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A DUALITY THEOREM FOR
NONDIFFERENTIABLE CONVEX PROGRAMMING

WITH OPERATORIAL CONSTRAINTS

P. KANNIAPPAN AND SUNDARAM M.A. SASTRY

A duality theorem of Wolfe for non-linear differentiable

programming is now extended to minimization of a non-

differentiable, convex, objective function defined on a general

locally convex topological linear space with a non-differentiable

operatorial constraint, which is regularly subdifferentiable.

The gradients are replaced by subgradients. This extended

duality theorem is then applied to a programming problem where

the objective function is the sum of a positively homogeneous,

lower semi continuous, convex function and a subdifferentiable,

convex function. We obtain another duality theorem which

generalizes a result of Schechter.

1. Introduction

The following pair of programming problems has been studied by Wolfe

[9]:

(P) minimize fix)

subject to h .(x) > 0 , i = 1, ..., m ;
If
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m
(D) m a x i m i z e f(x) - £ u.h.(x)

^ = l

m
subject to u> 0 and Vf(x) = £ u.Vh.(x) .

Here / is a convex function on if and the h.'s are concave functions.

f and h. are assumed differentiable. Furthermore a constraint

qualification is assumed satisfied. Then Wolfe has proved the duality

theorem that if x is optimal for (P), there exists a vector w such

that fa? , M-J is optimal for (D) and furthermore the two problems have

the same extremal value. Geoffrian [33 and Rockafellar [7] have studied

duality theory without differentiability in a direction different from that

of Wolfe's. On the other hand Mond and Schechter [5] have studied some

particular problems very much in the spirit of Wolfe.

In this paper we derive a duality theorem in Section 3, very much like

Wolfe's in a general locally convex topological linear space. Here we do

not assume differentiability, and we replace functional constraints by

operatorial constraints and gradients by subgradients. Finally in Section

k, by applying this duality theorem to a programming problem where the

objective function is the sum of a positively homogeneous, lower semi

continuous, convex function and a subdifferentiable, convex function, we

get another duality theorem which generalizes a result of Schechter [£]•

2. Preliminaries

In this paper V and V* , as well as Y and Y* , shall be pairs of

real vector spaces in duality, with their respective weak topologies. Thus

all the spaces will be locally convex spaces. We let C c Y be a closed

convex cone defining a partial order in Y- for x, y € Y ; x S y if

y-x € C . (When Y is R , it is understood that the cone C is

[0, °°) .) C* shall stand for the polar-cone namely,

C* = {y* £ Y* : <y*, y) > 0 for every y (. C} .

Let A be a non-empty closed convex subset of V , and l e t

G : A -»• Y . G is said to be convex if G[tx+(l-t)y) 2 tG(x) + (l-t)G(y)

for a l l x , y € A and 0 < t 5 1 .
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A continuous linear map T : V •* Y is said to be a subgradient of G
at a point u € A if T[U-U ) 5 G{u) - G(UQ) for every u € A . The set

of all subgradients of G at w is called the subdifferential of G at

u. and is denoted by 3G(iO •

G is said to be regularly subdifferentiable at u if

8(z/* o G) [u ) = y* o 2G[u) for every y* € C* [ I ] . If G is regularly

subdifferentiable at every point of A , then G is said to be regularly

subdifferentiable on A .

3. The duality theorem

Let J : A -»• R be a lower semi continuous, convex function, and let
G : A ->• ¥ be a convex operator, which is regularly subdiff erentiable on
A .

Let U = {u f A : G(u) 5 0} be non-empty.

The p r imal problem (P) i s

(P) inf J(u) .

The proof of the following theorem can be found in [/], [2].

THEOREM 1. Let inf J(u) be finite, and assume that there is a
uZU

uQ € A such that G[U.) < 0 [that is, -G[UQ) is an interior point of

C ). Then u € A is a solution of (P) if and only if there is p* € C*

suah that (u, p*) satisfies

(1) J(u) + <p*, G(u)) 5 J{u) + (p*, G(u)> 5 J(u) + <p*, G(u))

for every u € A 3 p* € C* . Further, in this case, <p*, G(u)) = 0 .

NOTE. From the second inequality in ( l ) , i t follows that u is a
minimum point for the function (J+p* o G)(u) , and hence
0 € d(J+p* o G){u) ( [4] , page 8l) .

Consequently, we have the following generalized Kuhn-Tucker theorem
for operatorial constraints.

THEOREM 2. If we further assume that G is continuous at some point
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in A j then u € A is a solution of (?) if, and only if, there is

p* € C* such that <p*, G(u)) = 0 and 0 € 9J(w) + p* o dG(ii) .

This is so because, if G is continuous at some point in A , then,

by the Morean-Rockafellar theorem [6] ,

d{J+p* o G)(u) = dJ(ii) + dip* ° G)(u)

= dJ(u) + p* o 9G(u) ,

since G is regularly subdifferentiable on A .

Based on Theorem 2, we define the following dual problem (V):

(V): m a x i m i z e J(u) + (y*, G(u)>

subject to y* € C* , and 0 € SJ(u) + y* o 8G(u) .

Now we have the following analogue of Wolfe's duality theorem [9] in

the case of operatorial constraints.

THEOREM 3. Assume the hypotheses of Theorems 1 and 2. If w is a

solution for problem (P), then there exists y* € Y* such that [u , y*)

is a solution for problem (V). Furthermore, the two problems have the same

extremal value.

Proof. By Theorem 2, feasible solutions exist for (V) .

Let (x, y*) be a feasible solution for problem (V). Then y* > 0 ,

and there exist v € dJ(u) and T € dG(u) such that 0 = v + y* ° T .

Now

> (v, uQ-u> - (y*, G(u)> = -(y* o T, uQ-u) - (y*, G(u)>

> ( y \ G{u)-G[u0)) - <y*, G(u)> = -(y*, G[UQ)>

= 0 ,

s i n c e y* > 0 , and G(u ) 5 0 . Thus

(2) J(WQ) 2 J(U) + <!/*, C(M)>

for any feas ib le so lu t ion (u, j/*) for problem (V). Since u^ i s an

optimal so lu t ion of problem (P ) , we have from Theorem 2, t ha t t he re ex i s t s

y* € C* such t h a t <#*, G(wQ)> = 0 and 0 € dJ(uQ) + j / * o 3G(wQ) . In
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other-words, [u , y*\ is a feasible solution for (V). Hence

(3) j(uQ) =j{uQ)+(y*Q, G[uQ)> .

This shows t h a t from (2) and ( 3 ) , [uQ, y*) i s an opt imal s o l u t i o n

for ( 0 ) , and t h a t t h e two problems have t h e same extremal v a l u e .

4. Applications

We next apply the above theorem to the case where the objective

function is the sum of a positively homogeneous, lower semi continuous,

convex function and a subdifferentiable convex function.

We shall need the following definition and propositions.

DEFINITION. Let A be a subset of a locally convex space V* . Then

the support function of A , denoted by S('/A) is defined by

S{u/A) = sup{<w, u*> : u* € A] .

NOTE. Let F be a positively homogeneous, lower semi continuous,

convex function, defined on a locally convex space V . Then

3F(0) = {u* € V* : F(u) 2 <u, u*) for all u € V) ,

since F(0) = 0 .

The following proposition is proved in ([4], page 192);

PROPOSITION 1. Let F be a positively homogeneous, lower semi

continuous, convex function defined on a locally convex space V . Then F

is the support function of 9F(0) .

REMARK. Note that 3F(0) is a non-empty, convex, compact subset of

V* . In fact, there is a one to one correspondence between compact convex

subsets of V* and positively homogeneous, lower semi continuous, convex

functions on V .

PROPOSITION 2. Let F be a positively homogeneous, lower semi

continuous, convex function defined on a locally convex space V ; and let

u ± 0 . Then

(k) dF(u) = {u* € 3F(0) : F(u) = <u, u*>} .

This follows from Proposition 1, and the result that u* € dF(u) if,

and only if, F{u) + F*(u*) = <u, u*> ([4], page 198), where F* denotes

https://doi.org/10.1017/S0004972700006419 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006419


150 P. K a n n i a p p a n and S u n d a r a m M.A . S a s t r y

t h e conjugate function of F .

Let the objective function J : A -»• R be of the form J = F' + F ,

where F i s a pos i t ive ly homogeneous, lower semi continuous, convex

function and F i s a convex function and l e t F be continuous a t some

point of A . Also, l e t G : A •* Y be regular ly subdifferentiable on A ,

The primal problem (Pi) i s

(P i ) : minimize J(u) subject to G(u) < 0 .

Let (Pi) and (O2) denote the following dual problems:

( P i ) : m a x i m i z e F 2 ( u ) + < w * , u ) + < y * , G { u ) )

subject to y* € C* , w* £ 9^(0) , <W*, u) = F^u)

and 0 € 3F2(M) + w* + y* o dG(u) ;

(P2): maximize F (u) +<w*, u> +<y*, G(u)>

subject to y* € C* , w* € 3^(0)

and 0 € dF2(u) + W* + y* o dG{u) .

THEOREM 4 . If u is optimal for ( P i ) , then there exist y* and

w* such that [uQ, y*, w*) is optimal for {V2). Further, the two

problems, have the same extremal value.

Proof . S ince uQ i s op t imal for ( P i ) , by Theorem 2 , t h e r e e x i s t s

y* € C* such t h a t <y*, G(UQ)> = 0 and 0 € 3J(" O ) + U* ° 9G!(«0) • B u t

dj(u ) = dF [u ) + dF[u ) by t h e Moreau-Rockafel lar theorem [ 6 ] . Also

^[UQ) = {u* € 9F1(0) : F^UQ) = < M Q , "*>} by ( I t ) . The re fo re ,

0 € 2F2(uQ) + {u* € 3 ^ ( 0 ) : ^ (uQ) = < MQ, «">} + y* ° 9G(«0) . Hence

t h e r e i s w* € 9F (0) s a t i s f y i n g F (uQ) = < u . , w*> such t h a t

0 € 9 F 2 ( M ) + u* + y* o 9C(wQ) . Thus f e a s i b l e s o l u t i o n s for (P 2 ) e x i s t .

Le t (u, y*, w*) be any f e a s i b l e s o l u t i o n for (V2). Then y* € C* ,

U* € 3 ^ ( 0 ) and t h e r e e x i s t v € 3F (w) and T € 3G(w) such t h a t

0=v+w*+y*oT.
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Now

> l F 2 { u Q ) - F 2 ( u ) ] + [<w*, M O > - < W * , M > ] - < y * , G(w)> ( s i n c e

, M Q - U > - < $ / * , C ( M ) >

= - < J / * o T , M o -M> - < ! / *

= - < « / * , T { u Q - u ) ) - < y * ,

2 - < y * , G ( M O ) - G ( M ) > - < j / * , G ( M ) > ( s i n c e T € 3 G ( M ) )

= -Ly*, G[uo)> > 0 ( s i n c e i / M C* , - G ( W Q ) € C) .

Thus ^ - . ( " Q ) + F
2(

u() ~ < u * ' w > + F 2 ^ " ^ + < y * ' ^ " ^ f o r e v e r y f e a s i b l e

s o l u t i o n ( u , y * , u* ) of ( P 2 ) .

Now, s i n c e M i s o p t i m a l f o r ( P i ) , t h e r e a r e y* € C* , w* € 3F (0)

s a t i s f y i n g ^ (uQ) = <M Q , U*> such t h a t 0 € 3 F 2 ( M 0 ) + u* + y* o 3G(wQ)

and such t h a t <j/* G(U )> = 0 .

Hence

F2(u)

for every feasible solution (u, y*, w*) of (Vz) . That i s , [uQ, y*, w*)

i s optimal for (P2).

Clearly, the extremal values of the two problems are the same.

REMARKS. (1) in Theorem k, i f u i s optimal for (P i ) , then the

lw
n» J/ij u i ) which has been obtained optimizing (V2), in fac t , also

optimizes (P i ) .

(2) Theorem h generalizes a r e s u l t of Schechter [&].
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