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Tangency quantum cohomology

Joachim Kock

Abstract

Let X be a smooth projective variety. Using modified psi classes on the stack of genus-zero
stable maps to X, a new associative quantum product is constructed on the cohomology
space of X. When X is a homogeneous variety, this structure encodes the characteristic
numbers of rational curves in X, and specialises to the usual quantum product upon
resetting the parameters corresponding to the modified psi classes. For X = P2, the
product is equivalent to that of the contact cohomology of Ernström and Kennedy.

Introduction

Quantum cohomology and enumerative geometry

Let X be a smooth projective variety over the complex numbers. The Gromov–Witten invariants
of X are constructed by pulling back cohomology classes to stacks of stable maps to X and
integrating over the virtual fundamental class (cf. Behrend and Manin [BM96], Behrend [Beh97],
Li-Tian [LT98]). Let Φ denote the generating function for the genus-zero Gromov–Witten
invariants. The quantum product is defined on the cohomology space of X by taking the third
derivatives of Φ as structure constants

Ti ∗ Tj :=
∑
e,f

Φijeg
efTf ,

cf. Kontsevich and Manin [KM94]. The associativity of this product is equivalent to the fact that
Φ satisfies the WDVV equations∑

e,f

Φijeg
efΦfkl = ±

∑
e,f

Φjkeg
efΦfil. (1)

The WDVV equations first appeared as an integrability condition in topological field theory
(cf. Witten [Wit91]). Their axiomatic and coordinate free treatment led to the notion of Frobenius
manifolds (due to Dubrovin [Dub96]; see also Manin [Man99]), other examples of which include
spaces of isomonodromic deformations and unfolding spaces of isolated hypersurface singularities.

A key feature of quantum cohomology is its connection to enumerative geometry: when X is a
homogeneous variety, the Gromov–Witten invariants count rational curves in X subject to incidence
conditions, and then the WDVV equations provide relations among the numbers, in many cases
enough to determine all the numbers from a few initial ones. In this way, enumerative problems
which have resisted more than a century of active research find their solution as an instance of
associativity, arguably one of the most basic concepts of mathematics.
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Gravitational quantum cohomology
An important generalisation of Gromov–Witten invariants is the notion of descendant Gromov–
Witten invariants (gravitational descendants), defined by incorporating psi classes (cotangent line
classes) in the integrals. This corresponds in physics to coupling the topological field theory to
gravity (cf. Witten [Wit91]). The quantum product easily generalises to this setting, now taking
Φ to be the full gravitational Gromov–Witten potential. However, this ‘gravitational’ quantum
product has not brought about as much interest as the first one, for several reasons. First of all, the
gravitational descendants are not directly interpretable in enumerative geometry. Another reason
is that the fundamental class of X is no longer 1-element for the multiplication, and the structure
does not fit so well into the Frobenius manifold framework.

Characteristic numbers
In enumerative geometry, one of the central problems since the time of Chasles, Zeuthen and
Schubert is the characteristic number problem. The characteristic numbers are the numbers of
curves subject to incidence conditions and tangency conditions. From a modern viewpoint the
main interest is not so much the numbers themselves but rather the structures that govern them,
so naturally the central object of study is their generating function, the characteristic number
potential. While a closed formula for the characteristic number potential seems out of reach, the goal
is to constrain it with differential equations. The techniques of stable maps have engendered various
approaches to this problem, and a couple of good differential equations have been found, sufficient
to determine the characteristic numbers of rational curves in a homogeneous variety (see Graber,
Kock, and Pandharipande [GKP02] and the references given therein). However, these approaches
are not related to the associativity formalism. The exception is Ernström and Kennedy [EK99],
who constructed a ‘contact cohomology ring’ for P2, whose associativity amounts to a differen-
tial equation for the generating function for the characteristic numbers of rational plane curves.
Their construction (and the proof of associativity) is very complicated though, and the method
seems to be peculiar to P2.

Tangency quantum cohomology
The present work introduces a new generalisation of quantum cohomology (for any smooth pro-
jective X), which links the characteristic number problem to gravitational quantum cohomology,
and puts new focus on the WDVV equations. The main result can be stated as the associativity
of a tangency quantum product, expressed by certain deformed WDVV equations. While the whole
construction relies on descendant invariants and is closely related to the ‘gravitational’ quantum
product, its motivation lies in enumerative geometry: when X is a homogeneous variety, the gener-
ating function for the characteristic numbers of rational curves in X satisfies these deformed WDVV
equations. In this way, surprisingly, the characteristic numbers are revealed to be governed by the
same simple principle as the incidence-only numbers. (For X = P2 we recover the contact product
of Ernström and Kennedy [EK99].)

Now follows a brief outline of the paper.

The tangency quantum potential
The construction is based on a new potential Γ, called the tangency quantum potential (introduced
in § 1), which incorporates one level of modified psi classes. Modified psi classes are boundary
corrections of the tautological psi classes motivated from enumerative geometry: tangency conditions
are easily expressible in terms of modified psi classes, cf. [GKP02]. In contrast to the tautological psi
classes, the modified ones restrict to the boundary in a non-trivial way, giving rise to certain diagonal
classes. Therefore, the Splitting Lemma 1, which is the engine in the proof of the associativity, is
complicated by correction terms.
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The deformed metric and the tangency WDVV equations

The mess of correction terms is handled by the introduction of a new ‘metric’ γef on the cohomology
space of X, which is the subject of § 2. It is a deformation of the Poincaré metric gef in much the
same way as the tangency quantum potential is a deformation of the Gromov–Witten potential.
Amazingly it encodes all the combinatorics of the diagonal corrections in the splitting lemma,
leading to certain ‘deformed’ WDVV equations for the tangency potential, which are established
in § 3. These equations express the associativity of the tangency quantum product, defined as

Ti ∗ Tj := Ti ∪ Tj +
∑
e,f

Γijeγ
efTf .

The deformed metric is also essential for the formulation of the differential equations of [GKP02]
and [Koc03].

Frobenius structure

The last section is devoted to a technical detail: since modified psi classes are not defined in de-
gree zero, the same goes for the tangency potential. The missing degree-zero part is now con-
structed separately to account for the classical part of the new product. This construction shows
that the tangency quantum product is in fact ‘integrable’ in the sense that its structure constants
(with respect to γ) are the third derivatives of a single function. With this last piece of data, the
results of the paper can be summarised in saying that the new structure is that of a formal Frobenius
(super)manifold (over the power series ring in the new variables).

1. First enumerative descendants

1.1 Set-up

Throughout we work over the field of complex numbers. Let X denote a smooth projective variety,
and let T0, . . . , Tr denote the elements of a homogeneous basis of the cohomology space H∗(X, Q),
with T0 the fundamental class. As in Manin’s book [Man99] we consider H∗(X, Q) as a linear
supermanifold.

Let M0,S(X,β) denote the moduli stack of Kontsevich stable maps of genus zero whose direct
image in X is of class β ∈ H+

2 (X, Z), and whose marking set is S = {p1, . . . , pn}. For each mark pi, let
νi : M0,S(X,β)→ X denote the evaluation morphism that sends the class of a map µ to µ(pi); pull-
backs along evaluation morphisms of cohomology classes of X are referred to as evaluation classes.
The reader is referred to Fulton and Pandharipande [FP95] for definitions and basic properties of
stable maps, Gromov–Witten invariants, and quantum cohomology.

1.2 Modified psi classes (cf. [GKP02])

Let π0 : M0,S∪{p0}(X,β) → M0,S(X,β) denote the forgetful morphism that forgets the extra
mark p0. Together with the sections σi corresponding to each of the marks in S, it constitutes
the universal family. For each mark there is a psi class defined as ψi := c1(σ∗i ωπ0), where ωπ0 is the
relative dualising sheaf of π0.

When β �= 0, the modified psi class is ψi := π̂∗i ψi, where π̂i : M0,S(X,β)→M0,{pi}(X,β) is the
forgetful morphism that forgets all marks but pi.

Modified psi classes arise naturally in enumerative geometry: for example, if X is a homogeneous
variety and Z ⊂ X is a very ample hypersurface of degree z ∈ H2(X, Q), then the cycle of maps
tangent to Z at pi is of class ν∗i (z)∪(ψi+ν∗i (z)). It then follows from a transversality argument that
the characteristic numbers of rational curves are products of top dimension of evaluation classes and
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modified psi classes (integrated over the virtual fundamental class of M0,S(X,β)). For this reason,
these top products,

〈τm1(z1) · · · τmn(zn)〉β :=
∫
ψm1

1 ∪ ν∗1 (z1) ∪ · · · ∪ψmn
n ∪ ν∗n (zn) ∩ [M 0,S(X,β)]virt,

are called enumerative descendants in [GKP02].
The enumerative descendants that appear in the characteristic number problem are only the first

enumerative descendants, i.e. those made up of factors of type τ0(x) and τ1(y), for x, y ∈ H∗(X, Q).
For simplicity, we will work in the fixed basis T0, . . . , Tr and employ the following notation for the
corresponding integrals:

〈τ a
0τ

b
1 〉β :=

〈 r∏
k=0

(τ 0(Tk))ak (τ1(Tk))bk

〉
β

, (2)

where a = (a0, . . . , ar) and b = (b0, . . . , br) are vectors of non-negative integers. The integral is
zero unless

∑
k

(
1
2 deg(Tk)(ak + bk) + bk

)
equals the virtual dimension of M0,S(X,β), where S is of

cardinality n =
∑

(ak + bk).

1.3 Diagonal classes (cf. [GKP02])
For β > 0, the diagonal class δij ∈ H2(M0,S(X,β), Q) is defined as the pull-back from
M0,{pi,pj}(X,β) of the Cartier divisor Dij (consisting of maps having both marks on a contract-
ing twig). It can also be described as the sum of all boundary divisors having pi and pj together on
a contracting twig.

Let π0 : M0,S∪{p0}(X,β)→M0,S(X,β) denote the morphism that forgets p0. Then

π0∗(δ0i ∩ [M 0,S∪{p0}(X,β)]virt) = [M 0,S(X,β)]virt (3)

in H∗(M0,S(X,β), Q).
The diagonal classes owe their name to the following properties:

δijδik = δijδjk

−δ2
ij = δijψi = δijψj

δijν∗i (z) = δijν∗j (z) for z ∈ H∗(X, Q). (4)

The swapping property also holds when δij is replaced with Dij.

1.4 Key formula
Let D = D(S′, β′ | S′′, β′′) denote the boundary divisor which is the image of the morphism

ρD : M0,S′∪{x′}(X,β′)×X M0,S′′∪{x′′}(X,β′′) −→M0,S(X,β)

consisting of gluing together the two maps at x′ and x′′. We will assume that S′ and S′′ are non-
empty and that β′ and β′′ are non-zero. Then ρD is birational onto D. For short, let M

′ and M
′′

denote the factors of the fibred product above, and let

D : M
′ ×X M

′′ −→M
′ ×M

′′

denote the inclusion in the cartesian product.
Now there is the following formula for restricting a modified psi class to the boundary (assuming

pi ∈ S′):
ρ∗Dψi = ∗D(ψi + δix′). (5)

Given generic even elements x, y ∈ H∗(X, Q), we want to compute the integral of the class
τ0(x)aτ1(y)b over D. This depends on how the a + b marks are distributed on the two twigs.
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Among the a copies of τ0(x), assume a′ of them belong to the S′-twig and the remaining a′′ classes
fall on the S′′-twig – similarly assume b′ of the b copies of τ1(y) sit on the S′-twig and the remaining
b′′ on S′′.

Lemma 1 (Splitting lemma for first enumerative descendants). In the situation just described we
have

〈D · τ0(x)aτ1(y)b〉β =
∑
p,q

∑
s′,s′′

(
b′

s′

)(
b′′

s′′

)
〈τ0(x)a

′
τ1(y)b

′−s′τ0(ys′ ∪ Tp)〉β′

× gpq〈τ0(Tq ∪ ys′′)τ0(x)a
′′
τ1(y)b

′′−s′′〉β′′ .

The outer sum is over the splitting indices p and q running from 0 to r, and the inner sum is over
all non-negative integers s′ and s′′: the symbol τ1(y)b

′−s′ makes sense only for s′ � b′, but since

there is a binomial coefficient
(b′
s′
)

in front of it, which is zero unless s′ � b′, we allow any s′. Similarly
for s′′.

Proof. There are four ingredients in the proof of this formula: the first is of course the splitting axiom
of Gromov–Witten theory (cf. Kontsevich and Manin [KM94]), which accounts for the overall shape
of the formula. Second, formula (5) tells how each factor τ1(y) (say realised at mark pi as ψi∪ν∗i (y))
restricts to give (ψi + δix) ∪ ν∗i (y) on the twig containing pi – here x denotes the gluing mark of
that twig. Now (on each twig) expand the product of all these restrictions into a sum over s (which
accounts for the binomial coefficients). Third, apply formula (4) to write δix ∪ ν∗i (y) = δix ∪ ν∗x (y),
with the effect of accumulating evaluation classes on the gluing mark. Finally, by Equation (3) we
can push down each term involving a diagonal class δix along the forgetful morphism forgetting pi;
the effect is simply deleting δix.

1.5 The tangency quantum potential
The tangency quantum potential Γ is now defined as the generating function for the first enumerative
descendants. Let x =

∑
xiTi and y =

∑
yiTi be generic even elements of H∗(X, Q), and set

Γ(x, y) :=
∑
β>0

qβ〈exp(τ0(x) + τ1(y))〉β

=
∑
β>0

qβ
∑
a,b

〈
τ0(x)a

a!
τ1(y)b

b!

〉
β

. (6)

The inner sum is over all non-negative integers a and b – this is meaningful since there is no β = 0
term in the outer sum. (The degree-zero case is considered and included below, in §§ 4.3 and 4.4.)
The coefficients qβ are necessary only to ensure formal convergence; they belong to the Novikov
ring Λ (as defined in Getzler [Get97]), which will be our coefficient ring when treating the tangency
quantum potential.

For convenience we identify x and y with their coordinate vectors x = (x0, . . . , xr) and y =
(y0, . . . , yr) with respect to the basis T0, . . . , Tr. The potential thus belongs to the power series ring
Λ[[x,y]] = Λ[[x0, . . . , xr, y0, . . . , yr]], and expands to

Γ(x,y) =
∑
β>0

qβ
∑
a,b

yb

b!
xa

a!
〈τ a

0τ
b
1 〉β. (7)

Here the inner sum is over all pairs of vectors a = (a0, . . . , ar) and b = (b0, . . . , br) of non-negative
integers, and we employ multi-index notation, e.g. a! = a0! · · · ar!. For the formal variables x and y,
the multi-index notation is reversed to preserve the signs arising from odd variables, e.g. xa =
xar

r · · · xa0
0 .
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The variables x are the usual formal variables from quantum cohomology, so when y is set to
zero, Γ reduces to the usual (quantum part of the) genus-zero Gromov–Witten potential.

The viewpoint of Equation (7) is advantageous for the sake of extracting the invariants, as well
as for checking the validity of certain formal operations on the potential. This task is safely left to
the reader and henceforth only the more compact notation of Equation (6) is used.

2. Deformation of the Poincaré metric

While the usual quantum potential is based on the Poincaré metric constants gij =
∫
X Ti ∪ Tj , the

tangency quantum potential relates more naturally to a deformation of them, a certain ‘metric’ with
values in Q[[y]] = Q[[y0, . . . , yr]]. The basic properties of this deformed metric amount to formal
manipulations with series and their derivatives. Although the arguments are rather straightforward,
they are given in some detail, since the main result of this paper relies on the formalism.

2.1 The classical product in the Poincaré metric

The two important structures on H = H∗(X, Q) are the intersection product ∪, and the trace map∫
X : H → Q (integration over the fundamental class of X). Since this map is going to appear as the

special fibre of a family of trace maps, we will henceforth denote it
∫
0 : H → Q; the generic fibre

will then be denoted
∫
y , cf. § 2.4. Set gij =

∫
0 Ti ∪ Tj and gijk =

∫
0 Ti ∪ Tj ∪ Tk. Let (gij) be the

inverse matrix to (gij). It is used to raise indices as needed; in particular, with gk
ij =

∑
e gijeg

ek, we
have the multiplication formula

Ti ∪ Tj =
∑

k

gk
ijTk. (8)

2.2 Intersection polynomials of X

For a generic even element y ∈ H (identified with its coordinates y = (y0, . . . , yr) with respect to
T0, . . . , Tr as in § 1.5), let φ(y) ∈ Q[[y]] be the generating function for the integrals on X,

φ(y) :=
∫

0
exp(y) =

∑
n�0

1
n!

∫
0
yn

=
∑
s

ysr
r

sr!
· · · y

s0
0

s0!

∫
0
T s0

0 · · ·T sr
r .

Note that this series is exp(y0) times a polynomial in y1, . . . , yr. The heavy explicit notation of the
last expression is avoided in the following – the reader can revert to this notation if needed.

Let subscripts denote partial differentiation as follows:

φi :=
∂

∂yi
φ =

∫
0
exp(y) ∪ Ti, φij :=

∂2

∂yi∂yj
φ =

∫
0
exp(y) ∪ Ti ∪ Tj .

(Note that exp(y) is even, so we could also write φi =
∫
0 Ti ∪ exp(y), but among the indices the

order is significant.)

Use the matrix (gef ) to raise indices, putting

φi
j :=

∑
e

gieφej , φi
j :=

∑
f

φifgfj , φij :=
∑
e,f

gieφefgfj . (9)

The entities φi
j(y) (respectively φj

i (y)) are important because they are the tensor elements of
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‘multiplication by exp(y)’:

exp(y) ∪ Tp =
∑
e,f

Teg
ef

∫
0
Tf ∪ exp(y) ∪ Tp

=
∑

e

Teφ
e
p(y) (10)

(respectively Tq ∪ exp(y) =
∑

f φq
f (y)Tf ). (These are identities in H[[y]].)

We will also need symbols with three indices. Specifically, starting from the third derivatives

φijk :=
∂3

∂yi∂yj∂yk
φ,

the outer indices can be raised as in Equation (9) – for example

φi
j
k :=

∑
e,f

gieφejfgfk. (11)

Observe that for all φ-symbols, upon setting y = 0 we recover the corresponding g-symbol.
For example, we have

φi
jk(0) = gi

jk. (12)

The following formula is the basic instance of an important principle. It can be used to show
that many other index-raising rules (contractions) hold as expected.

Lemma 2 (Sum formula). Let y′ and y′′ be generic even elements of H. Then

φ(y′ + y′′) =
∑
e,f

φe(y′)gef φf (y′′).

Proof. Consider the product manifold with its projections

X
p′←− X ×X

p′′−→ X.

For each i = 0, . . . , r, put T ′
i := p′∗Ti and T ′′

i := p′′∗Ti; so that T ′
0, . . . , T

′
r, T

′′
0 , . . . , T ′′

r is a basis for
X ×X. Now write down the exponential series for X ×X

exp(y′ + y′′) = exp
(∑

y′iT
′
i +

∑
y′′i T ′′

i

)
and integrate over the diagonal ∆. Computing this integral using the isomorphism X � ∆ yields
the left-hand side of the desired equation. On the other hand, computing the integral using the
Künneth decomposition [∆] =

∑
e,f T ′

eg
efT ′′

f we get∫
∆

exp(y′ + y′′) =
∫

X×X
exp(y′) ∪ [∆] ∪ exp(y′′)

=
∑
e,f

(∫
X

exp(y′) ∪ Te

)
gef

(∫
X

Tf ∪ exp(y′′)
)

via the projection formula, arriving at the right-hand side.

2.3 Variations on the sum formula
The same principle readily yields many other useful formulae. For instance, applying the argument
to the series exp(y′ + y′′) ∪ T ′

i ∪ T ′′
j gives the formula

φij(y′ + y′′) =
∑
e,f

φie(y′)gefφfj(y′′), (13)
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and if instead we start with exp(y′ + y′′) ∪ T ′
i ∪ T ′

j ∪ T ′′
k we arrive at

φijk(y′ + y′′) =
∑
e,f

φije(y′)gefφfk(y′′). (14)

These formulae can then have their outer indices raised as in Equations (9) and (11), yielding

φij(y′ + y′′) =
∑
e,f

φi
e(y′)gef φf

j(y′′) (15)

φi
j
k(y′ + y′′) =

∑
e,f

φi
je(y′)gefφf

k(y′′). (16)

Finally, useful formulae drop out by specialising y′ or y′′. For example, setting y′ = 0 and y′′ = y
in Equation (16) we get

φi
j
k = φi

j
k(0 + y) =

∑
e,f

φi
je(0)gefφf

k(y) =
∑

e

gi
jeφ

ek (17)

via Equations (12) and (9). Similarly, φi
j
k =

∑
f φifgk

fj .

2.4 The deformed metric
Instead of using the integral

∫
0 : H → Q, the new metric is based on the linear map

∫
y : H → Q[[y]]

defined as ∫
y
z :=

∫
0
exp(−2y) ∪ z.

It is thought of as a deformation of
∫
0 since we recover this map upon setting y = 0. Now define

the new metric (γij) by

γij := γij(y) :=
∫

y
Ti ∪ Tj = φij(−2y),

and adopt the obvious notation γijk =
∫
y Ti ∪ Tj ∪ Tk = φijk(−2y). Let (γij) denote the inverse

matrix to (γij). Then it follows readily from the sum formula (and Equation (15)) that

γij = φij(2y) =
∑
e,f

φi
eg

efφf
j . (18)

This formula is the most important expression for the deformed metric, since it is in this form it
will appear in the proof of Theorem 1. (Note that the indices on γ do not denote derivatives, and
that the upper indices are not just raised by (gef ). Specifically, γij is not equal to

∑
e,f gieγefgfj .)

The sum formula also yields
∑

e γijeγ
ef =

∑
e φije(−2y)φef (2y) = φij

f (0) = gf
ij , thus the

intersection product can be written

Ti ∪ Tj =
∑
e,f

γijeγ
efTf .

2.5 Example
For P2 (with h := c1(O(1)) and basis Ti := hi), we get

(γij) = exp(2y0)


 0 0 1

0 1 2y1

1 2y1 2y2
1 + 2y2


 .

This matrix (with y0 and y2 set to zero) was first written down in the pioneering article of
di Francesco and Itzykson [dFI95].
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3. WDVV equations and the tangency quantum product

3.1 Notation
Let the lower indices on Γ denote partial derivatives with respect to the x-variables, for example

Γij := Γxixj :=
∂2

∂xi∂xj
Γ =

∑
β>0

qβ〈exp(τ0(x) + τ1(y)) · τ0(Ti)τ0(Tj)〉β ,

and set

Γ(ij) = Γ(xixj) :=
r∑

k=0

Γxk
gk
ij, (19)

as the ‘directional derivative with respect to the product Ti ∪ Tj =
∑

gk
ijTk’.

Theorem 1. The following form of the WDVV equations holds for the tangency quantum potential.

Γ(ij)k� + Γij(k�) +
∑
e,f

Γijeγ
efΓfk� = ±

(
Γ(jk)i� + Γjk(i�) +

∑
e,f

Γjkeγ
efΓfi�

)
,

where ‘±’ denotes the sign of (−1)deg Ti(deg Tj+deg Tk).

Proof. The proof follows the line of arguments of the proof of the WDVV equations for the usual
Gromov–Witten potential, cf. Kontsevich and Manin [KM94]. The novelty is the splitting lemma
for enumerative descendants and the appearance of the deformed metric.

For fixed degree β > 0 and integers a, b � 0, consider the moduli stack M 0,{p1,p2,p3,p4}∪S(X,β)
where S is a marking set of cardinality a + b. Consider the product

τ0(Ti)τ 0(Tj)τ0(Tk)τ0(T�)
τ 0(x)a

a!
τ1(y)b

b!
where the first four classes correspond to the marks p1, p2, p3, p4. Now integrate the product over
each side of the fundamental equivalence

(p1, p2 | p3, p4) = (p2, p3 | p1, p4), (20)

where (p1, p2 | p3, p4) denotes the sum of all boundary divisors having p1 and p2 on one twig and
p3 and p4 on the other. Summing up these equations over all a, b � 0 and over all β > 0 (as in the
definition of Γ) we will get the desired equation. Let us treat the left-hand side. On the right-hand
side of the equation the arguments are the same; only it is necessary initially to permute the four
special factors, which accounts for the sign (as in [KM94]).

On the left-hand side of the equation, let us first consider the contribution from the trivial
degree partitions, say β′ = 0. Then the only possible distribution of the marks giving a contribution
is when all the spare marks fall on the right-hand twig, which leaves us with the single boundary
divisor D12. Now according to § 1.3, the effect of multiplication with this divisor is to merge the
two classes τ0(Ti) and τ0(Tj) and so in the end we get〈

τ0(Ti ∪ Tj)τ 0(Tk)τ 0(T�)
τ 0(x)a

a!
τ1(y)b

b!

〉
β

.

Similarly, the case β′′ = 0 gives〈
τ0(Ti)τ0(Tj)τ 0(Tk ∪ T�)

τ 0(x)a

a!
τ1(y)b

b!

〉
β

.

Summing over β > 0 and a, b � 0 gives exactly the two linear terms on the left-hand side of the
promised equation, cf. Equation (19).
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Now for those boundary divisors in the linear equivalence corresponding to strictly positive
degree partitions. To each irreducible component on the left-hand side of Equation (20), we apply
the Splitting Lemma 1, getting all together

∑∑
p,q

〈
τ0(x)a

′

a′!
τ1(y)b

′

b′!
τ0(Ti)τ0(Tj)τ0

(
yc′

c′!
∪ Tp

)〉
β′

× gpq

〈
τ0

(
Tq ∪ yc′′

c′′!

)
τ0(Tk)τ 0(T�)

τ0(x)a
′′

a′′!
τ1(y)b

′′

b′′!

〉
β′′

.

where the big outer sum is over all a′ + a′′ = a and all b′ + c′ + b′′ + c′′ = b. (The b′ corresponds to
what was called b′ − s′ in the Splitting Lemma 1.) Now sum over all a and b getting∑

p,q

〈exp(τ 0(x) + τ1(y)) · τ0(Ti)τ 0(Tj)τ 0(exp(y) ∪ Tp)〉β′

× gpq〈τ0(Tq ∪ exp(y))τ0(Tk)τ0(T�) · exp(τ 0(x) + τ1(y))〉β′′ .

Next, use Equation (10) to get rid of exp(y), and sum over all β > 0 as in the definition of Γ,
arriving at ∑

p,q
e,f

Γijeφ
e
pg

pqφq
fΓfk�.

By Equation (18), this is just the quadratic term of the left-hand side of the desired equation.

3.2 Enumerative geometry

According to [GKP02, Lemma 3.2.3], when X is a homogeneous variety, the tangency quantum
potential is related to the rational characteristic number potential by a linear change of coordinates
of the form x �→ x + ρy, y �→ σy. Since the derivatives appearing in the above WDVV equation
are only with respect to x-variables, it follows that the characteristic number potential satisfies
essentially the same equation. For X = Pr, the equation is exactly the same. For more complicated
varieties (like P1 × P1) the definition of characteristic numbers involves the choice of which hyper-
surfaces are used to impose tangency conditions. Depending on this choice, the substitution y �→ σy
which must be performed in γ can be non-trivial, so the deformed metric appearing in WDVV for
the characteristic number potential is slightly different in that case. These coordinate changes are
carefully explained in [GKP02].

3.3 Example

In the special case X = P2, it turns out the only non-trivial relation in Theorem 1 is the one with
i = j = 1 and k = � = 2. Since Γ0 = 0 by the string equation (cf. [GKP02]), the relation reads

Γ222 = exp(2y0)(Γ2
112 − Γ111Γ122 + 2y1(Γ122Γ112 − Γ111Γ222) + (2y2

1 + 2y2)(Γ2
122 − Γ112Γ222)).

This equation (for the characteristic number potential) was first found by Ernström and Kennedy
[EK99] (cf. Remark 1 below), while the special case of y0 = y2 = 0 goes back to di Francesco and
Itzykson [dFI95]. By also setting y1 = 0 we are back to the celebrated formula of Kontsevich [KM94].

3.4 Topological recursion relation

The deformed WDVV equations given in § 3.3 alone are not sufficient to determine all the first
enumerative descendants (or the characteristic numbers) from the primary Gromov–Witten in-
variants. But topological recursion is also available for the enumerative descendants, cf. [GKP02].
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In the present set-up, that topological recursion relation takes the following pleasant form:

Γyixjxk
= Γxi(xjxk) − Γ(xixj)xk

− Γ(xixk)xj
+
∑
e,f

Γxixeγ
efΓxf xjxk

.

The shape of this equation stems from the boundary expression of the modified psi class, ψi =
(pi | pj, pk)− ξi, where ξi is the sum of all boundary divisors such that pi is on a contracting twig.
The deformed metric enters in the quadratic terms for the same reason as in the proof in § 3.1.

3.5 The tangency quantum product

The tangency quantum product ‘∗’ is the Λ[[x,y]]-bilinear product on H∗(X, Q)⊗QΛ[[x,y]] defined
by the rule

Ti ∗ Tj := Ti ∪ Tj +
∑
e,f

Γijeγ
efTf .

Clearly this product is supercommutative. Furthermore, since the ‘string equation’ for Γ is simply
Γ0 = 0, it follows that T0 is the 1-element for ∗. Note also that the product specialises to the usual
quantum product upon setting the formal variables y to zero.

Theorem 2. The tangency quantum product is associative.

Proof. This is a straightforward consequence of Theorem 1; it amounts to checking the associa-
tivity relations on the generators, using the definition of the product. The only subtle point in the
verification is the identity ∑

e,f

Γijeγ
ef (Tf ∪ Tk) =

∑
�,m

Γij(k�)γ
�mTm,

which follows from the properties of the structure constants gk
ij . First apply Equation (8) to write

(Tf ∪ Tk) =
∑

m gm
fkTm. Then use Equation (17) to write

∑
f γefgm

fk =
∑

� ge
k�γ

�m; and finally use
(the derivative of) Equation (19) to write

∑
e Γijeg

e
k� = Γij(k�).

Remark 1. In the special case X = P2, this product was previously constructed via ad hoc methods
by Ernström and Kennedy [EK99], who also gave a tour de force proof of its associativity. Their
construction relies on the space of stable lifts, and seems to be peculiar to the projective plane.

4. Integrability

4.1 The classical potential

The classical potential for X is the generating function for the triple top products∫
0

x3

3!
=
∑
i,j,k

xkxjxi

6

∫
0
Ti ∪ Tj ∪ Tk.

By construction, its third derivatives are just gijk, the structure constants for the cup multiplication
(in the Poincaré metric). In usual quantum cohomology, this potential is reinterpreted as the β = 0
part of the Gromov–Witten potential: a quantum correction (the β > 0 part) is added to the
classical potential, in such a way that the third derivatives of this sum are the structure constants
of a new associative product – the quantum product.
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4.2 ‘The tangency classical potential’
The tangency quantum product relates to

∫
y exactly as the usual quantum product relates to

∫
0.

So let us introduce a potential

Φ0(x, y) :=
∫

y

x3

3!
=
∑
i,j,k

xkxjxi

6

∫
y
Ti ∪ Tj ∪ Tk,

which to fit into the picture could be called the tangency classical potential, although it is neither
classical, nor has anything particular to do with tangency. By construction, its third derivatives
are γijk, the structure constants of the cup multiplication, but this time in the deformed metric

Ti ∪ Tj =
∑
e,f

Φ0
ijeγ

efTf .

4.3 The tangency potential, including β = 0
Introducing the potential

Φ(x, y) := Φ0(x, y) + Γ(x, y),

whose third derivatives are Φijk = γijk + Γijk, the tangency quantum product can be written

Ti ∗ Tj =
∑
e,f

Φijeγ
efTf ,

and the WDVV equation of Theorem 1 then takes the usual form∑
e,f

Φijeγ
efΦfk� = ±

∑
e,f

Φjkeγ
efΦfi�.

4.4 Interpretation of the degree-zero term
Writing down this potential Φ = Φ0 + Γ calls for an interpretation of Φ0 in terms of some top
products on the degree-zero spaces. Unfortunately there is no way of defining the modified psi class
on M0,n, if we want it to satisfy the two rules:

i) it should be compatible with pull-back along forgetful morphisms; and

ii) it should satisfy the push-down formula π∗ψ = −2, independent of the number of marks, to
give the dilaton equation for modified psi classes (cf. [GKP02]).

Basically this is impossible because the one-pointed spaces do not exist in degree zero. The best
one can do is to define the class on a fixed four-pointed space and then pull it back to the hierarchy
lying over this space, but this definition depends on the choice of the three extra marks.

So take a moduli space M 0,S∪{q1,q2,q3}(X, 0) with three distinguished marks. For each of the
other marks ps ∈ S, define the modified psi class ψs as the pull-back from M0,{ps,q1,q2,q3} � P1 of
the class of degree −2. One easily checks that this is equivalent to defining ψs := ψs− ξs, where ξs

is the sum of all boundary divisors such that ps is on a (contracting) twig together with at most one
of the distinguished marks. (This description is then compatible with the boundary description of
the modified psi class in the β > 0 case (cf. [GKP02]), since in that case there are no distinguished
marks.)

In this setting, define the invariant〈
τ0(x)a

a!
τ1(y)b

b!
τ0(Ti)τ 0(Tj)τ 0(Tk)

〉
0
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in the obvious way, with the last three classes corresponding to the three distinguished marks.
Identifying M0,S∪{q1,q2,q3}(X, 0) with M0,S∪{q1,q2,q3} ×X, all the evaluation morphisms are just the
projection p to X, so the integrand has a factor p∗((xa/a!) ∪ (yb/b!) ∪ Ti ∪ Tj ∪ Tk). The remaining
factors are modified psi classes from M0,S∪{q1,q2,q3}; since each of them is alone on its mark, we can
push them down one by one, arriving at a factor of (−2)b. The remaining integral

∫
1 is zero for

dimensional reasons, unless we have come down to just M0,{q1,q2,q3}, which means a = 0. We conclude

〈
τ1(y)b

b!
τ0(Ti)τ 0(Tj)τ 0(Tk)

〉
0

=
∫

0

(−2y)b

b!
∪ Ti ∪ Tj ∪ Tk.

Summing over all b (and a) we get∫
0
exp(−2y) ∪ Ti ∪ Tj ∪ Tk =

∫
y
Ti ∪ Tj ∪ Tk = γijk

showing that at least the third derivatives of Φ0 have an interpretation as top products on degree-
zero moduli spaces and, after all, it is the third derivatives that really matter.

Once we know that the structure constants of the tangency quantum product are third derivatives
of the single potential Φ, we are in position to give an interpretation in terms of Frobenius manifolds.

4.5 Formal Frobenius manifolds

For convenience let us recall (from Manin [Man99], Ch. III) the definition of a formal Frobenius
manifold over a base ring. Let k be a supercommutative Q-algebra. Let H be a free k-module of finite
rank, with generators T0, . . . , Tr, and let g : H ⊗H → k denote an even symmetric non-degenerate
bilinear pairing. Let K = k[[Ht]] be the completed symmetric algebra of the dual module Ht.
In other words, if x =

∑
xiTi is a generic even element of H then K = k[[x0, . . . , xr]]. Now the

structure of a formal Frobenius manifold on (H, g) over k is given by an even potential Φ ∈ K
(defined up to quadratic terms) satisfying WDVV. In other words, the multiplication Ti ∗ Tj :=∑

e,f Φijeg
efTf makes H ⊗k K into an associative supercommutative K-algebra.

With H := H∗(X,Λ), the results of this section readily imply the following.

Theorem 3. The cohomology Λ[[y]]-module H[[y]] with bilinear non-degenerate pairing γ : H[[y]]⊗
H[[y]] → Λ[[y]], equipped with the tangency quantum potential Φ ∈ Λ[[x,y]] constitutes a formal
Frobenius manifold over Λ[[y]], with T0 as the identity.

In fact, this formal Frobenius manifold is a deformation over Q[[y]] of the formal Frobenius
manifold of usual quantum cohomology. While the underlying space is trivially deformed under this
deformation, the metric and the potential vary non-trivially.
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