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Strategies to enhance radiosensitivity in breast cancer
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Abstract Radiotherapy is an important component in the treatment of breast cancer. However, the individual

tumor response to radiation is variable, reflecting both the intrinsic properties of the tumor and its micro-

environment as well as the different, inherited sensitivity of the patient’s normal tissue when exposed to the

effect of ionizing radiation. These differences have inspired research to discover the underlying signal

transduction pathways and to understand when they pertain to the tumor, the host or both. In fact, under-

standing the mechanisms underlying radiosensitivity of breast cancer not only does it permit to design more

effective radiation treatments, but it sheds light on the complexities of tumor-host interactions in this disease.
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The modern clinical management of breast cancer
frequently requires the use of ionizing radiation either
to permit breast preservation, to enhance local
control of the axillary and supraclavicular lymph
nodal area or to improve pathological response to
concurrent chemotherapy in locally advanced breast
cancer (LABC). In each of these settings, failures after
radiotherapy have warranted research to understand
their underlying causes and how to overcome them.
Moreover, normal tissue response to ionizing radiation
reflects the inherited genetic predisposition to heal
and repair to different degrees: recognizing these
differences has already shown to be important in the
clinic [1].

While no preclinical models can adequately recapi-
tulate the clinical complexity and heterogeneity of
human breast cancer, they have revealed to be a useful
tool to understanding this disease. A good example is
the work done to explain how a tumor’s over-expres-
sion of HER-2neu influences its radiosensitivity [2].

Pietras et al. first demonstrated that the MCF7 cell line
engineered to over-expressed HER-2 was more radio-
resistant than the parental line, since HER-2 over-
expression resulted in increased repair of the radiation
damage. Treatment of the HER-2 over-expressing cells
with a monoclonal antibody against HER-2 resulted
in increased radiosensitivity when compared with that
of the parental cell line. Subsequent studies linked the
PI3-K pathway to this process, and demonstrated that
trastuzumab reduces phosphorylation levels of Akt and
MAPK in MCF7-HER21 cells [3–5].

During the same years, we conducted a multi-
institutional Phase II trial in LABC that combined
the radiosensitization properties of paclitaxel with
radiation in the neoadjuvant setting [6,7]. Patients with
previously untreated LABC were eligible to receive
a regimen of preoperative concurrent paclitaxel,
30 mg/m2 twice a week for a total of 8 weeks, and
radiation delivered at weeks 2–6, 45 Gy at 1.8 Gy per
fraction to the breast, ipsilateral axilla and supra-
clavicular nodes. The choice for a bi-weekly schedule
of the taxane was derived from work our group con-
ducted, demonstrating the kinetic of breast cancer
apoptosis and mitotic arrest after infusion of the drug,
by performing sequential fine needle biopsies in
volunteer breast cancer patients who enable the
acquisition of this important, in vivo information [8].
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At mastectomy, pathologic findings were classified
as pathological complete response (pCR) if no resi-
dual invasive cells in the breast and axillary contents
were detected, pathological partial response (pPR) if
presence of ,10 microscopic foci of invasive cells
was detected, and no pathological response (pNR)
if persistence of tumor was detected. Pathological
assessment of response was correlated with gene-
expression profiles from an initial pre-treatment core
biopsy of the cancer. Interestingly, patients with
breast cancers over-expressing the estrogen receptor
(ER) and HER-2neu genes at reverse transcription-
polymerase chain reaction (RT-PCR) were significantly
less likely to achieve a pathological response after
chemoradiation [9,10].

In view of these findings, our current neoadjuvant
chemoradiation study includes treatment with con-
current trastuzumab for HER-2neu over-expressing
tumors: this study is actively accruing patients
and it will enable us to explore whether adding a
monoclonal antibody against HER-2neu results in
increased pathological responses to the same
regimen of chemoradiation.

A specific concern in combining a radiosensitizing
agent with radiation is the potential to enhance its
normal tissue toxicity within the field of radiation.
Signal transduction pathways targeted by trastuzu-
mab are shared by normal tissue and cancer, and
enhanced cardiotoxicity of systemic chemotherapy
has been reported in women treated by trastuzumab
[11,12]. Fortunately, results from two multi-institu-
tional Phase III trials (North Central Cancer Treatment
Group N9831 and National Surgical Adjuvant Breast
Cancer and Bowel Project B-31), addressing the
efficacy of combining chemotherapy and radio-
therapy with trastuzumab, will provide important
information about the toxicity added by trastuzumab
to the combination of chemotherapy and radiation in
the adjuvant setting of breast cancer.

It is impossible to determine whether hormonal
receptor expression is associated with enhanced
response to radiotherapy in early breast cancer, or
whether it just represents a marker of less-aggressive
cancers, with a lower propensity to recur locally,
independently of treatment. In the National Surgical
Adjuvant Breast and Bowel Project trial B-21, an arm
included women with ,1 cm tumors who received
radiotherapy. Carriers of ER-positive tumors had
a lower local recurrence rate than patients with
ER-negative cancers, 6.9% vs. 19.1%, respectively.
While the addition of tamoxifen (tested in a different
arm of the study) further enhanced local control,
optimal sequencing of radiotherapy and anti-
hormonal therapy has not been determined [13].

An inherited genetic predisposition to respond to
radiation damage controls normal tissue response

to radiotherapy. Understanding individual predis-
position enables a rational approach to the dose
and scheduling of radiation [1]. For instance, carriers
of germline mutations of genes involved in DNA
repair pathways have shown to be exquisitely
sensitive to the DNA-damaging effects of radiation
[14,15]. Specifically, inherited mutations of BRCA1
and BRCA2 have important consequences on DNA
double-strand break repair by homologous recom-
bination. Mouse models have contributed to reveal
many of BRCA1 functions, through mutation ana-
lysis using gene targeting to create null mutations
or disrupt BRCA1 full-length isoforms [16]. New
targets were identified, highly specific for BRCA1
mutation carrier, like poly(ADP-ribose) polymerase
(PARP), an enzyme involved in base excision repair,
a key pathway in the repair of DNA single-strand
breaks [17]. When combined with ionizing radiation,
anti-PARP drugs are likely to be synergistic. Normal
tissue toxicity, however, could be prohibitive, in
view of the systemic effects of these drugs, with
potential severe complications in the tissue inclu-
ded in the radiation field. Careful dose titration
studies need to be conducted to establish how to
best reduce the amount of radiotherapy necessary
to achieve the same effects.

Recent laboratory evidence supports an intrinsic
radio-resistance of stem cells [18,19], consistent
with the observed clinical patterns of recurrence we
observe in some patients and warranting new
strategies to address this challenge, for instance by
exploring optimal sequencing of targeted therapy
with radiation [3].

Finally, a new area of research regards the com-
plex ‘danger effects’ that ionizing radiation elicits and
the opportunities they offer when combined with
immunotherapy. In such setting, ionizing radiation
to the primary tumor can be used an adjuvant to
a systemic strategy that aims at recovering the
patient’s immune response to cancer [20–22].

Preclinical insight about strategies to enhance
radiosensitivity of breast cancer has been instru-
mental to designing and sequencing multi-modality
therapy. While effects observed experimentally
have often been confirmed clinically, preclinical
models can underestimate potential acute or late
effect on the normal tissue revealed only when
tested clinically, in the setting of a clinical trial [23].
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