
JFP 15 (2): 179–217, 2005. c© 2005 Cambridge University Press

DOI: 10.1017/S0956796804005465 Printed in the United Kingdom

179

Interfaces for stack inspection

FRÉDÉRIC BESSON, THOMAS DE GRENIER DE LATOUR

and THOMAS JENSEN

IRISA/CNRS and INRIA-Rennes, Campus de Beaulieu, F-35042 Rennes, France

(e-mail: fbesson@irisa.fr, degrenie@irisa.fr, jensen@irisa.fr)

Abstract

Stack inspection is a mechanism for programming secure applications in the presence of code

from various protection domains. Run-time checks of the call stack allow a method to obtain

information about the code that (directly or indirectly) invoked it in order to make access

control decisions. This mechanism is part of the security architecture of Java and the .NET

Common Language Runtime. A central problem with stack inspection is to determine to

what extent the local checks inserted into the code are sufficient to guarantee that a global

security property is enforced. A further problem is how such verification can be carried out in

an incremental fashion. Incremental analysis is important for avoiding re-analysis of library

code every time it is used, and permits the library developer to reason about the code without

knowing its context of deployment. We propose a technique for inferring interfaces for stack-

inspecting libraries in the form of secure calling context for methods. By a secure calling

context we mean a pre-condition on the call stack sufficient for guaranteeing that execution

of the method will not violate a given global property. The technique is a constraint-based

static program analysis implemented via fixed point iteration over an abstract domain of

linear temporal logic properties.

Capsule Review

This paper presents a novel static program analysis for reasoning about, and implementing,

stack-based security policies in programming languages. A general stack-based model is

considered, where security contexts are defined by the stack as in the JDK stack inpection

model, but checks other than JDK stack inspection may be defined. In addition to local checks,

global security policies may be specified, with the analysis ensuring that local checks enforce

global policies. The analysis is modular, in that properties of code that combines codebases

can be composed of separate analysis of the latter. These features render the analysis useful

and flexible, with a verification mechanism that significantly improves reliability of stack-based

security policies for programming languages.

1 Introduction

Programs that load code dynamically from sites of various degrees of trust pose

a challenge in terms of security. Access to resources (confidential data, computing

time, printers, etc.) must be controlled such that only code that is authorised to

perform a certain operation can do so. The programmer is faced with the task

of enforcing such security requirements by combining a number of programming

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

180 F. Besson et al.

language and operating system features such as strong typing, scope reduction of

variables, sandboxing, run-time checks on the state of execution, etc. The options are

varied and it may be difficult to estimate the consequences of a particular choice:

• has the desired level of security been attained?

• has security been implemented efficiently, without (too much) redundancy in

the protection mechanisms?

• can we certify the security so obtained in a formal manner?

In this article we present a static program analysis technique that can assist the

programmer in implementing access control using the stack inspection mechanism

found in the Java and the .NET security architecture.

Stack inspection has been proposed as a mechanism for programming access

control in secure applications in which code components from different protection

domains have to co-operate. It enables a component to obtain information about

the code that (directly or indirectly) invokes its methods by letting it inspect the call

stack of the run-time environment. Based on this information, the component can

decide whether or not the callers have the right to access a given resource. Stack

inspection plays a fundamental role in the security architecture of Java (Gong, 1997)

as well as that of .NET (LaMacchia et al., 2002).

To get an intuitive understanding of stack inspection we sketch how it is used in

Java. Assume that code is given a set of permissions (based on its origin, who signed

it, etc.), indicating whether the code has been allowed e.g. to write to and read from

files, to access peripherals, or to initiate communications with other hosts. The static

method checkPermission, when called with a particular permission as argument,

will inspect the call stack from top to bottom and check that every method on

the stack has that permission. If the check fails, a security exception is raised. The

only way a component without permission can use such protected resources is by

invoking methods that have been marked as privileged. Marking a method call as

privileged means that stack inspection will stop when it is encountered in the call

stack, essentially bestowing all its permissions to whoever called it.

As with other kinds of run-time checks a central problem with stack inspection is

the following:

Are the local checks inserted into the code sufficient to guarantee that a global security

property is enforced?

From a certification point of view, it is desirable to develop a program logic

with sound semantic foundations that allows to prove such properties formally.

Furthermore, stack inspection incurs a performance penalty, so the number of

inserted checks should be kept low in order not to slow down execution drastically.

The logic would also be useful for eliminating such redundant checks but we do not

pursue this issue further here (see Skalka & Smith (2000) and Pottier et al. (2001)).

The security properties that we consider here are properties on the control flow

of the program which can be expressed in terms of the execution stack. Examples

include access control properties like “method A never accesses resource B”, “method

A only accesses resource B if it holds permission P” or “all access to resource B

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 181

has first been cleared by authority C” where A, B and C are identifiable entities in

a code source. Certain control-flow properties such as “if A at some point calls B

then A cannot call C later on in the execution, and vice versa” are not taken into

account by our verification because they are not expressed as a global invariant of

the execution stacks.

To address the above-stated problem, verification mechanisms based on static

program analysis and model checking have been proposed (Besson et al., 2001;

Jensen et al., 1999). These verification techniques are whole-application analyses

that require the program as well as the libraries to be available for analysis. Having

to re-analyse library functions means that even small program modifications implies

a long re-analysis of the program. Also, it may be that the source code of a library

is not meant to be public; hence, it is necessary to have a means of describing

the part of its behaviour that is relevant for security. For these reasons, it is

desirable to render the verification technique of Besson et al. (2001) more modular

by developing an analysis that for each method calculates an interface describing

under what circumstances the method will execute safely. Such an interface will take

the form of a secure calling context that characterizes those call stacks for which we

are certain that the global security property is not violated if the method is invoked

with one of these stacks as current call stack.

This article describes a solution to this problem in the setting of closed libraries

whose methods can be called from outside but where the methods of the library only

can call other methods within the library – in particular, there is no provision for call-

backs via objects passed to library methods from outside. Making this restriction

implies that available control flow analysis techniques can be used to build the

control flow graph representation of the library on which we base our analysis. We

propose an analysis that will derive weakest pre-conditions to be attached to the

entry points of a library. Under these weakest preconditions, no security violation

will happen inside the library.

The technical contributions of the article can be summarised as follows:

• we provide a semantic definition of secure calling contexts based on an

operational semantics of control-flow graphs with security checks,

• we derive a constraint-based analysis that characterises the secure calling

context of a method described by a control flow graph,

• we show how secure calling contexts can be calculated effectively by symbolic

fixed point iteration over a lattice built from linear temporal logic formulae.

These contributions provide a theoretical framework for validating Java or CLR

libraries that use stack inspection. Additional language features have to be taken

into account in order to build a full-scale verification tool, in particular certain types

of data flow (e.g. strings for building file names or permissions) and the handling

of security exceptions. Finally, there are a number of security properties pertaining

to the execution history that stack inspection cannot enforce and that cannot be

validated within our framework. We return to this point in section 9.

The rest of the paper is organised as follows. Our program notion will be a

standard control-flow graph extended with check nodes indicating those program

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

182 F. Besson et al.

points where stack inspection is done. Section 2 formalises the notion of such

extended control flow graphs (CFGs) and defines their operational semantics.

Section 3 defines the specification language (a version of linear temporal logic) in

which the security properties are expressed. Section 4 introduces an inference system

that given a global security property will infer a collection of set constraints whose

solution is a valid set of secure calling contexts for the nodes of the CFG. These

set constraints are not immediately solvable, so we reinterpret them as constraints

over a lattice of temporal logic formulae (section 6) and show how an iterative

fixed point algorithm can be used to solve these constraints (section 7). Section 8

shows how the verification technique can be used to reason about the security of

an (idealized) bank account application. Section 9 compares with related work and

section 10 concludes and outlines further work.

A preliminary version of this article appeared in the PPDP 2002 proceedings

(Besson et al., 2002). In this article we have added certain proofs missing in Besson

et al. (2002), in particular the proof of exactness of our resolution method. Proofs

are now done using a proof technique based on the notion of transitions in contexts,

defined in section 2.2, We have also included a worked example in section 8 and

considerably expanded the section on related work to take into account the multitude

of new developments that have occurred in the rapidly developing area of verification

for stack inspection.

2 Program model

As an abstract program model we will use the particular kind of control-flow

graph (CFG) that was used by Jensen et al. (1999) to represent stack-inspecting

programs. This model is adequate for sequential procedural programming languages.

It abstracts away all data flow and focuses on security checks and control flow, i.e.

which procedures (or methods, or functions) are called during execution and in

what order. Nodes in a CFG correspond to program points and edges model the

flow of control. There are three types of nodes: call, return and check(γ). Call

nodes represent method calls in the program and return nodes signal the end of a

method. A check node check(γ) represents stack inspection with respect to property

γ: execution will proceed only if the current machine state satisfies γ. In the model

we have two types of edges in order to distinguish between two types of control

flow. Sequential composition of code is represented by a transfer edge (labeled with

TG) between nodes. Method calls are modeled by call edges (labeled with CG) that

bind call sites to their potential entry points.

Our model is also equipped with a labeling function AT that maps nodes to sets

of uninterpreted attributes ranged over Attr . This provides a simple way to formalize

security policies that assign each piece of code a protection domain specifying its

rights.

Definition 2.1

A control-flow graph (CFG) is a 6-tuple

G = (NO , IS ,EN ,TG ,CG ,AT)

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 183

n0 : call n3 : check(γ)

n1 : call n4 : return

n2 : return
TG :

CG :

AT :
n0, n1 �→ {System}
n2 �→ {System ,Crit}
n3, n4 �→ {Manager}

γ = F(Accountant) ∧ F(Manager)

Fig. 1. A control flow graph.

where NO ⊆ Nodes is the set of nodes, EN ⊆ NO is the set of nodes designated as

entry points, and IS maps a node to its type. Formally,

IS : NO → {call, return, check(γ)}
EN : P(NO)

TG : NO → P(NO)

CG : NO → P(NO)

AT : NO → P(Attr)

Control-flow graphs are subject to the following well-formedness constraints. All

check nodes and call nodes must be sequentially followed by another node. No code

can follow sequentially after a return node. All calls must have at least one outgoing

call edge.

Example 2.2

We will use the CFG in Figure 1 as our running example. The unique entry node n0

is indicated by an arrow. Furthermore, the check node is labeled by a property

γ = F(Accountant) ∧ F(Manager)

whose precise meaning will be explained in section 3. Informally, system code (nodes

n0,n1,n2) intends to execute a critical operation in node n2. The global security

property to be enforced requires that this operation should only be executed if two

actors Manager and Accountant have given their consent. To enforce this property,

the check(γ) node performs a dynamic stack inspection. This inspection checks that

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

184 F. Besson et al.

there will be a node with the Accountant attribute and a node with the Manager

attribute in the call stack when control reaches the check(γ) node.

2.1 Construction of a CFG

Representing a program by its control flow graph is a standard technique. It is not

the main issue of this paper so we only briefly review the various analyses available

for this purpose. To obtain the CFG corresponding to an object-oriented program, its

code is transformed into basic blocks and everything but methods calls is abstracted

away. The construction of the call edges corresponding to a call X.foo() in the

program is based on a static data flow analysis that calculates an over-approximation

of the classes of the objects that are being stored in variable X. Precision of the graph

depends on this approximation (Grove et al., 1997). The simplest approximations

are limited to syntactic scans of the class hierarchy to find classes defining a method

called foo – possibly improved by taking into account what classes are actually

instantiated in the program (Bacon & Sweeney, 1996). A constraint based data

flow analysis, as proposed by Palsberg & Schwartzbach (1994) takes data flow into

account. In its basic formulation, this analysis ignores the sequential control flow of

the program since it only calculates one global approximation for each variable. Its

precision can be further improved by distinguishing between different occurrences

of a variable, rendering the analysis flow-sensitive as proposed by Pande & Ryder

(1996). This is the only place in the analysis where data flow is taken into account.

In the remainder of the paper we will work on a representation of the program that

was built using data flow information but which only retains information about the

control flow.

2.2 Semantics of a CFG

In previous works (Besson et al., 2001), the operational semantics of a CFG was

defined by a transition relation showing how the call stack evolves at each step in

the execution of the program. The semantics is parameterised on the satisfaction

relation � of the logic in which the check properties are expressed. The logic of

interest here is linear temporal logic that will be formally presented in section 3.

With Stacks = Nodes∗ the set of finite sequences of nodes from Nodes , the

transition relation � ⊆ Stacks × Stacks is � = �check ∪ �call ∪ �return defined by the

following rules where s ∈ Stacks and n, n′, m ∈ NO . When writing stacks as

sequences we adopt the convention that stacks grow from left to right. Hence, in

the stack s = sn: . . . :si: . . . :s0, the node sn is the initial calling node, s0 the current

program point and si is its (i+ 1)st element from the top. Furthermore, we introduce

the notation si = sn: . . . :si to denote the stack from which the i top elements have

been removed, and |s| = n+ 1 to denote its length.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 185

Definition 2.3 (Small-step operational semantics)

�check

IS (n) = check(γ)

n
TG→ n′

s:n � γ

s:n �check s:n′
�call

IS (n) = call

n
CG→ m

s:n �call s:n:m

�return

IS (m) = return

n
TG→ n′

s:n:m �return s:n′

Notice that there is no transition for a check(γ) node if the property γ is not satisfied.

Thus we model failure of a check by stopping the execution. This is a simplification

with respect to what happens in the JVM and the CLR where a security exception

is thrown. This behaviour can be taken into account (see section 9 for related work

that deals with this issue) but we have chosen not to do so since a proper treatment

of exceptions would complicate the presentation considerably.

The following relation
[ctx]−−→ describes the behaviour of a piece of code in a

particular calling context (call stack) ctx . It is a convenient means for characterising

all those states (i.e., call stacks) that are reachable within a specific method

invocation.

Definition 2.4 (Transitions in context)

ctx:s � ctx:s′

|s|>0 |s′|>0

ctx:s
[ctx]−−→ ctx:s′

We furthermore define the relation
[ctx]−−→+ to be the standard transitive (but not

necessarily reflexive) closure of the relation
[ctx]−−→. The relation

[ctx]−−→∗ is a transitive,

partially reflexive closure of
[ctx]−−→ that relates a state s to itself only if s has ctx as a

prefix. This excludes all states reachable outside the particular call identified by ctx .

These relations are defined inductively as follows.

Definition 2.5 (Reachable states in context)

s
[ctx]−−→ s′ s′

[ctx]−−→∗s′′

s
[ctx]−−→+s′′

s = ctx:s′ |s′|>0

s
[ctx]−−→∗s

s
[ctx]−−→+s′

s
[ctx]−−→∗s′

We also define
[ctx]−−→i as the composition of exactly i

[ctx]−−→ relations, and
[ctx]−−→i..j

as the relation between some stacks s and s′ such that ∃(k:[i..j]).s
[ctx]−−→ks′.

A first property of
[ctx]−−→ is that it is strictly equivalent to � if ctx is ε, the zero

length stack. In particular, this means that all reachable states from an execution

beginning at the main node n0 is in relation with the stack n0:

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

186 F. Besson et al.

Property 2.6

∀(s:Stacks). n0
[ε]−→∗s ⇔ n0 �

∗ s

Another property is that any transition that holds in a given context ctx :ctx ′ also

holds for any of its prefixes ctx .

Property 2.7

∀(s, s′, ctx , ctx ′:Stacks).

ctx :ctx ′:s
[ctx :ctx ′]−−−−−→ ctx :ctx ′:s′ ⇒ ctx :ctx ′:s

[ctx]−−→ ctx :ctx ′:s′

Both properties can be proved by inspection of the rules; we omit the details.

2.3 Collecting semantics

Our main goal is to ensure safety properties that are invariant properties of the

reachable stacks. To this end, it suffices and is more convenient to work with a

more abstract collecting semantics (Cousot & Cousot, 1977a; Nielson et al., 1999)

that collects the set of reachable states in a given context. This is exactly what the

relations of “reachable states in context” from Definition 2.5 do. We can define

collecting semantics as follows:

{|s:n|}
i

= {s′ | s:n [s]−→is′} {|s:n|}
i..j

= {s′ | s:n [s]−→i..j s′}
{|s:n|}

+

= {s′ | s:n [s]−→+s′} {|s:n|}
∗

= {s′ | s:n [s]−→∗s′}

By definition of the reachable states in context s, the stacks collected by the semantics

are all prefixed by s. This means that the collection process will happen only within

the method that the node n belongs to and the methods that are called from n

or other nodes reachable sequentially from n. As we show in the next section, this

limitation of the scope of the semantics is well adapted to the definition of a notion

of safety at library level, independently of the code that uses it.

When applied to a stack reduced to a single node (entry point of a program), our

contextual collecting semantics reduces to a classical collecting semantics:

Property 2.8

∀(s:Stacks , n0:NO). n0 �
∗ s ⇔ s ∈ {|n0|}

∗

This semantics also has some good properties in terms of compositionality.

Property 2.9

∀(s, s′:Stacks , i, j, k, l:�).

s′ ∈ {|s|}
i..j

⇒ {|s′|}
k..l

⊆ {|s|}
i+k..j+l

In particular, all elements that can be collected from a stack s′ are also reachable

from a stack s if s′ is reachable from s, i.e. s′ ∈ {|s|}
+

⇒ {|s′|}
∗
⊆ {|s|}

+

.

The following three lemmas make explicit the set of stacks that can be collected

by this semantics, depending of the type of a node n.

For a return node, as expected, we can’t collect anything.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 187

Lemma 2.10

∀(s:Stacks , n:NO , i:�). if IS (n) = return, then

{|s:n|}
1..i

= ∅

Proof

The proof is immediate since there is no rule for a derivation from a return node

with context s. �

For a check node, we can only collect stacks reachable from the nodes that follow

n in sequence, and this only if the check formula is satisfied.

Lemma 2.11

∀(s, s′:Stacks , n:NO , i:�). if IS (n) = check(γ), then

s′ ∈ {|s:n|}
1..i

iff
∧{

s:n � γ

∃(n′:NO).n
TG→ n′ ∧ s′ ∈ {|s:n′|}

0..i−1

Proof

The left-to-right implication follows from the fact that �check is the only semantics

rule which applies for a check node. Hence, a derivation s:n
[s]−→1..is′ is of the form

s:n
[s]−→ s:n′

[s]−→0..i−1s′ and only exists if s:n � γ and n
TG→ n′.

The right-to-left implication is also immediate because �check can always be applied

under this condition. �

Finally, for a call node, the reachable stacks in context s are those reachable in

the called methods together with those reachable after the return from one of these

calls. To establish this we prove two lemmas. Lemma 2.12 describes the possible

behaviour of a stack in a given context after one or several method calls. This rather

technical lemma is used to prove the following Lemma 2.13 which is a reformulation

of Lemma 2.12 in terms of the collecting semantics. Readers might want to skip

directly to the more readable Lemma 2.13.

Lemma 2.12

∀(i:�, s, s′, s′′:Stacks, n, m:NO).

s:n:s′:m
[s]−→is′′ ⇔

∨
∣∣∣∣∣∣∣∣∣∣∣∣

s:n:s′:m
[s:n]−−→is′′ (H1)

∃(r, n′:NO , j, k, l:�).∧ ∣∣∣∣∣ IS (r) = return ∧ n TG→ n′ ∧ i= j+ k+ l

s:n:s′:m
[s:n]−−→js:n:s′:r

[s]−→ks:n′
[s]−→ls′′

(H2)

Proof

Proof of this lemma 2.12 for the left-right implication is obvious because of property

2.7. For the right-left implication, the proof is by induction on the derivation lenght.

We call second segment the s′ part of the stack.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

188 F. Besson et al.

• Base case: s:n:s′:m
[s]−→0s′′ is only verified if s′′ = s:n:s′:m, which implies the

H1 alternative of the Lemma.

• Inductive case: A i+1 steps long derivation is of this form:

s:n:s′:m
[s]−→ s1

[s]−→is′′

One step of the proof is by case on the type of the node m:

— IS (n)=check(γ): By definition of �check , there exists a node m′ such that

s1 = s:n:s′:m′. Because the derivation exists also in context s:n, the property

hold by induction.

— IS (n)=call: By definition of �call , there exists a node m′ such that

s1 = s:n:s′:m:m′. We use the induction hypothesis with s′:m being the

stack second segment.

If H1 holds at step i, then it also holds at step i+1 (s:n:s′:m
[s:n]−−→

s:n:s′:m:m′ [s:n]−−→is′′).

If H2 holds at step i, then there exists a node r such that IS (r)=return

and a node n′ such that n
TG→ n′ and a derivation

s:n:s′:m:m′ [s:n]−−→js:n:s′:m:r
[s]−→ks:n′

[s]−→ls′′.

Stack lengths indicate that k>0. Consequently, and by �return definition,

there exists a node m′′ such that m
TG→ m′′ and the full derivation can be

rewritten:

s:n:s′:m
[s:n]−−→j+2s:n:s′:m′′ [s]−→k−1+ls′′

We can now apply again our induction hypothesis on the second part, and

the property immediatly follows in both alternatives.

— IS (n)=return: If s′ is an empty stack, then there exists a node n′ such that

n
TG→ n′, and s1 = s:n′. The full derivation is s:n:m

[s]−→ s:n′
[s]−→is′′, which

match the H2 alternative (j= 0 and k= 1).

If s′ is not empty, then it is of form s2:m2, and there exists a node

m′
2 such that m2

TG→ m′
2, and the first derivation step is s:n:s2:m2:m

[s]−→
s:n:s2:m

′
2

[s]−→is′′. We can again use our induction hypothesis on the next i

steps (s:n:s2:m
′
2

[s]−→is′′). If H1 holds, then it also holds on the full derivation.

If it is H2 which is verified, then there exist a return node r and a node n′

such that n
TG→ n′, and a derivation

s:n:s2:m
′
2

[s:n]−−→js:n:s2:r
[s]−→ks:n′

[s]−→ls′′.

Hence, H2 is also verified by the full derivation:

s:n:s′:m
[s:n]−−→0s:n:s′:m

[s]−→j+k+1s:n′
[s]−→ls′′.

�

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 189

Lemma 2.13

∀(s, s′:Stacks , n:NO , i:�). if IS (n) = call, then :

s′ ∈ {|s:n|}
1..i

iff ∃(m:NO).

n
CG→ m ∧

∨



s′ ∈ {|s:n:m|}
0..i−1

∧



∃(k < i, r:NO).

IS (r) = return ∧ s:n:r ∈ {|s:n:m|}
k

∃(n′:NO).n
TG→ n′ ∧ s′ ∈ {|s:n′|}

0..i−k−1

Proof

The left-right implication comes from the fact that �call is the only semantics rule

which applies for a call node. Hence, a derivation s:n
[s]−→ 1..is′ is of the form

s:n
[s]−→ s:n:m

[s]−→0..i−1s′ and only exists if n
CG→ m. Application of Lemma 2.12 to

s:n:m let us conclude.

For the right-left implication, the proof is immediate since �call rule can be applied

for any node m provided n
TG→ m. again, we conclude by applying Lemma 2.12 to

s:n:m. �

The next lemma states that if a transfer transition is possible from a given stack

s:n, then transfer transitions are also possible through all other
TG→ edge of the same

origin n. This is a consequence of the non-determinism in our program model.

Lemma 2.14

∀(i:�+, s:Stacks , n, n′, n′′:NO).

s:n′ ∈ {|s:n|}
1..i

∧ n TG→ n′′ ⇒ s:n′′ ∈ {|s:n|}
1..i

Proof

The proof is by case analysis of the type of node n and relies on the above three

lemmas.

• IS (n) = return: the lemma is vacuously true.

• IS (n) = check(γ): by lemma 2.11, s:n′ ∈ {|s:n|}
1..i

⇒ s � γ. Since s:n′′ ∈
{|s:n′′|}

0..i−1

, we can use this lemma again to conclude that s:n′′ ∈ {|s:n|}
1..i

.

• IS (n) = call: by lemma 2.13, and because there is no j such that s:n′ ∈
{|s:n:m|}

0..j

, we have s:n′ ∈ {|s:n|}
1..i

⇒ ∃(k<i, r:NO).IS (r) = return ∧ s:n:r ∈
{|s:n:m|}

k

. Since s:n′′ ∈ {|s:n′′|}
0..i−1

, we can use this lemma again to conclude

that s:n′′ ∈ {|s:n|}
1..i

.

�

3 Security properties

In this section we define formally the set of security properties that we aim at

verifying. These are invariant properties of the form “all call stacks satisfy a given

property φ”. The stack property φ is a property on finite sequences of nodes and a

number of formalisms for expressing such properties are available. We have chosen

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

190 F. Besson et al.

linear temporal logic (Emerson, 1990), LTL, that will be interpreted over the set

Stacks of finite sequences of nodes that correspond to call stacks. There are several

reasons for choosing this logic. First, it is a standard, well-studied formalism of

verification. Second, this logic is expressive enough to express both:

• Check properties that specify local verifications (the properties in the check

nodes of the CFGs).

• Security properties that specify global invariants of the execution of the

program. We give a couple of examples in Section 3.1.

It can be argued that LTL in certain cases is too expressive and that a fragment (e.g.

without nesting of temporal operators) would suffice. While this might be a fruitful

topic to investigate, we have chosen to stick with the full formalism to develop the

more general theory.

LTL formulae are inductively defined over a set of attributes Attr . In addition to

the propositional logic operators (∨, ¬) we introduce the temporal operators Strong

Next (X∃) and Strong Until (U∃). The set of properties is defined by:

φ ::= True | p | ¬φ | φ ∨ φ | X∃φ | φU∃φ (p ∈ Attr)

The semantics of LTL is expressed by the satisfaction relation �: s � φ stands

for “the call stack s is a model of φ.” Formulae are interpreted from the top of the

stack, i.e. the first element taken into account by a formula evaluation is the node

that was last pushed on the stack. Recall that stacks grow from left to right. With

the labelling function AT that gives the attributes of each node n, the semantics of

the core LTL operators is defined as follows:

s � True

s � p iff |s| > 0 and p ∈ AT (s0)

s � ¬φ iff not (s � φ)

s � φ1 ∨ φ2 iff s � φ1 or s � φ2

s � X∃φ iff |s| > 1 and s1 � φ
s � φ1U∃φ2 iff ∃(k:[0..|s| − 1]). sk � φ2

and ∀(i:[0..k − 1]). si � φ1

Informally, a stack always satisfies True and satisfies an attribute p if and only if p

is part of the attributes of the top element of the stack. Operators ¬ and ∨ have

their usual meanings. A stack satisfies X∃φ if the stack deprived from its top is

non-empty and satisfies φ. Finally, a φ1U∃φ2 formula is satisfied by stacks such that

their exists a sub-stack modelling φ2 and all the previous sub-stacks model φ1.

From the core syntax, usual propositional syntactic sugar (False,∧,⇒) can be

defined, together with the weak variants of the temporal operator (X∀ and U∀),

some universal and existential modalities (G and F) and an emptiness property (ε):

Eventually : Fφ ≡ TrueU∃φ

Globally : Gφ ≡ ¬F¬φ
Weak Until : φ1U∀φ2 ≡ φ1U∃φ2 ∨ Gφ2

Weak Next : X∀φ ≡ ¬X∃¬φ
Empty : ε ≡ ¬(TrueU∃True)

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 191

We can informally explain the semantics of the syntactic sugar: F, G and U∀ have

their usual meanings, i.e. Fφ stands for “φ is satisfied at least one time”, Gφ for “φ

is always satisfied”, and φ1U∀φ2 for “φ1 is either always satisfied or satisfied until

φ2 is”. The Weak Next (X∀) is a Next variant which is always satisfied by stacks of

one or zero element, and ε is only satisfied by the empty stack.

Finally, we introduce the concretisation function

concr : LTL → P(Stacks)

concr(φ) = {s | s � φ}

that to an LTL formula assigns the set of stacks that satisfies that formula.

3.1 Examples of properties

Check properties are expressed as LTL terms. As shown by the �check rule, the

execution stops if the property does not hold for the current call stack. This

framework can be instantiated to the Java stack inspection mechanism by only

allowing check nodes to be labelled by an instance of the JDK formula defined by

JDK(perm) = permU∀ (perm ∧ Priv)

which is a direct LTL formalisation of the property “all nodes must have the

permission perm until a privileged node with the perm permission is encountered”

(see (Besson et al., 2001) for a detailed discussion).

A security property is an invariant over call stacks. We say that a program is

secure, with respect to a given security property ϕ, if and only if all the reachable

call stacks, starting execution at an entry node n0, do model ϕ. As an example, we

might want to verify that critical program points, i.e. nodes with the Crit attribute,

can only be reached from code with a given permission P . This is expressed by the

formula

Crit ⇒ G(P).

For optimisation purposes, we might want to eliminate redundant stack inspections

(i.e., stack inspections that always succeed). To prove that a check node n labelled

by a property φ can be suppressed, the global invariant to verify is

N ⇒ φ

where N is an attribute that identifies n.

Example 3.1

We return to our running example (Figure 1) and formally state a security property.

The code is deemed secured if the critical action Crit in node n2 can only be executed

with the agreement of both Manager and Accountant code. Formally, we require the

security property:

Crit⇒ F(Manager) ∧ F(Accountant)

If the top element of the call stack is a critical node then there exists in the stack

nodes with the attributes Manager and Accountant . In order to enforce this property,

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

192 F. Besson et al.

node n3 performs a dynamic check:

F(Manager) ∧ F(Accountant)

There are calling contexts for which the code from Figure 1 is not secure with respect

to the global property defined in Example 3.1. To exhibit a security violation, it

suffices to consider an execution trace starting with a call stack n:n0 where n has the

Accountant attribute.

n:n0 � n:n0:n3 � n:n0:n4 � n:n1 � n:n1:n3 � n:n1:n4 � n:n2

This execution passes the dynamic check in node n3 twice (successfully) and finally

reaches the critical node n2 with the call stack n:n2. This stack does not model the

property: none of the nodes has the Manager attribute. On the other hand, the code

is obviously secure for all calling contexts for which a node has both Accountant

and Manager attributes. An obvious question is whether this requirement is stronger

than needed. Our forthcoming analysis will allow to answer this in the affirmative

(Example 7.8) because it is specifically designed with the aim of inferring the most

liberal pre-condition that prevents security violations.

4 Secure calling contexts

In this and the following section we develop a constraint system that for each node

in a given CFG specifies secure calling contexts, relative to a global security property.

A secure calling context for a node n is a stack s such that all executions starting

from s:n in the sub-graph rooted at n will respect the global security property. The

set of secure calling contexts for a node n relative to a global security property ϕ is

formalized by the function sec : NO → P(Stacks).

secn = {s | {|s:n|}
∗
⊆ concr(ϕ)}

where concr(ϕ) denotes the set of stacks satisfying ϕ (cf. section 3).

The stack inspection mechanism will stop execution if the stack does not satisfy

the property labelling a check node. To take this effect of stack inspection into

account, we introduce two auxilliary properties of nodes: trans and returns . The

trans predicate characterises those calling contexts in which execution of node n may

transit to the nodes following sequentially in the CFG. Thus, for a check node, trans

contains all the stacks that pass stack inspection. Formally, trans : NO → P(Stacks)

is defined by:

transn = {s | ∃(n′:NO). s:n′ ∈ {|s:n|}
+

}
Similarly, the returns predicate characterises those calling contexts in which a

method call may return (because there is an execution in which all stack inspections

succeed). This predicate serves to propagate the effect of stack inspection from called

methods to the caller. Informally, it states that if a return node r is reachable from

a given node n with a given stack s then this stack belongs to returns(n). Formally,

returns : NO → P(Stacks) is given by:

returnsn = {s | ∃(r:NO).IS (r) = return ∧ s:r ∈ {|s:n|}
∗
}

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 193

We observe that it is always safe to discard elements from secure calling contexts

in sec. Indeed, it is a conservative approximation only to keep a subset of those

contexts that do not trigger a security violation. Unlike sec, elements cannot be

removed from trans and returns: this would mean forgetting about certain execution

paths and, perhaps, the execution path that made the predicate valid. In this case,

it is a conservative to consider a superset of those calling contexts that pass or

return from a node. Thus, in general, we are interested in finding the greatest set of

secure calling contexts and the smallest sets that pass or return from a node. This is

reflected in the following, where we propose a method for finding such sets based on

calculating least fixed points over lattices. These lattices will have the same carrier

set, P(Stacks), but will be ordered by subset inclusion or by reverse subset inclusion

depending on whether we are looking for the greatest or the smallest set.

5 Constraints for secure calling contexts

Having formalised the notion of secure calling context, the goal is now to show how

to infer such contexts for a given CFG. We do this in two steps.

1. We show how to derive a system of set contraints �G�
C

from a CFG G and

prove that any solution to these constraints will provide a set of secure calling

contexts for each node in G.

2. The system �G�
C

is formulated using an extensional representation of sets

which may be infinite and thus impossible to compute with directly. We

therefore derive an abstract version �G�
#

of the constraints that can be solved

over an abstract domain of approximate, intensional representations of sets,

which in our case will be formulae of LTL.

We stress that this division of the analysis into two phases is done in order to ease

the proof of correctness (which now just operates on sets) and in order not to tie

the analysis to a particular representation of sets such as the LTL representation

given in section 6.

For each node n in a given CFG G we introduce a triple of sets, (ρn, σn, τn) ∈
P(Stacks)3 and generate a number of set constraints. The intention that the least

solution to the set of constraints generated by a CFG is such that ρn = returnsn,

σn = secn and τn = transn for all nodes n in the CFG.

In addition to the standard set-theoretic operators ∪ and ∩, the constraints are

constructed using a complement operator such that S = Stacks \ S . We also use an

projection operator δn, whose effect on a set of stacks is to select those that have n

as top element and remove this top element from the stacks. Formally, we have a

family of operators, one for each node:

Definition 5.1

Let n ∈ NO be a node. Define δn : P(Stacks) → P(Stacks) by

δn(S) = {s | s:n ∈ S}

The system of set constraints �G�
C

generated for a CFG G is defined inductively

by the set of rules given in Figure 2. Notice that a variable can be constrained

(i.e., appear to the left) in several constraints. It is thus the joint effect of these

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

194 F. Besson et al.

τcheck
IS (n) = check(γ)

τn ⊇ δn(concr(γ))
τcall

n
CG→ m

τn ⊇ δn(ρm)

ρtransfer
n

TG→ n′

ρn ⊇ (τn ∩ ρn′)
ρreturn

IS (n) = return

ρn ⊇ Stacks

σglobal
σn ⊆ δn(concr(ϕ))

σcall
n

CG→ m

σn ⊆ δn(σm)

σtransfer
n

TG→ n′

σn ⊆ τn ∪ σn′

Fig. 2. Syntax-directed definition of the set constraints �G�
C

.

constraints that determines the value of the variable. Also, the variables are

constrained differently: ρ and τ are over-approximations, because we can safely

consider more control flows than the actual ones, whereas σ must be an under-

approximation that only contains secure calling context, at the price of possibly

missing some.

We here provide an informal justification of the rules. The first one, τcheck , is a

direct application of the δ operator: if a stack s leads to a check(γ) node n, then

execution will continue if s:n satisfies γ, i.e. if s ∈ δn(concr(γ)). Similarly, rule τcall

states that execution can continue through a call node n if the called method m

returns. Rule ρtransfer expresses that we can reach a return node from node n if

control can transfer to a successor node n′ from which we can reach a return node.

The rule σglobal ensures that for a stack s to be a secure calling context for a node

n, s:n must at least satisfy the global security invariant ϕ. The rule σcall deals with

the case where a node n is a call to a method starting with node m. It uses the δ

projection to express that executions starting with call stack s at node n are secure

only if the executions emanating from node m with stack s:n are also secure. Finally,

the rule σtransfer formalises that when control can transfer sequentially from n to

n′, an execution starting from n with stack s is secure only if either the execution

starting from n′ with the same stack is also secure or the execution never tranfers

from n to n′ with this stack (i.e. s belongs to τn).

Example 5.2

Continuing our running example, the nodes n3 and n4 from Figure 1 give rise to the

following set constraints.

τn3
⊇ δn3

(concr(F(Accountant) ∧ F(Manager)))

τn4
⊇ ∅

ρn3
⊇ τn3

∩ ρn4

ρn4
⊇ Stacks

σn3
⊆ δn3

(concr(Crit ⇒ F(Accountant) ∧ F(Manager)))

σn3
⊆ τn3

∪ σn4

σn4
⊆ δn4

(concr(Crit ⇒ F(Accountant) ∧ F(Manager)))

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 195

5.1 Existence of a solution

A solution to a system of constraints �G�
C

is a triple

(ρ, σ, τ) ∈ (NO → P(Stacks))3

of functions. In the following we will use σn to denote both a variable and the value

of that variable in a solution (ρ, σ, τ). The existence of a solution to a constraint

system �G�
C

is argued in the standard way (Cousot & Cousot, 1995) by interpreting

the constraints as monotone operators over lattices of subsets and then using the

Knaster-Tarski fixed point theorem to assert the existence of a least fixed point and

hence a solution to the constraints. We first make the following observation:

Observation 5.3

The projection operator δn is monotone over the lattice (P(Stacks),⊆) and, hence,

also over its dual (P(Stacks),⊇).

As argued in section 4, we are interested in the smallest sets of stacks satisfying

the trans and return predicates and in the greatest set of stacks satisfying the sec

predicate. To be able to characterise the desired information as the least solution to

a set of lattice constraints, we define the following lattice of solutions.

Definition 5.4

The lattice (RST ,�RST) of solutions is defined by

RST = (NO → P(Stacks))3,

(ρ1, σ1, τ1) �RST (ρ2, σ2, τ2) iff ∀(n:NO).
∧


ρ1
n ⊆ ρ2

n

σ1
n ⊇ σ2

n

τ1n ⊆ τ2n

Lemma 5.5

Let c ∈ �G�
C

be a constraint whose right-hand side is an expression e in the variables

ρ, σ, τ. Then, e, considered as an operator e : RST → P(Stacks), is monotone.

Proof

Most right-hand sides are either constants or use operators like δn which are

monotone. The only non-trivial case are the constraints of the form σn ⊇ τn ∪ σn′
generated by the rule σtransfer . Assume (ρ1, σ1, τ1) �RST (ρ2, σ2, τ2). Then, σ1

n ⊇ σ2
n

and τ1n ⊆ τ2n, so

τ1n ∪ σ1
n′ ⊇ τ2n ∪ σ2

n′

which implies monotonicity since the σ are ordered by ⊇. �

It follows that the system �G�
C

has a least solution with respect to the ordering

�RST . As discussed in Section 4, the least solution is also the most informative in

that it will be the largest among all the secure calling context. In Section 6 we use

abstract interpretation to derive an abstract system of constraints whose solutions

are safe, computable approximations of the least solution to �G�
C

.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

196 F. Besson et al.

5.2 Correctness

The remainder of this section is devoted to prove the correctness of the constraint

system in Figure 2.

Theorem 5.6

Let G be a CFG and let (ρ, σ, τ) be a solution to �G�
C

. Then, for all nodes n ∈ NO ,

• σn only contains secure calling context (i.e., σn ⊆ secn);

• τn contains an over-approximations of the call contexts that pass n (i.e.,

τn ⊇ transn);

• ρn contains an over-approximations of the call contexts that reach a return of

the method n belongs to (i.e., ρn ⊇ returnsn).

In particular, correctness implies that when analysing a full program, safety of

its execution can be checked by verifying that the empty stack is a secure calling

context of its main entry node:

ε ∈ σn ⇒ � ∃(s:Stacks).n0 �
∗ s ∧ s �� ϕ

The proofs are by induction over the computation length of the collecting

semantics. To make the induction argument explicit, we express directly the trans ,

returns and sec predicates in terms of the collecting semantics. This transformation

is a direct consequence of the property:

s ∈ {|s′|}
+

iff ∃(i:�). s ∈ {|s′|}
i

Using predicate logic identities, we obtain equivalent definitions of the trans , returns

and sec predicates:

Property 5.7

secn =
⋂
i∈�{s | σi(s, n)}

transn =
⋃
i∈�{s | τi(s, n)}

returnsn =
⋃
i∈�{s | ρi(s, n)}

where σi, τi and ρi : Stacks × NO → Bool are predicates defined as follows:

σi(s, n) = {|s:n|}
0..i

⊆ concr(ϕ)

τi(s, n) = ∃(n′:NO). s:n′ ∈ {|s:n|}
1..i

ρi(s, n) = ∃(r:NO). s:r ∈ {|s:n|}
0..i

and IS (r) = return

Correctness proofs will be carried out with respect to these alternative definitions

of the trans , returns and sec predicates. Since the ρn and τn are defined by mutual

recursion but without using σn we first prove correctness for them. We then prove

correctness for σn using that of τn.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 197

Lemma 5.8

Let G be a CFG and let (ρ, σ, τ) be a solution to �G�
C

. For all integer i ∈ �, node n

and stack s, the following holds:

ρi(s, n) ⇒ s ∈ ρn
τi(s, n) ⇒ s ∈ τn

Proof

The proof is by induction over the collecting semantics computation step i.

Base case: i = 0

• {|s:n|}
1..0

is empty. As a result, τ0(s, n) cannot be satisfied and the τ part of the

lemma is vacuously true.

• {|s:n|}
0..0

is the singleton {s:n}. Hence, ρ0(s, n) ⇒ IS (n) = return. Now, by

ρreturn , we have s ∈ ρn, therefore the ρ part of the lemma is verified.

Inductive step As an induction hypothesis, we assume that the lemma is verified up

to a given i:

∀(n:NO , s:Stacks , j�i).
∧ {

ρj(s, n) ⇒ s ∈ ρn
τj(s, n) ⇒ s ∈ τn

To prove the property for the rank i+1, we assume τi+1(s, n) (resp. ρi+1), and prove

s ∈ τn (resp. s ∈ ρn).
In case n is a return node, the proof is immediate by Lemma 2.10 which raises

a contradiction (resp. by the ρreturn rule which always implies s ∈ ρn).
For the two other types of nodes, a proof step will consist in proving the existence

of a stack s:n′ ∈ {|s:n|}
1..i+1

(resp. s:r ∈ {|s:n|}
0..i+1

where IS (r) = return). Depending

on the type of nodes, this step will rely on Lemmas 2.11 or 2.13.

We consider each case in turn:

• IS (n) = check(γ):

— τ: According to Lemma 2.11, our assumption on τi+1(s, n) implies s ∈
δn(concr(γ)). By τcheck , it immediatly follows that s ∈ τn.

— ρ: By assuming ρi+1(s, n), we assume that ∃(r:NO).IS (r)=return such that

s:r is reachable from s:n in less than i+1 steps. According to Lemma 2.11,

and because n is not a return node, this also implies that ∃(n′:NO).n
TG→ n′

such that s:r ∈ {|s:n′|}
0..i

. By induction hypothesis, it follows that s ∈ ρ′n.

Since the same lemma and τcheck also implies that s ∈ τn, the ρtransfer rule

allows to us to conclude that s ∈ ρn.
• IS (n) = call:

— τ: Our assumption on τi+1(s, n) implies that we can use Lemma 2.13 in its

second alternative (since � ∃s:n′ ∈ {|s:n:m|}
0..i

). Hence, for some node m such

that n
CG→ m, ∃(k<i, r:NO).IS (r) = return ∧ s:n:r ∈ {|s:n:m|}

k

. By induction

hypothesis, this implies s:n ∈ ρm, and by δ definition, s ∈ δnρm. Rule τcall

allows use to conclude.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

198 F. Besson et al.

— ρ: Again, we use Lemma 2.13 in its second alternative to prove that s ∈ τn,
and that ∃(n′:NO).n

TG→ n′∧ s:r ∈ {|s:n′|}
0..i−k−1

. By induction hypothesis, this

gives us s ∈ ρ′n, and we conclude with rule ρtransfer .

�

Lemma 5.9

Let G be a CFG and let (ρ, σ, τ) be a solution to �G�
C

. For all integer i, node n and

stack s, the following holds:

s ∈ σn ⇒ σi(s, n)

Proof

The proof is by induction over i.

Base case: i = 0 We suppose that s ∈ σn and prove σ0(s, n). Since {|s:n|}
0..0

= {s:n}, it

amounts to show that {s:n} ⊆ concr(ϕ). Now, by σglobal , σn ⊆ δn(ϕ). It follows that

s:n ∈ concr(ϕ) i.e., {s:n} ⊆ concr(ϕ) and the lemma is verified.

Inductive step As an induction hypothesis, we assume that the lemma is verified up

to a given i: ∀(n:NO , s:Stacks , j� i).

s ∈ σn ⇒ σj(s, n)

To prove the property for rank i+ 1, we assume that s ∈ σn and prove σi+1(n, s).

The proof is case analysis over the type of the n node.

In case n is a return node, the proof is immediate since Lemma 2.10 reduce it to

the base case.

For the two other types of nodes, a proof step will consist in proving that all

stacks s′ ∈ {|s:n|}
1..i+1

are in concr(ϕ). Depending on the type of nodes, this step will

rely on Lemmas 2.11 or 2.13.

• IS (n) = check According to Lemma 2.11, all stacks from {|s:n|}
1..i+1

belong to

{|s:n′|}
0..i

for some n′ such that n′
TG→ n. By induction hypothesis, this stacks are

in concr(ϕ) if s ∈ σ′n. And this is ensured by rule σtransfer .

• IS (n) = call According to Lemma 2.13, all stacks from {|s:n|}
1..i+1

belong to

either {|s:n:m|}
0..i

for some m such that n
CG→ m, or to {|s:n′|}

0..i−k−1

for some n′

such that n′
TG→ n.

In the first case, induction hypothesis state that this stacks are in concr(ϕ) if

s:n ∈ σm. This is ensured by the σcall rule and δ definition.

In the second case, σtransfer rule and τn correction imply that s ∈ σ′n. Hence we

can conclude by induction hypothesis.

5.3 Completeness

In the following we prove that our analysis is also complete, meaning that if a stack

s is not recognized as being a secure calling stack for a node n (s �∈ σn), then there

exist some illegal stacks reachable from s:n, that is ∃(s′:Stacks).s′ ∈ {|s:n|}
∗
∧ s′ �� ϕ.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 199

Theorem 5.10

Let G be a CFG and let (ρ, σ, τ) be the smallest solution to �G�
C

. Then, for all nodes

n ∈ NO , all secure calling contexts are subsets of σn:

∀(n:NO , s:Stacks).s ∈ secn ⇒ s ∈ σn
In particular, completeness implies that if execution of a full program is safe, then

the empty stack is recognized as a secure calling context for its main entry node:

ε ∈ σn ⇐ � ∃(s:Stacks).n0 �
∗ s ∧ s �� ϕ

As in the case of the correctness theorem, the completeness of σ relies on a similar

property for τ and ρ. Hence, will prove a more general result, expressed this terms

of two lemmas.

Lemma 5.11 states the completeness of the τ and ρ sets when computed as the

least solution of a system �G�
C

.

Lemma 5.11

Let G be a CFG and let (ρ, σ, τ) be the smallest solution to �G�
C

. For every node n,

stack s, the following holds:

∃(i:�).ρi(s, n) ⇐ s ∈ ρn
∃(i:�).τi(s, n) ⇐ s ∈ τn

Proof

The proof is by least fixpoint induction. We first show that the lemma holds for the

first iterate in which ρn = τn = ∅ for all nodes n. Then, an inductive step consists in

proving that if in an environment the lemma holds, then it will still hold at the next

step after application of one of the constraints.

The base case is vacuously verified (� ∃(s:Stacks).s ∈ ∅). The inductive step is by

case analysis on the applied constraints:

• τcheck : we assume s ∈ δn(concr(φ)). By graph wellformedness, ∃(n′:NO).n
TG→ n′.

Since s:n′ ∈ {|s:n′|}
0..i−1

, Lemma 2.11 implies that s:n′ ∈ {|s:n|}
0..i

and τi(s, n) is

verified.

• τcall : we assume some node m such that n
CG→ m and s ∈ δn(ρm). By δ definition

and induction hypothesis, this implies ρi(s:n, m) ie., ∃(k<i, r : NO).IS (r) =

return ∧ s:n:r ∈ {|s:n:m|}
k

. Again, by graph wellformedness, ∃(n′:NO).n
TG→ n′.

Since s:n′ ∈ {|s:n′|}
0..i−k−1

, Lemma 2.13 implies that s:n′ ∈ {|s:n|}
0..i

and τi(s, n) is

verified.

• ρtransfer : we assume some node n′ such that n
TG→ n′ and s ∈ τn ∩ ρ′n. By induction

hypothesis, we have τi(s, n) and ρj(s, n′). By τi(s, n) definition and Lemma 2.14,

s:n′ ∈ {|s:n|}
1..i

. By the definition of ρj(s, n′), we have that ∃s:r ∈ {|s:n′|}
0..j

where

IS (r) = return. Hence, by Property 2.9, ∃s:r ∈ {|s:n|}
1..i+j

and ρi+j(s, n).

• ρreturn : for any i, ρi(s, n) is verified.

It remains to argue the admissibility of the predicates. This follows from the fact

that the least upper bound of the iterates is the set union of the iterates. Hence, if

a stack belongs to the least upper bound it also belongs to one of the iterates; this

guarantees the existence of the relevant i. �

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

200 F. Besson et al.

Lemma 5.12 states the completeness of the σ set:

Lemma 5.12

Let G be a CFG and let (ρ, σ, τ) be the smallest solution to �G�
C

. For all node n and

stack s, the following holds:

s ∈ σn ⇐ ∀(i:�).σi(s, n)

Proof

The proof is by least fixpoint induction. The property is obviously verified for the

first iterate (σn = Stacks). The inductive step is by case analysis on the applied

constraint:

• σglobal : we assume s �∈ δn(concr(ϕ)). This obviously implies ¬σ0(s, n), hence the

property is verified.

• σcall : we assume n
CG→ m and s �∈ δn(σm). By the definition of δ and the induction

hypothesis, this means that ∃(k:�).¬σk(s:n, m) (or ∃(s′:Stacks , k:�).s′ ∈
{|s:n:m|}

0..k

∧ s′ �� ϕ). By Lemma 2.13, this also implies ∃(i:�).¬σi(s, n) (i= k+ 1

for instance), and the property is verified.

• σtransfer : we assume n
TG→ n′, s ∈ τn and s �∈ σ′n. By τ completeness, we

have ∃(j:�).τj(s, n). By Lemma 2.14, it gives us s:n′ ∈ {|s:n′|}
1..j

. The induction

hypothesis also states that ∃(k:�).¬σk(s, n′), hence, with property 2.9, we prove

∃(i:�).¬σi(s, n) (i= j+ k for instance).

Admissibility follows from the fact that the limit of the iterates is the set intersection

of the iterates; hence, if a stack belong to all iterates it belongs to their limit. �

6 Symbolic calculation of secure calling contexts

The set constraints obtained from a graph G are formulated using extensional

definitions of sets that might be infinite. To obtain a system of constraints whose

least solution is computable, we interpret concrete, extensional sets of stacks by

an intensional representation based on LTL formulae. This transformation does

not incur any loss of precision and can be understood as a correct and complete

abstract interpretation of the concrete constraints. In the following section we will

then show how to solve these constraints by a least fixpoint calculation over an

abstract domain built from LTL formulae.

6.1 Abstract constraints

The abstract constraints are built from usual propositional operators (¬,∨,∧) and

an abstraction of the δ operator from the previous section (Definition 5.1). The

abstraction of the subset ordering is the ordering ⇒ of LTL formulae, satisfying φ⇒
φ′ if and only if concr(φ) ⊆ concr(φ′) (Lichtenstein & Pnueli, 2000). We recast the

set-based contraints from the analysis in Figure 2 as constraints over LTL formulae,

by replacing the set-based operators (⊆,∪,∩, ., δn) with their abstract counterpart

(⇒,∨,∧,¬, δ#

n). The result is a similar syntax-directed constraint generation scheme,

which is shown in Figure 3.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 201

τ
#

check

IS (n) = check(γ)

τ
#

n ⇐ δ
#

n (γ)
τ

#

call

n
CG→ m

τ
#

n ⇐ δ
#

n (ρ
#

m)

ρ
#

transfer

n
TG→ n′

ρ
#

n ⇐ (τ
#

n ∧ ρ
#

n′)
ρ

#

return

IS (n) = return

ρ
#

n ⇐ True

σ
#

global
σ

#

n ⇒ δ
#

n (ϕ)
σ

#

call

n
CG→ m

σ
#

n ⇒ δ
#

n (σ
#

m)

σ
#

transfer

n
TG→ n′

σ
#

n ⇒ (¬τ#

n ∨ σ
#

n′)

Fig. 3. Constraint specification of τ
#

, ρ
#

, σ
#

.

Among the abstract operators, δ
#

is of particular interest. Intuitively, given a

formula that denotes the calling contexts, it computes the weakest precondition

such that the property is satisfied before a call. The operator is the temporal logic

version of the Brzozowski derivative (Brzozowski, 1964) on regular expressions. This

operator was defined by Drissi-Kaitouni et al. (1988, 1989), who also stated the

result equivalent to our Lemma 6.2. The proof corresponding to the proof of our

Lemma 6.2 can be found in the technical report by Drissi-Kaitouni & Jard (1988).

We here give a proof in our notation of the most complicated cases.

Definition 6.1

Let n ∈ NO be a node, with AT (n) the set of attributes of node n (cf. Definition 2.1).

The abstract weakest calling context operator δ
#

n : LTL → LTL is inductively defined

over the structure of the formula.

δ
#

n (p) = p ∈ AT (n)

δ
#

n (¬φ) = ¬δ#

n (φ)

δ
#

n (φ1 ∨ φ2) = δ
#

n (φ1) ∨ δ
#

n (φ2)

δ
#

n (X∃φ) = φ ∧ ¬ε
δ

#

n (φ1U∃φ2) = δ
#

n (φ2) ∨ (δ
#

n (φ1) ∧ φ1U∃φ2)

A similar operator for LTL on infinite words is used by Vardi to construct the

alternating Büchi automaton of a formula (Vardi, 1996). The main difference here

is the ¬ε introduced here by formulae of type X∃φ. This is necessary in our finite

stacks domain, to ensure that the empty stack will not satisfy δ
#

n (X∃φ) even if it

satisfies φ.

The following lemma states that the δ
#

operator calculates the most precise

precondition for a property φ to hold at a given node n.

Lemma 6.2

For a given a triple (s, n, φ) ∈ Stack × NO × LTL, δ
#

satisfies:

s � δ
#

n (φ) ⇐⇒ s:n � φ

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

202 F. Besson et al.

Proof

The proof is by induction over the structure of φ. Induction hypothesis states the

correctness of the lemma on every sub-formulae. Here, we only give the cases for

the X∃ and U∃ operators.

• We prove that s:n�X∃φ iff s�φ ∧ ¬ε. By definition, ε ≡ ¬(TrueU∃True), which

by the semantics of U∃ gives that s�ε iff |s|=0. Thus, s�φ ∧ ¬ε iff s�φ and

|s|>0 (i.e., |s:n|>1). This is exactly the semantics the X∃ operator.

• We prove that s:n�φ1U∃φ2 iff s�δ
#

n (φ1U∃φ2). By definition of U∃, we have:

s:n � φ1U∃φ2 iff ∃(k<|s:n|). s:nk � φ2 and ∀(i < k). s:ni � φ1. We split this

formula depending on whether k and i are strictly positive or null. We simplify

further this expression by using the fact that |s:n|−1 = |s| and that s:nj+1 = sj

to get the following expression:

s:n � φ1U∃φ2 iff (s:n � φ2) or (s:n � φ1 and s � φ1U∃φ2)

By induction hypothesis, we have s:n � φ2 iff s � δ
#

n (φ2) and s:n � δ
#

n (φ1).

Moreover, propositional operators ∨/ or and ∧/ and distribute with respect

to �. As a result, we have s:n � φ1U∃φ2 iff s � δ
#

n (φ2) ∨ (δ
#

n (φ1) ∧ φ1U∃φ2) By

definition of δ
#

, this concludes the proof.

�

6.2 Exactness of the abstraction

Let �G�
#

denote the abstraction of �G�
C

. In this section, we prove that the least

solution to �G�
#

exactly models the secure calling contexts as defined implicitly by

�G�
C

.

Theorem 6.3

Let (σ
#

, ρ
#

, τ
#

) be the least abstract solutions to �G�
#

, then the following holds:

∀(n:NO , s:Stacks).

s � σ
#

n iff s ∈ secn

s � τ
#

n iff s ∈ transn

s � ρ
#

n iff s ∈ returnsn

We stress that the theorem does not guarantee that such a solution exists. Here, we

only argue that the abstract iteration sequence of LTL formulae exactly corresponds

to the set-based iteration sequence. Existence will only be proved in section 7 where

we show that the abstract iteration sequence of LTL formulae stabilises at a solution

after a finite number of iteration.

One consequence of the theorem is that execution of a full program is safe if and

only if the empty stack satifies the abstract secure calling context of its main entry

node:

ε � σ
#

n ⇔ � ∃(s:Stacks).n0 �
∗ s ∧ s �� ϕ

Proof of this theorem relies on the exactness of the least solution of the

concrete constraints system �G�
C

. In addition, there is by construction a one-to-one

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 203

correspondence between the contraints in �G�
C

and �G�
#

. Formally, the concretisation

concr of the abstract least solution is the least solution of the concrete constraints

(Lemma 6.4).

Lemma 6.4

∀(n:NO).

concr(σ
#

n) = σn ∧ concr(ρ
#

n) = ρn ∧ concr(τ
#

n) = τn

Proof

To prove this result, we show that computing in the abstract domain does not incur

a loss of precision. To do so, we show that the least LTL formula exactly models

the least set of stacks and that each abstract operator exactly models its concrete

counterpart.

• We have defined concr(True) = Stacks . Furthermore, it is a straightforward

consequence of the LTL semantics that concr(False) = ∅. This concludes the

first part of the proof.

• Formally, the exactness of abstract operators is stated by showing that

concretisation commutes with respect to abstract/concrete operators. By

definition of LTL semantics, this property holds for propositional connectors

and we have :

concr(φ ∧ φ′) = concr(φ) ∩ concr(φ′)

concr(φ ∨ φ′) = concr(φ) ∪ concr(φ′)

concr(¬φ) = concr(φ)

To finish the proof, we have to show a similar result for the δ operator.

This is a direct corollary of Lemma 6.2. Indeed, by this lemma, we have

s � δ
#

n (φ) ⇐⇒ s:n � φ. By reinterpreting the previous equivalence in terms

sets, we have that concr(δ
#

n (φ)) = {s | s:n ∈ concr(φ)}. By definition of the

concrete operator δ, we obtain the desired equality:

concr(δ
#

n (φ)) = δn(concr(φ))

Hence, each concrete computation is exactly modelled by an abstract one and

Lemma 6.4 holds. �

Example 6.5

After LTL abstraction, here is the set of constraints obtained from the CFG

presented in Figure 1. We use ϕ as abbreviation for the security invariant formula

Crit ⇒ F(Accountant) ∧ F(Manager), and γ for the check formula F(Manager) ∧
F(Accountant).

τ
#

n0
⇐ δ

#

n0
(ρ

#

n3
) τ

#

n1
⇐ δ

#

n1
(ρ

#

n0
) τ

#

n1
⇐ δ

#

n1
(ρ

#

n3
) τ

#

n3
⇐ δ

#

n3
(γ)

ρ
#

n0
⇐ τ

#

n0
∧ ρ#

n1
ρ

#

n1
⇐ τ

#

n1
∧ ρ#

n2
ρ

#

n2
⇐ True ρ

#

n3
⇐ τ

#

n3
∧ ρ#

n4

ρ
#

n4
⇐ True σ

#

n0
⇒ δ

#

n0
(ϕ) σ

#

n0
⇒ δ

#

n0
(σ

#

n3
) σ

#

n0
⇒ (¬τ#

n0
∨ σ#

n1
)

σ
#

n1
⇒ δ

#

n1
(ϕ) σ

#

n1
⇒ δ

#

n1
(σ

#

n0
) σ

#

n1
⇒ δ

#

n1
(σ

#

n3
) σ

#

n1
⇒ (¬τ#

n1
∨ σ#

n2
)

σ
#

n2
⇒ δ

#

n2
(ϕ) σ

#

n3
⇒ δ

#

n3
(ϕ) σ

#

n3
⇒ (¬τ#

n3
∨ σ#

n4
) σ

#

n4
⇒ δ

#

n4
(ϕ)

A solution to this constraints system is shown in the next section.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

204 F. Besson et al.

7 Iterative constraint solving

In this section we show how to compute a solution to the set of constraints �G�
#

obtained by analysing the control flow graph G. Our resolution scheme rephrases

constraint solving in terms of a least fixed point problem (Cousot & Cousot,

1995; Nielson et al., 1999). For a complete lattice (D,�,�,�), a set of constraints

C induces an iterator F : (Var → D) → (Var → D) obtained by gathering the

constraints defining the same variable into a single expression

F(ρ)(x) =
⊔

{e(ρ) | x � e ∈ C}

where e(ρ) is the evaluation of the expression e in the environment ρ that maps

variables to values of D. Monotonicity of the expressions ei implies monotonicity

of the iterator F which, by Tarski’s theorem, ensures that it has a least fixed point

and hence that a least solution to the original system exists. Furthermore, this fixed

point can in certain cases be calculated by a chaotic fixed point iteration (Cousot &

Cousot, 1977b) since if the ascending Kleene chain ⊥, F(⊥), F2(⊥), . . . stabilises at

an element e then e is the least fixed point of F .

However, a potential problems arise when trying to solve the constraints by an

iterative fixed point calculation. The abstract domain of LTL formulae contains

infinite chains which means that termination of the iteration is not guaranteed.

We address this problem together by solving the constraints in an abstract domain

of LTL formulae where the implication relation between temporal formulae has

been replaced by the weaker and less complex propositional implication. Formally,

we work within the boolean lattice obtained by propositional completion of the

set of temporal formulae occurring in the set of constraints. The fact that this

approach addresses the issue of infinite chains in the abstract domain has to be

proved in detail. In this section will prove that all iteration sequences arising during

the verification of a particular property will be stationary after a finite number of

iterations. One essential observation (Lemma 7.3) underlying this result is that the

set obtained by iterating the δ
#

n functions over a finite set of formulae is again a

finite set.

Definition 7.1

For a formula φ, the finite set Sub(φ) is formally defined to be the smallest set of

formulae satisfying:

φ ∈ Sub(φ)

φ1 op φ2 ∈ Sub(φ) ⇒ {φ1, φ2} ⊆ Sub(φ)

where op ∈ {U∃,∨,∧}
¬φ′ ∈ Sub(φ) ⇒ φ′ ∈ Sub(φ)

X∃φ
′ ∈ Sub(φ) ⇒ {φ′, ε} ⊆ Sub(φ)

Definition 7.2

Let A be a finite (unordered) set. Prop(A) is the set of propositional formulae built

over A.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 205

The following lemma is the important closure property of Prop(Sub(φ)), viz., that

applying δ
#

to a formula in Prop(Sub(φ)) results in a property that still belongs to

the set Prop(Sub(φ)).

Lemma 7.3

Given a pair (φ,ψ) of LTL formulae and a node n, we have

ψ ∈ Prop(Sub(φ)) ⇒ δ
#

n (ψ) ∈ Prop(Sub(φ))

Proof

The proof is by structural induction over ψ.

Base case: If ψ = p then δ
#

n (ψ) is either True or False depending on whether p

belongs (or not) to AT (n). Obviously, {True,False} is a subset of Prop(Sub(φ)).

Inductive case: We first consider the case of formulae whose top operator is

temporal – either X∃ or U∃. We rely on the fact that such formulae can only belong

to Sub(φ).

• ψ = X∃(ψ
′): δ

#

n (ψ) = ψ′ ∧¬ε. Now, by hypothesis, {ψ′, ε} ⊆ Sub(φ), therefore,

by definition of Prop, ψ′ ∧ ¬ε ∈ Prop(Sub(φ)).

• If ψ = ψ1U∃ψ2 then δ
#

n (ψ) = δ
#

n (ψ2) ∨ (δ
#

n (ψ1) ∧ ψ). Since both ψ1 and ψ2

belongs to Sub(φ), by applying induction hypothesis, we have that

{δ#

n (ψ2), δ
#

n (ψ1)} ∈ Prop(Sub(φ)).

The property follows by definition of Prop.

In a second step, we deal with logical operators ∨,∧,¬. The proof relies on the fact

that δ
#

simply distributes over those operators. As a result, the case where ψ = ψ1∨ψ2

is representative. By definition of δ
#

, we have δ
#

n (ψ1 ∨ ψ2) = δ
#

n (ψ1) ∨ δ
#

n (ψ2).

Since {ψ1, ψ2} ⊆ Prop(Sub(φ)), by applying induction hypothesis, we have that

{δ#

n (ψ1), δ
#

n (ψ2)} ⊆ Prop(Sub(φ)). The property follows by definition of Prop. �

The Sub (resp. δ
#

) operator extends to sets Φ of LTL formulae in the obvious

element-wise fashion, by stipulating that

Sub(Φ) =
⋃
φ∈Φ

Sub(φ) resp. δ
#

n (Φ) =
⋃
φ∈Φ

δ
#

n (φ).

The following Corollary is an immediate consequence of Lemma 7.3.

Corollary 7.4

Let Φ be a finite set of LTL formulae. For all nodes n ∈ NO ,

δ
#

n (Prop(Sub(Φ))) ⊆ Prop(Sub(Φ))

To obtain the termination result for the iterative fixed point computation, we

then instantiate these results to the constraint systems arising from the analysis of

a CFG G.

Definition 7.5

Given a global property ϕ and a CFG G, let {γ1, . . . , γn} be the set of LTL formulae

occurring in the check nodes of G. Define the set

Const = Const(G,ϕ) ≡ {γ1, . . . , γn} ∪ {ϕ}

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

206 F. Besson et al.

Theorem 7.6

Given CFG G and LTL formula ϕ, let F : (Var → LTL) → (Var → LTL) defined

by F(ρ)(xi) = Ei(ρ) be the iterator obtained from the constraint system �G�#. Then,

the iteration sequence

v0i = False, . . . , vk+1
i = Ei[xj �→ vkj], . . .

stabilises in a finite number of steps within the lattice Prop(Sub(Const))

Proof

By construction, a lattice of the form Prop(Sub(Const)) is closed under the standard

logical operations. This, together with Lemma 7.4 implies that the fixed point

iteration induced by the constraint system will take place entirely inside the domain

Prop(Sub(Const)). To conclude that the iteration stabilises in a finite number of

steps, it remains to observe that Prop(Sub(Const)) is finite because Const and hence

Sub(Const)) is finite. This and the monotonicity of operators δ
#

n ,∧,∨ (which ensures

monotonicity of F) implies that the fixed point iteration stabilises. �

Example 7.7

In section 3.1 we argued that the Java stack inspection mechanism could be

formalised via the predicate JDK(perm) defined by perm U∀ (perm ∧ Priv). Let

{x⇐ δ
#

n (x), x⇐ JDK(p)} be a set of constraints. Its iterator is F : ({x} → LTL) →
({x} → LTL) defined by

F(ρ)(x) = (δ
#

n (x) ∨ JDK(p))(ρ)

where AT (n) = {p}. We observe that

JDK (p) ≡ pU∀(p ∧ Priv)

≡ pU∃(p ∧ Priv) ∨ ¬(TrueU∃¬p)

We first show how to calculate δ
#

n (JDK (p)):

δ
#

n (JDK (p))

= δ
#

n (pU∃(p ∧ Priv) ∨ ¬(TrueU∃¬p))
= δ

#

n (pU∃(p ∧ Priv)) ∨ ¬δ#

n (TrueU∃¬p)
= δ

#

n (p ∧ Priv) ∨ (δ
#

n (p) ∧ pU∃(p ∧ Priv))

∨¬(δ
#

n (¬p) ∨ (δ
#

n (True) ∧ TrueU∃¬p))
= False ∨ (True ∧ pU∃(p ∧ Priv))

∨¬(False ∨ (True ∧ TrueU∃¬p))
= pU∃(p ∧ Priv) ∨ ¬(TrueU∃¬p)
= JDK (p)

We can then find the least fixed point by an iteration that stabilises after two steps:

x0 = False

x1 = δ
#

n (False) ∨ JDK (p)

= JDK (p)

x2 = δ
#

n (JDK (p)) ∨ JDK (p)

= JDK (p)

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 207

Example 7.8

We now return to the analysis of the code in Figure 1. The code gave rise to the

fixed point system in Example 6.5, the solution of which is given below. The solution

is computed by fixed point iteration over the domain

Prop({TrueU∃Accountant ,TrueU∃Manager ,Crit})

Recall that F(φ) stands for TrueU∃φ. Each variable is initialised to the least element

of its lattice: False for τ
#

, ρ
#

constraints; True for σ
#

constraints. For readability,

the solution is given in terms of the syntactic sugar F.

τ
#

n0
= τ

#

n1
= τ

#

n3
= F(Accountant)

τ
#

n4
= τ

#

n2
= False

ρ
#

n0
= ρ

#

n1
= ρ

#

n3
= F(Accountant)

ρ
#

n2
= ρ

#

n4
= True

σ
#

n0
= σ

#

n1 = F(Accountant) ⇒ F(Manager)

σ
#

n2
= F(Accountant) ∧ F(Manager)

σ
#

n3
= σ

#

n4
= True

From a security point of view, we are interested in the context inferred for entry

nodes. In our case, the single entry point is n0 and its secure calling context is

characterised by

σ
#

n0
= F(Accountant) ⇒ F(Manager)

As a consequence, for execution to be secure, node n0 must be called from a stack s

that satisfies σ
#

n0
. Analysing this result more closely, we see that security is achieved

in the following two cases:

• If s � ¬F(Accountant) (i.e. if there is no node with the Accountant attribute

on the call stack) then the execution is cut by the dynamic stack inspection

in node n3. It follows that the code is secured since the critical action is not

executed.

• If s � F(Manager) (i.e. there is a node with the Manager attribute on the call

stack) then the dynamic stack inspection ensures that s � F(Accountant). In

this case, the critical action is executed in a secure fashion.

8 An example verification

The analysis presented in the preceding sections has several uses in the verification

of stack-inspecting programs. In this section, we illustrate:

• how it serves to infer interfaces for library routines (this was also illustrated

in the previous section),

• how this interface is integrated into the analysis of code using this library, and

• the type of interfaces inferred for correct and for malicious code.

We will use an example from Jensen et al. (1999) of an idealized bank account.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

208 F. Besson et al.

1 public class ControlledVar {

2 private int var;

3 void write(int new) {

4 AccessController.checkPermission(Write);

5 var = new;

6 }

7 int read() {

8 AccessController.checkPermission(Read);

9 return var;

10 }

11 }

Fig. 4. The system code (System domain).

12 public class AccountMan {

13 private ControlledVar balance;

14 public boolean canpay?(int amount) {

15 AccessController.checkPermission(Canpay);

16 boolean res = false;

17 try {

18 AccessController.beginPrivileged();

19 res = balance.read() > amount;

20 } finally {

21 AccessController.endPrivileged();

22 }

23 return res;

24 }

25 public void debit(int amount) {

26 AccessController.checkPermission(Debit);

27 if (this.canpay?(amount)) {

28 try {

29 AccessController.beginPrivileged();

30 balance.write(balance.read() - amount);

31 } finally {

32 AccessController.endPrivileged();

33 }

34 } else ...

35 }

36 }

Fig. 5. The account manager code (Provider domain).

8.1 The library code

Two protection domains (corresponding to two principals) are involved. They are

called System and Provider:

• We assume the system (Figure 4) supplies code to implement a controlled

integer variable holding the balance of the account. This variable has entry

points for read and write operations, protected with a check for the respective

permissions.

• Using the controlled variable, the service provider builds an account manager

(Figure 5) with a debit transaction and a boolean query method canpay?.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 209

canpay?debit

readwrite

n8: check(JDK(PCanpay))n11: check(JDK(PDebit))

n9: call

n10: return

n16: check(JDK(PRead))n18: check(JDK(PWrite))

n17: return

n12: call

n13: call

n14: call

n15: return

n19: return

Fig. 6. The derived graph GEC .

For this to work, we assume that the provider code is granted the Write,

Read, Debit, and Canpay permissions. The debit and canpay? methods call

the methods read and write in privileged mode because they can be called

by clients that do not have the permission to call read and write directly (i.e.

which are not granted the Read and Write permissions).

8.2 Translation of the example into our model

From the code for the above example, we derive the graph GEC as outlined in

section 2.1. The result is shown in Figure 6. Although the methods have no

representation in the graph, we have clustered the nodes in boxes according to

their method of origin. Furthermore, boxes are coloured according to the protection

domains to which its nodes belong. Like the example in section 2, the dashed edges

are transfer edges (TG), while the solid edges are call edges (CG), obtained through

a class analysis. The three encircled nodes correspond to code executed as privileged.

The two protection domains partition the set of nodes as follows:

Provider = n8, . . . , n15

System = n16, n17, n18, n19

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

210 F. Besson et al.

Attributes of each node in the graph GEC include the permissions corresponding

to its protection domain, plus the attribute Priv if it appears within a privileged

section. Furthermore, to describe that a node belongs to a Java method foo, we

introduce the attribute Efoo which is given to each node in the method foo.

The attributes associated to each protection domain are the following:

DProvider = {PRead , PWrite}
DSystem = {PDebit , PCanpay , PRead , PWrite}

In addition, the nodes n9, n13, and n14 have the attribute Priv .

8.3 Verification of security properties

As a global statement about the security of the system, we state that all the calls

leading to a modification of the balance must possess the PDebit permission and all

the calls leading to disclosure of the balance must possess the PCanpay permission.

This property is expressed as follows in our language:

ϕ =
∧{

EWrite ⇒ G(PDebit)

ERead ⇒ G(PCanpay)

We apply our analysis in two steps, corresponding to the two classes. The results of

the first analysis (ControlledVar) are reused to analyse the whole system composed

of ControlledVar and AccountMan.

During such an incremental analysis, we do not need the full solution of an

analysed library. Constraints for a given node only reference τ
#

, ρ
#

or σ
#

-properties

of the nodes that it is directly linked to (by transfer or call edges), so the only

properties of interest are those of the node to which a method can link (i.e. the entry

points). Furthermore, the τ
#

property is internal to a method and does not have to

be exported. The remaining σ
#

and ρ
#

properties of the entry points of the methods

of a library constitute its security interface.

Analysis of read and write The secure calling contexts σ deduced by analysing

read and write conforms to what would intuitively be expected: because the

security invariant requires that every execution stack satisfy EWrite ⇒ G(PDebit) (resp.

ERead ⇒ G(PCanpay)), and because EWrite (resp. ERead) is satisfied by every node of

the method write (resp. read), the analysis concludes that calling contexts for node

n18 (resp. n16) are safe only if they satisfy G(PDebit) (resp. G(PCanpay)). Furthermore,

because of the check nodes which may cut some executions, return nodes are only

reachable from calling contexts satisfying the right JDK property.

σ
#

n16
= G(PCanpay)

σ
#

n18
= G(PDebit)

ρ
#

n16
= JDK (PRead)

ρ
#

n18
= JDK (PWrite)

Analysis of debit and credit The second part of this analysis is done by introducing

the above results in the constraints system. This is done by adding the four equations

from above to the set of constraints generated by the analysis of debit and credit.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 211

main

n0: call

n1: return n11 n8

Fig. 7. Simulating a client application.

The results we obtain for the entry points of debit and credit are the following:

σ
#

n8
= G(PCanpay) ∨ ¬JDK (PCanpay)

σ
#

n11
= (G(PCanpay) ∧ G(PDebit)) ∨ ¬JDK (PCanpay) ∨ ¬JDK (PDebit)

ρ
#

n8
= JDK (PCanpay)

ρ
#

n11
= JDK (PCanpay) ∧ JDK (PDebit)

We examine σ
#

n8
in more detail (similar reasoning applies to σ

#

n11
). Recalling the JDK

definition, σ
#

n16
can be rewritten as:

σ
#

n8
= G(PCanpay) ∨ ¬(G(PCanpay)) ∨ (PCanpayU∃(PCanpay ∧ Priv))

= G(PCanpay) ∨ ¬(PCanpayU∃(PCanpay ∧ Priv))

A first observation we can make is that this precondition for a calling context

to be safe is more permissive than the one for read (σ
#

n16
). That means that the

additional check nodes we have introduce to protect the critical code help cutting

illegal executions.

The programmer of the library may have expected a better result, e.g. a True

precondition meaning that any calling context would be safe. However, this is

not possible to achieve with the security invariant we have required and the

rigid structure of the Java stack inspection checks. Indeed, the stack inspection

cannot prevent callers from acquiring permissions they do not have through calls to

privileged code which have the required permissions. Hence, if we want all callers

to have a given permission, this condition will remain in the interface.

This precondition also offer a way to reason about the permissions to give to the

applications that will use it. A trusted application should be granted both PDebit and

PCanpay permissions on its whole code, so that all the calling contexts that will reach

entry points of the library will verify G(PDebit) ∧ G(PCanpay), and hence the security

preconditions of the library. Of course, this permission should be refused to any

other application, so that they don’t have access to our critical methods.

Analysis of an application To illustrate the above discussion about permissions and

privileged code, we reuse previous results in the analysis of the small application

illustrated in Figure 7. Its entry point (the program main) is node n0. We apply our

analysis with various hypothesis:

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

212 F. Besson et al.

• the application is trusted, and granted permissions PDebit and PCanpay . Analysis

result gives us

σ
#

n0
= (G(PCanpay) ∧ G(PDebit)) ∨ ¬JDK (PCanpay) ∨ ¬JDK (PDebit).

We can easily verify that ε � σ
#

n0
, and hence that any execution starting on this

main method is safe.

• the application is untrusted, and has no granted permissions. The result of the

analysis is σ
#

n0
= True, hence execution is obviously safe (execution will be cut

by both of the check nodes n8 or n11.

• the application is trusted, and granted permissions PDebit and PCanpay , but the

call node n0 is marked as privileged. The result of the analysis gives us

σ
#

n0
= G(PCanpay) ∧ G(PDebit). We conclude that it is still safe to execute this

code starting from n0, but if this method can be called from some hostile code

(even code without any permissions) then our security invariant is violated.

9 Related work

The concept of stack inspection has been formalised in various ways. Wallach &

(1998) formalise the Java stack inspection using a belief logic. The paper is based

on the security mechanisms as implemented in Netscape, which can be seen as

an extension of the JDK 1.2 mechanisms, allowing to grant specifically named

permissions to a piece of code. Granting permission P to code C1 adds the belief

statement Ok (P) to the set of beliefs held in the current stack frame, and calling

code C2 records the beliefs of the earlier stack frames by adding the statement

C1 says Ok (P) to the belief set for the stack frame for C2. Fournet & Gordon

(2002) provides an alternative formalisation of stack inspection based on operational

semantics. Their aim is to establish laws for equational reasoning in order to validate

program transformations in the presence of stack inspection. The most general

model of stack inspection has been proposed by Esparza et al. (2001). In this model,

pushdown automata are extended with transition rules that depend on the content

of the pushdown stack. This model has the advantage of integrating exceptions in a

straightforward manner, and has allowed to obtain precise complexity results for the

model checking problem for such automata. Our semantics in section 2.2 could be

cast in this model but we have opted for a lighter operational semantics presentation

that leads to rather simple proofs.

The present work builds on the verification techniques developed by Besson,

Jensen and others (Jensen et al., 1999; Besson et al., 2001), in which model checking

techniques are combined with whole-program static analysis techniques in order to

verify global security properties of stack-inspecting code. The methods presented by

Besson, Jensen and others differ from what is presented here by providing essentially

yes/no answers to a given verification problem, whereas the inference algorithm here

must infer (a symbolic representation of) the secure calling contexts of a method.

Barthe et al. (2002) developed a compositional proof system for verifying temporal

properties of control flow graphs. This leads to a compositional analysis of secure

applet interaction, but it does not deal with stack inspection.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 213

Schneider (2000) introduced the idea of security automata as a formalism for

defining security properties. Security automata are a class of Büchi automata that

define what are the legal sequences of actions that a system can take. See Bauer

et al. (2002) for a general class of properties that can be enforced. Erlingsson &

Schneider (2000), Colcombet & Fradet (2000) and Walker (2000) all propose to use

such automata to monitor an executing system such that an action about to be

executed can be prevented if it is deemed illegal by the security automaton. Thus,

rather than proving statically that a property is verified by a program as we do in

the present work, the corresponding security automaton is inserted (using program

transformations and optimising analysers) into the program to dynamically monitor

its execution. This approach carries a run-time penalty but allows to use programs

in a secure fashion even when their security cannot be proved statically.

Analysing and verifying stack-inspecting code has been the object of a number of

recent studies. Skalka & Smith (2000) propose λsec, a lambda calculus extended with

primitives that correspond to the stack inspection primitives in Java. Permissions

can be granted and checked for, and code can be marked as privileged. A type

system allows to infer function types of the form σ
P→ τ that describe the set

P of permissions necessary for executing a function. In a sequel paper, Pottier

et al. (2001) recast the type system in more standard terms by translating λsec into

a standard lambda calculus by generalising Wallach’s security-pasing programming

style (Wallach, 1999) to higher-order functions. Higuchi & Ohori (2003) present a

similar type system for the Java Virtual Machine byte code language. Bartoletti

et al. (2001) develop a data flow analysis for control flow graphs that determines

the set of permissions that will always or will never be available at a given node in

the graph. This information can be used to optimise the stack inspection algorithm

in those cases where the analysis determines that a given security will always be

thrown or will never be thrown. Compared to our work, these papers are more

restricted in scope since they are only concerned with verifying the property that

the program “does not go wrong”, i.e. that the program does not raise a security

exception because a stack inspection failed. In contrast, our analysis can verify

arbitrary invariants of call stacks as long as these are expressible in linear temporal

logic.

Our work focuses on control flow properties. Banerjee & Naumann (2003) study

the complementary problem of how stack inspection can be used to guarantee

information flow properties relative to a set of security levels, e.g. to ensure that

data classified as confidential does not flow into publicly accessible variables. To

this end they have devised a type system that assigns types of the form L1
P→ L2 to

methods. The intended meaning of such a type is that if the method is called with

data with security level L1 and from a method that cannot enable the permissions

P then the result will have security level at most L2. Preliminary work by Blanc et

al. (2002) has similar goals, but is placed in the setting of the intermediate language

of Microsoft’s Common Language Runtime. In this work a control-flow analysis

extracts a control-flow graph on which properties on the control-flow graph can be

checked. Properties of interest include verifying that every granting of permissions

serves a purpose (may affect the computation) and that all sensitive operations are

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

214 F. Besson et al.

preceded by a proper access control. Finally, the work by Koved et al. (2002) deals

with the somewhat dual problem of analysing a piece of Java code in order to infer

the set of least privileges in terms of access rights requirements that a code requires

to execute without security exceptions. This type of analysis seems particular useful

for providing a developer with a means of understanding and refining an access

control security policy for an application.

Our security properties are global invariants of the trace of call-stack. Abadi &

Fournet (2003) have considered another security model in which access control

is based on the entire execution history and not just the current call stack.

Consequently, they can enforce more refined trace properties. In particular, the

“Chinese Wall”-style properties (Brewer & Nash, 1989) in which certain accesses are

authorised only if other access have not been performed earlier on in the execution.

These properties are beyond what we can verify with our framewrok since there

might be no trace of these earlier accesses on the control stack.

10 Conclusions

We have presented a static program analysis for inferring secure calling contexts

for stack-inspecting methods relative to a given global security property. We stress

that the method works for arbitrary global properties that can be expressed using

our LTL specification formalism. In this respect our analysis is more general than

other analyses for stack-inspecting code (Skalka & Smith, 2000; Pottier et al., 2001)

that are concerned with inferring the permissions required for all stack inspections

to succeed. The verification works for closed code libraries for which it infers

pre-conditions under which execution of a library method is secure.

The analysis has been proved correct with respect to a formal semantics. We

have furthermore developed the theory necessary for implementing the analysis by

fixed-point iteration over an abstract domain built of temporal properties. While the

construction Prop(A) of the boolean completion of a set of atoms A of temporal

formulae has been studied before (Drissi-Kaitouni & Jard, 1988), it is to the best of

our knowledge the first time that this approach has been used to build an abstract

domain of temporal properites and to argue the termination of an iteration-based

program verifier.

The constraint-based analysis has been prototyped in Caml and experimented on

a sample of small control flow graphs. Although the prototype has mainly served to

avoid having to calculate the iterations for the examples by hand, its performance

indicates that proper use of BDD-representations might allow to treat larger, more

realistic applications. The size of the constraint system �G�
#

(and therefore the

number of expressions to be evaluated within one iteration) is linear in the size

of the control flow graph G. On the other hand, the number of iterations is only

bounded by the height of the lattice Prop(Sub(γ1, . . . , γn, ϕ)) where γ1, . . . , γn are the

different LTL formulae used in the check nodes and ϕ is the global property. The

height of this lattice is exponential in the size | γ1 | + . . . ,+ | γn | + | ϕ | of the

formulae. However, in general we would expect to have

| γ1 | + . . . ,+ | γn | + | ϕ |�| G |.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 215

because the global security property ϕ is fixed and that there are generally few

different check instructions compared to the number of call and return instructions

in a library routine.

The most challenging further step is to extend the analysis to arbitrary fragments

of control flow graphs in order to deal with software components in which methods

make calls to virtual methods that are unavailable for analysis. The current

framework is well suited for this because properties of unknown methods can

be represented as free variables in the generated constraints. This would firstly

require a modular Control Flow Analysis, as the one presented by Besson &

Jensen (2003). Next, it will be necessary to extend the iterative constraint resolution

technique to deal with constraints containing free variables, in essence calculating

(an intensional representation of) the relation between properties of the “imported”

unknown methods and the properties of the methods offered by the component.

The theoretical foundations of such an extension is proposed in Besson’s PhD thesis

(Besson, 2002) but the question of how such relational properties can be expressed

in a compact manner that enable automated compositional reasoning remains to be

settled.

Acknowledgements

This work was partially supported by the IST FET/Open project 99-29075 “Secsafe”.

References

Abadi, M. and Fournet, C. (2003) Access control based on execution history. Proc. 10th Annual

Network and Distributed System Security Symposium (NDSS’03), pp. 107–121. Internet

Society.

Bacon, D. F. and Sweeney, P. F. (1996) Fast Static Analysis of C++ Virtual Function Calls.

Proc. of OOPSLA’96, pp. 324–341. ACM SIGPLAN Notices, 31(10).

Banerjee, A. and Naumann, D. A. (2003) Using access control for secure information flow

in a java-like language. Proc. Sixteenth IEEE Computer Security Foundations Workshop

(CSFW), pp. 155–169. IEEE Press.

Barthe, G., Gurov, D. and Huisman, M. (2002) Compositional verification of secure applet

interactions. Proc. Foundations of Software Engineering (FASE’02).

Bartoletti, M., Degano, P. and Ferrari, G. (2001) Static analysis for stack inspection. Proc.

Int. Workshop on Concurrency and Coordination (Concoord 2001). Electronic Notes in

Theoretical Computer Science vol. 54. Elsevier.

Bauer, L., Ligatti, J. and Walker, D. (2002) More enforceable security policies. Technical report

TR-649-02, Princeton University.

Besson, F. (2002) Résolution modulaire d’analyses de programmes : application à la sécurité

logicielle. PhD thesis, University of Rennes I.

Besson, F., Jensen, T., Le Métayer, D. and Thorn, T. (2001) Model ckecking security properties

of control flow graphs. J. Comput. Security, 9, 217–250.

Besson, F., de Grenier de Latour, T. and Jensen, T. (2002) Secure calling contexts for

stack inspection. Proc. 4th Int Conf. on Principles and Practice of Declarative Programming

(PPDP 2002), pp. 76–87. ACM Press.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

216 F. Besson et al.

Besson, F. and Jensen, T. (2003) Modular class analysis with datalog. In: Cousot, R. (ed.),

Proc. 10th Static Analysis Symposium (SAS 2003): Lecture Notes in Computer Science 2694,

pp. 19–36. Springer-Verlag.

Blanc, T., Fournet, C. and Gordon, A. (2002) From stack inspection to access control: A security

analysis for libraries. Microsoft Research.

Brewer, D. and Nash, M. (1989) The Chinese wall security policy. Proc. IEEE Symp. on

Security and Privacy, pp. 206–211. IEEE Press.

Brzozowski, J. (1964) Derivatives of regular expressions. J. ACM, 11(4).

Colcombet, T. and Fradet, P. (2000) Enforcing trace properties by program transformation.

Proc. 27 ACM Symp. on Principles of Programming Languages (POPL’00), pp. 54–66. ACM

Press.

Cousot, P. and Cousot, R. (1977a) Abstract interpretation: A unified lattice model for

static analysis of programs by construction of approximations of fixpoints. Proc. 4th ACM

Symposium on Principles of Programming Languages, pp. 238–252. ACM Press.

Cousot, P. and Cousot, R. (1977b) Automatic synthesis of optimal invariant assertions:

Mathematical foundations. Proc. ACM Symposium on Artificial Intelligence and Program-

ming Languages, SIGPLAN Notices, (8), 1–12.

Cousot, P. and Cousot, R. (1995) Formal language, grammar and set constraint-based program

analysis by abstract interpretation. Proc. ACM Conf. on Functional Programming Languages

and Computer Architecture (FPCA’95), pp. 170–181. ACM Press.

Drissi-Kaitouni, O. and Jard, C. (1988) Compiling temporal logic specifications into observers.

Technical report INRIA Rapports de Recherche No. 881, Institut National de Recherche

en Informatique et en Automatique.

Emerson, E. A. (1990) Temporal and Modal Logic. In: van Leeuwen, J. (ed.), Handbook of

Theoretical Computer Science, vol. B, pp. 996–1072. Elsevier.

Erlingsson, U. and Schneider, F. (2000) SASI enforcement of security policies: A retrospective.

New Security Paradigms Workshop. ACM Press.

Esparza, J., ı́n Kučera, A. and Schwoon, S. (2001) Model-checking LTL with regular valuations

for pushdown systems. Proc. Theoretical Aspects of Computer Science (TACS’2001): Lecture

Notes in Computer Science 2215, pp. 306–339.

Fournet, C. and Gordon, A. (2002) Stack inspection: theory and variants. Proc. 29th ACM

Symp. on Principles of Programming Languages (POPL’02). ACM Press.

Gong, L. (1997) Going beyond the sandbox: An overview of the new security architecture in

the Java development kit 1.2. Proc. Usenix Symposium on Internet Technologies and Systems.

Grove, D., Furrow, G., Dean, J. and Chambers, C. (1997) Call graph construction in object-

oriented languages. Proc. Object-oriented Programming Systems, Languages and Applications

(OOPSLA’97).

Higuchi, T. and Ohori, A. (2003) A static type system for jvm access control. Proceedings 8th

ACM SIGPLAN International Conference on Functional Programming, pp. 227–237. ACM

Press.

Jard, C. and Jeron, T. (1989) On-line model-checking for finite linear temporal logic

specifications. In: Sifakis, J. (ed.), Proc. International Workshop on Automatic Verification

Methods for Finite States Systems: Lecture Notes in Computer Science 407, pp. 189–196.

Springer-Verlag.

Jensen, T., Le Métayer, D. and Thorn, T. (1999) Verification of control flow based security

properties. Proc. 20th IEEE Symp. on Security and Privacy, pp. 89–103. IEEE Computer

Society.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

Interfaces for stack inspection 217

Koved, L., Pistoia, M. and Kershenbaum, A. (2002) Access rights analysis for java. Proceedings

17th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and

Applications (OOPSLA), pp. 359–372. ACM Press.

LaMacchia, B. A., Lange, S., Lyons, M., Martin, R. and Price, K. T. (2002) .NET framework

security. Addison-Wesley.

Lichtenstein, O. and Pnueli, A. (2000) Propositional temporal logics: Decidability and

completeness. Logic J. IGPL, 8(1), 55–85.

Nielson, F., Nielson, H. R. and Hankin, C. L. (1999) Principles of Program Analysis. Springer.

Palsberg, J. and Schwartzbach, M. I. (1994) Object-oriented Type Systems. John Wiley & Sons.

Pande, H. and Ryder, B. (1996) Data-flow-based virtual function resolution. Proc. 3rd Static

Analysis Symposium (SAS’96): Lecture Notes in Computer Science 1145. Springer-Verlag.

Pottier, F., Skalka, C. and Smith, S. (2001) A systematic approach to static access control.

In: Sands, D. (ed.), Proc. 10th European Symposium on Programming (ESOP’01): Lecture

Notes in Computer Science 2028, pp. 30–45. Springer-Verlag.

Schneider, F. (2000) Enforceable security policies. ACM Trans. on Information & System

Security, 3(1), 30–50.

Skalka, C. and Smith, S. (2000) Static enforcement of security with types. Proc. 5th

International Conference on Functional Programming (ICFP’00), pp. 34–45. ACM Press.

Vardi, M. Y. (1996) An automata-theoretic approach to linear temporal logic. Lecture Notes

in Computer Science 1043, pp. 238–266. Springer-Verlag.

Walker, D. (2000) A type system for expressive security policies. Proc. 27th ACM Symp. on

Principles of Programming Languages (POPL), pp. 254–267. ACM Press.

Wallach, D. S. (1999) A new approach to mobile code security. PhD thesis, Department of

Computer Science, Princeton University.

Wallach, D. S. and Felten, E. W. (1998) Understanding Java stack inspection. Proc. 19th IEEE

Symposium on Security and Privacy. IEEE Computer Society.

https://doi.org/10.1017/S0956796804005465 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005465

