C(10, 4) which has no blue 7(7, 4). By the previous result there is a red C(5, 4).
Let the vertices of C(10, 4) be the integers i, 1 <i < 10. Let A denotes a red
C(5, 4) and suppose that its vertices are 1, 2, 3, 4 and 5. Let B denote the C(5, 4)
with vertices 6, 7, 8, 9 and 10. Either there is a red C(6, 4) or for each vertex b in
B there is a blue edge having b as a vertex and its other vertices in A. In the
latter case each edge of B is red. Then each vertex of A4 is also contained in a
blue edge having no other vertices in 4. We may assume that {1, 6, 7, 8} is blue.
There is a blue edge containing 6 and 1 and the other vertices of 4, say 2 and 3.
The blue edge containing 4 and three vertices of B would not contain 6 as this
would form a T(7, 4) with {1, 2, 3, 6}. Hence it would include both 7 and 8, and
we may assume that its fourth vertex would be 9. The blue edge containing 7
and three vertices of 4 would include 1, 4, and one of 2 and 3. Hence the blue
edge containing 5 and three vertices of B could not include 7. If it contained 6, a
blue 7(7, 4) would be formed with {1, 2, 3, 6}, while if it contained 8, a blue
T(7, 4) would be formed with {1, 6, 7, 8}. But this leaves only vertices 9 and 10
in B, which is impossible.

While r(T(7, 4), C(6, 4)) < h(7, 6; 4), the next result, together with Corollary 1
and Theorem 5, show that this is the only case in which r(7(7, 4), C(n, 4)) <
h(7, n; 4).

THEOREM 7. For n = 3p + 3, p > 2, we have
r(T(7,4), C(n,4)) = h(m, n; 4) =2n — 1.

ProoF. In light of Lemma 1, we need only show that there is a 2-coloring of a
C(16, 4) which has no blue 7(7, 4) and no red C(9, 4). Such a coloring results
when the edges of each of two disjoint copies of C(8, 4) are given the 2-coloring
described in the proof of Lemma 6 and each of the edges which has vertices in
both of these two complementary sets is colored red.

The 14 blue edges in the coloring of C(8, 4) used in Lemma 6 and used twice
for Theorem 7 are such that each set of three vertices of the C(8, 4) occurs in
precisely one of these 14 4-sets. This collection of 14 sets therefore constitutes a
block design known as a Steiner system. In general, a Steiner system S(t, k, v) is
a system of subsets of size k, called blocks, from a v-set X such that each
t-subset of X is contained in exactly one block. The 14 edges colored blue in the
C(8, 4) form a Steiner system S(3, 4, 8). Our next result shows that this connec-
tion between the Ramsey numbers and Steiner systems is not limited to
4-graphs.
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THEOREM 8. For each integer k > 2 we have r(T(2k — 1, k), C(k + 1,k)) =
h2k — 1,k + 1; k) = 2k + | when a Steiner system S(k — 1, k, 2k) exists. If
no such Steiner system exists, then

r(TRk — 1, k), C(k + 1,k)) = g(2k — 1, k + 1; k) = 2k.

Proof. Suppose that for some k > 2 there exists a Steiner system
S(k — 1, k, 2k). By using the formulas given by de Vries (1977) for the reduced
intersection numbers of a Steiner system, we find that in any such system with
these parameters the complement of each block is again a block and that no two
blocks intersect in a single point. It follows that if the blocks of a Steiner system
S(k — 1, k, 2k) are used as the blue edges in a 2-coloring of the C(2k, k), then
no blue T(2k — 1, k) will result. Furthermore if any (k + 1)-set is chosen from
among the vertices of this C(2k, k), the remaining k — 1 vertices lie in exactly
one blue edge. The complementary k-edge is also blue and is contained in the
subgraph induced by the (k + 1)-set chosen. It follows that in this case
r(TQk — 1, k), C(k + 1, k)) = hQk — 1, k + 1; k).

In the other direction, suppose r(T(2k — 1, k), C(k + 1, k)) = 2k + 1. Then
there must be a 2-coloring of a C(2k, k) which has no blue T2k — 1, k) and no
red C(k + 1, k). Consider the blue edges of this coloring. If 4 is any blue k-edge
and x is a vertex of 4, then the complete subgraph induced by x and the vertices
not in A contains a blue edge B. The edge B must be disjoint from A since it can
not meet A4 in the single vertex x. It follows that the complement of each blue
edge is again a blue edge. Now let D be any set of kK — 1 vertices of the
C(2k, k). The C(k + 1, k) induced by the vertices not in D contains a blue edge
whose complement is a blue edge containing D. If D were contained in two blue
edges, then one of them would meet the complement of the other in just one
point. The blue edges thus form a Steiner system S(k — 1, k, 2k).

Thus far we have seen from Chvatal’s theorem and Lemmas 3 and 6 that the
value (T2k — 1, k), C(k + 1, k)) is 2k + 1 for k = 2 and k = 4, but that it is
2k for k = 3. This reflects the fact that a pair of disjoint edges in the complete
graph on 4 vertices constitute a Steiner system S(l, 2, 4) and blue edges in our
coloring of C(8, 4) are the blocks of an S(3, 4, 8), while no Steiner triple system
S(2, 3, 6) exists. It is known that there is no S(4, 5, 10), but that a Steiner system
S(5, 6, 12) associated with the Mathieu group M,, does exist. Therefore
r(T@, 5), C®6, 5) = 10 and r(T(11, 6), C(7, 6)) = 13. No Steiner system
S(k — 1, k, 2k) with k > 6 has been discovered, and it has been shown by
Krammer and Mesner (1975) that in order for such a system to exist, k + 1 must
be a prime. This leads to the next theorem.

THEOREM 9. If k + 1 is not a prime, then
r(TRk — 1,k), C(k + 1,k)) = g2k — L,k + 1; k) = 2k.
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Mendlesohn and Hung (1972) have shown that there is no S(9, 10, 20), so the
smallest value of k£ > 6 for which a Steiner system S(k — 1, k, 2k) might exist is
k = 12. Such a system would have over 200,000 blocks. When an
S(k — 1, k, 2k) does exist, the reasoning used in the proofs of Theorems 5 and 7
can be used to yield the following result.

COROLLARY 3. If there exists a Steiner system S(k — 1, k, 2k), then for all
n > k* — 2k + 1 we have

r(TQ2k — 1, k), C(n, k)) = h(2k — 1, n; k) = 2n — 1.

This result shows that for certain Kk and m we may have f(m, n; k) =
h(m, n; k) for all sufficiently large n. Nonetheless, our final theorem shows that
Sfim, k + 1; k) is approximately equal to g(m, k + 1; k) for large m.

TueoreM 10. For each k > 3 and every k-path P(m, k) we have
r(P(m, k), C(k + LK) €<m+(k—2)=g(m k+ 1; k) + k - 3.

ProOF. For k = 3 the result follows from Lemma 4. For fixed k > 4 the proof
is a straightforward generalization of the inductive argument given for that
lemma. The induction is grounded in the fact that for k > 4 we have

m+k—2>h2k—1,k+ 1; k).

The inductive step consists of showing that a 2-coloring of a C(m + k — 2, k)
with no red C(k + 1, k) must have a blue P(m — k + 1, k) and that each edge
in the complement of such a path must also be blue. This leads to the existence
of a blue edge having one vertex in each of the terminal edges of the path and its
remaining k — 2 vertices in the complement of the path. This complement must
then simply be large enough so that this edge meets one of the (blue) edges of
the complement in exactly one vertex.

5. Related questions

Given the relationship established here between r(T(2k — 1, k), C(k + 1, k))
and the existence of Steiner systems, there seems to be little hope at present of
determining the exact values of r(T(m, k), C(n, k)) even for all k-paths or all
k-stars. It may be possible, however, to obtain the values for trees containing
sufficiently long “suspended” k-paths (see Burr (1979) and Burr and Erdos
(1979)). Further progress could no doubt be made on various specific cases, but
we have found even the precise determination of r(S(9, 3), C4, 3)) to be
surprisingly difficult.
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There is no end to list of questions which could be asked about the Ramsey
numbers of pairs of k-graphs. As one example, if D(n, k) denotes the k-graph
obtained by deleting a single edge from C(n, k), then we can show that
r(P(m, 3), D(4, 3)) = r(S(m, 3), C(4, 3)) = m. (While this result for paths is
fairly simple, the argument for stars is rather involved, and we hope to include it
elsewhere.) The values of r(T(m, 3), D(4, 3)) are unknown for other k-trees,
although again it may be possible to obtain them for trees containing sufficiently
long k-paths. As far as we know, r(D(m, k), C(n, k)) has not been studied.

Stahl (1975) generalized Chvatal’s theorem from trees to forests. For the
k-forest F(kp, k) consisting entirely of p disjoint k-edges, we have
r(F(kp, k), C(n, k)) = n + k(p — 1). But, unlike the case for graphs (Chartrand,
Gould and Polimeni (1979), Faudree, Schelp and Scheehan (1979)),
r(F(3p, 3), C(n, 3)) = r(F(3p, 3), D(n, 3)), for n sufficiently large. (Here too,
block designs enter the picture; these results will be explored elsewhere.) Some
results concerning the “diagonal” Ramsey numbers for multiple copies of
k-graphs were obtained by Burr, Erd6s and Spencer (1975).

Frankl (1977) has shown that for each k > 4 and sufficiently large n, each
k-graph with n vertices and more than (,~2) edges must contain a T2k — 1, k).
Bounds were found by Duke and Erdos (1977) for the number of k-edges which
would assure the existence of an S(m, k), and these bounds have since been
improved by Frankl (private communication).

Finally, it follows from Theorem 1 that

Jim n'f(m,n; k) =(m—1)/(k = 1).

One might expect that lim,,_,  m™'f(m, n; k) = (n — t)/(k — 1), where n =
plk— 1)+ 1, 1<t <k — 1, but our results establish this only for kK < 3 and
fork > 4whent=1lorn=k+ 1.
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