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SUMMARY

The lack of robustness of models of the maintenance of polymorphism
in a heterogeneous environment which has been pointed out by Maynard
Smith & Hoekstra (1980), applies also to models based on habitat
selection, on temporal variation and on density-regulated selection. Only
if (partial) dominance 'switches' between environments such that the
fitness of the heterozygote is always close to the favoured homozygote,
is there reasonable robustness. This is true for all models considered. It
is argued that there are good reasons for supposing that the favourable
allele at a locus may show dominance, although the experimental
evidence is still scanty.

1. INTRODUCTION

There is a large body of theoretical work on the problem of how genetic variation
can be maintained in a varied environment, which has been reviewed by Felsenstein
(1976) and Hedrick, Ginevan & Ewing (1976). Broadly speaking, temporal
variation in selection coefficients at a single two-allelic locus in a diploid population
brings about protected polymorphism (i.e. both alleles increase in frequency when
rare) if there is geometric mean overdominance (averaged over time), while spatial
fitness variation leads to protected polymorphism if there is harmonic mean
overdominance (averaged over the subpopulations or niches). In the latter case,
conditions for protected polymorphism become broader with decreasing amounts
of migration between the subpopulations. The theory thus shows that environmental
variation in fitness may maintain genetic polymorphism in the absence of
(arithmetic mean) overdominance, which has been known for a long time as a
potential variation preserving mechanism (Fisher, 1922), but which is also well
known for a remarkable lack of empirical evidence concerning its operation in
natural populations (Lewontin, 1974).

Already at an early stage of the formulation of the models for polymorphism
in a varied environment, Maynard Smith (1966) had shown that in a special case
of Levene's model (Levene, 1953) the conditions for stable polymorphism require

* Present address: Dept. of Physical Geography, Geological Institute, University of Gron-
ingen, 9718 EP Groningen, The Netherlands.

https://doi.org/10.1017/S001667230002228X Published online by Cambridge University Press

https://doi.org/10.1017/S001667230002228X


300 R. F. HOEKSTRA, R. BIJLSMA AND A. J. DOLMAN

the relative subpopulation sizes to lie in a very narrow range for small and
moderate values of the selection coefficients. This disturbing lack of robustness also
applies to a number of other models of polymorphism in a heterogeneous
environment, as shown by Maynard Smith & Hoekstra (1980). They analysed
various models on spatial fitness variation, but did not consider the robustness of
models based on temporal variation in fitness, nor models relying on habitat
selection or restricted migration. It has been claimed (e.g. Maynard Smith (1966),
Jones (1980), Jones & Probert (1980)), that habitat selection may improve the
robustness of the models considerably. The aim of this paper is to investigate
the robustness displayed by the above-mentioned types of models, excluded in
the analysis by Maynard Smith & Hoekstra (1980).

In Section 2 of this paper we explain the approach used to analyse robustness.
Section 3 is devoted to the effect of habitat selection on the robustness of the
models. Section 4 considers models based on temporal variation, while in Section
5 we ask whether the combined effect of spatial and temporal fitness variation may
enhance robustness. Finally in Section 6 a model of density-regulated selection in
a heterogeneous environment, proposed recently by Arnold & Anderson (1983) is
considered.

2. OUTLINE OF THE APPROACH

The robustness of a model is analysed by considering the dependence of the
model parameters upon each other as imposed by the conditions for protected
polymorphism or, in other words, by examining the part of the parameter space,
defined by these conditions. The robustness, p, with respect to one of these
parameters is then defined as the range of values of this parameter for which there
is protected polymorphism (for given values of the other parameters), expressed
as a fraction of the total range of values it may take. We therefore have 0 ^ p ^ 1.
Thus a robustness of p = 0-l means that a critical model parameter (such as
relative niche size) must adopt values in an interval which comprises only 10%
of its total range, in order to guarantee a protected polymorphism; as soon as the
parameter takes a value outside this interval polymorphism becomes unstable.

The general approach adopted in this paper is as follows. A special (but not
atypical) case of the model under consideration is singled out in order to reduce
the number of parameters. Thus generality is sacrificed to gain simplicity and
transparency of the analysis. We consider only one locus diploid models, assuming
equal and opposite selection in two environments (representing in the spatial models
two niches or subpopulations, and in the temporal models two alternative selection
regimes to which the population is subjected). The following basic patterns of
fitness variation are studied:

(i) Partial dominance of constant direction

Relative fitnesses are as follows:

A A A A
Vij -̂ -2 2 2
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For any value of k (partial) dominance has the same direction in both environments:
for k — 0 allele Al is completely dominant with respect to fitness, for 0 ^ k ^ \ Ax

is partially dominant, for k = \ there is additivity in fitness, for \ ^ k ^ 1 allele
A2 is partially dominant, and for k = I A2 is completely dominant.

(ii) Partial dominance of varying direction

Relative fitnesses are as follows:

(2)

Now the direction of (partial) dominance differs between the two environments:
Ax is (partially) dominant in one environment and A2 in the other environment.
In the Discussion section we will comment on the plausibility of these fitness
patterns.

3. HABITAT SELECTION

We adopt the model of habitat selection proposed by Maynard Smith (1966,
1970); the essential features of this model are:

(i) The environment is divided into two niches, characterized by different
selective forces,

(ii) the adults produced in the two niches form a single random mating
population,

(iii) there is habitat selection in the sense that females tend to return after mating
to lay eggs in the niche in which they were raised.

The basic models of selection in a subdivided population were formulated by
Levene (1953) and Dempster (1955). These models assume that the adults form
a single random mating population, and that after mating females lay their eggs
in one of a number of ' niches'; the selective values of the genotypes differ from
niche to niche. There is an important difference between Levene's model and
Dempster's model with regard to the way the population size is supposed to be
regulated. In Levene's model each niche contains after selection a constant fraction
of the total population, while in Dempster's model each niche has a constant
fraction of the total population of zygotes before selection, and selection acts by
differential survival of the zygotes to the time of migration. A number of
consequences of this difference are discussed by Christiansen (1975), while Maynard
Smith & Hoekstra (1980) present a simple general model from which Levene's and
Dempster's models emerge as special cases.

We now analyse the robustness of Levene's model with habitat selection.
Consider an autosomal locus with two alleles A1 and A2 in a diploid population,
subdivided in two subpopulations living in different niches. The population is
subjected to selection as indicated in the preceding section. After selection a
proportion c of the total population is in niche 1 and a proportion 1 — c in niche
2. Then global random mating occurs, after which a female raised in niche 1 lays
a fraction c + h(l — c) of its eggs in niche 1, and 1 —c-h(l-c) in niche 2; similarly,
a female raised in niche 2 lays a fraction 1 — c+ he of its eggs in niche 2 and c — hc
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in niche 1. Thus the parameter h measures the amount of habitat selection, ranging
from 0 (no habitat selection) to 1 (complete habitat selection). The conditions for
protected polymorphism in this model are given by Maynard Smith (1970). For
our purpose they can be written in the following form:

(a) in the case of partial dominance of constant direction (1):

2-h + hks-2s 2-h + hks
(2-h)(2-s) <C< (2-h)(2-s)' ( '

(b) in the case of partial dominance of varying direction (2):

k(2-h + hks-2s) (l
(l-ks)(2-h) <C< (l-ks)(2-h) ' ( '

Conditions (3) are shown in graphical form for three different values of k in
Fig. 1, and conditions (4) in Fig. 2. We can now determine the robustness of the
model with respect to the parameter c as it depends on s; that is, we observe the
range of values c can take for various values of s in order to have protected poly-
morphism. It follows easily from conditions (3) that in the case of selection
regime (1) the robustness is equal to

2s
p - (2-h)(2-sY ( 5 )

For s = 001 and s = 0-1 the robustness is listed in Table 1. Clearly, in this model
the robustness is very poor for small and moderate values of s, which is also
apparent from Fig. 1. Furthermore, robustness is independent of k in this case,
and although it increases with increasing h, the effect of habitat selection does not
change the picture in a qualitative way. In the case of selection regime (2) (with
corresponding conditions (4)) robustness very much depends on the value of the
parameter k. Fig. 2 shows that if in both niches the heterozygote is close to the
most fit homozygote (i.e. for a small value of k) there is considerable robustness.
However, if the heterozygote is intermediate in fitness (k = £), the robustness is
small, while for large values of k (the heterozygote close to the least fit homozygote)
very large values of s are needed for polymorphism. Again, although habitat
selection does increase robustness, the effect is insignificant for moderate selection
(s <0-l).

We will also briefly examine the effect of habitat selection in a model proposed
by Gillespie (1976). Maynard Smith & Hoekstra (1980) have shown that this model
can be derived from Levene's model, and in fact it is the only model they analyse
having a reasonable robustness. Gillespie's model is meant to apply to enzyme
polymorphisms. He assumes the heterozygote to be phenotypically intermediate
between the two homozygotes with respect to enzyme activity, but the relationship
between fitness and activity to be convex. This leads to the situation that in each
niche the heterozygote is closer to the most fit homozygote. As shown by Maynard
Smith & Hoekstra (1980), Gillespie's model is equivalent to a Levene model with
fitness scheme (2), if k = a./(a + s), where the parameter a is estimated by Gillespie
from experimental data to be 0-05. The robustness can be computed from
conditions (3), and is shown in Table 1. Habitat selection improves the robustness
only slightly.
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= 0-25 = 0-5 k = 0-75

01

Fig. 1. Range of niche sizes, c, for which polymorphism is stable as a function of the
selection coefficient s. The curves are for Levene's model with habitat selection (h = 0
—; h = 0-5 —; h = 1 . . . ) , and with fitness regime (1) for three different degrees of
dominance k.

= 0-5

Fig. 2. Range of niche sizes, c, for which polymorphism is stable as a function of the
selection coefficient s. The curves are for Levene's model with habitat selection (h = 0
—; h = 0-5 ---; h = 1 . . . ) , and with fitness regime (2) for three different degrees of
dominance k.

In the same way as with Levene's model we can study the robustness of
Dempster's model with habitat selection. The conditions for a protected poly-
morphism can be derived in a way analogous to the derivation of Maynard Smith
(1970) for Levene's model. Thus one can show that when the frequencies pl and
p2 of Ax in the two niches are sufficiently small, and the fitnesses of AXAX, AXA2

and A2A2 in the two niches are respectively wx, 1, vx and w2, 1, v2, the following
recursion equations are valid:

where a = (2cvx + h (1 - c) v2)/(2v1 (cvx

b =(l-c)(2-h)/(2(cv1 + (l-c

e=c{2-h)/{2(cvx

(6)

U-2
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Protection of allele A^'m guaranteed if the leading eigenvalue of the gradient matrix
in (6) exceeds one, which can be shown to be true if

h\cv\ + (1 — c)v\ — (cvx + (1 —c)v2)] + 2v1v2 > 2v1v2(cv1 + (l —c)v2). (7)

An exactly similar condition with w( replacing vt(i= 1,2) applies for the protection
of A2. These conditions become for selection regime (1):
if

2 — h (1 — ks) [2(1 — s) — hll — ks)]

2-hk (2-s)[(2-h)(l-s)-hs2(l-k)2]} (8a)

otherwise c > 0,

and if

s-h(l-k) (2-s)[(2-h)(l-s)^hs2k2]'
otherwise c < 1.

(86)

and for selection regime (2):

0<c<l-fi (9)
where

k[2(l-s)-h(l-ks)]
P 2(1 - s) - h(l -ks) + hs (1 -k)(l-

It is well-known that the conditions for protected polymorphism in Dempster's
model are more restricted than in Levene's model. This is also apparent from a
comparison between Figs. 3 and 4 (Dempster's model) and Figs. 1 and 2 (Levene's
model). The effect of habitat selection on robustness is also in Dempster's model
very limited for moderate selection (Table 1).

The rather surprising result that habitat selection does not have a significant
effect, on the robustness of these models might be due to the assumption of global
random mating. To investigate this possibility, we replace the assumption of global
random ttjating by random mating within each niche in Levene's model with
habitatselection. The derivation of sufficient conditions for protected polymorphism
is straightforward. Let the fitnesses of AXAX, AXA2 and A2A2 be equal to wit 1,
vt and,the frequency of Ax be pt in niche i (i = 1,2). Sufficiently close to the
equilibrium p1 = 0, p2 = 0 we obtain the following linear gene frequency
transformation

Therefore, allele Ax is protected if

c{(l-h) (v2-Vl)} > (h-vj (1 -v2). (lla)

Similarly, allele A2 is protected if

c{{i-h)(w2-w1)}>{h-wl)(i-w2). (116)
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Fig. 3. Range of niche sizes, c, for which polymorphism is stable as a function of the
selection coefficient s. The curves are for Dempster's model with habitat selection
(h = 0: no polymorphism; h = 0-5 —; h = 1 . . . ) , and with fitness regime (1) for three
different degrees of dominance k.

1

0-5

n

k--= 0-25
•

•

k = 0-75

01 , 1

Fig. 4. Range of niche sizes, c, for which polymorphism is stable as a function of the
selection coefficient s. The curves are for Dempster's model with habitat selection (h = 0
[only polymorphism for k < 0-5] —; h = 0-5 ; h = 1 . . . ) , and with fitness regime (2)
for three different degrees of dominance k.

For partial dominance of constant direction (selection regime (1)), (11) becomes

(12)
l-s-h(l-ks) l-h(l-ks)

and for partial dominance of varying direction (selection regime (2)), (11) becomes

k(l— s — h(i— ks)) (1 — k)(l— h(l — ks))
1~T~<C< 7i—TTTi—T^> • (13)

From conditions (12) and (13) the robustness can be calculated (see Table 1). Only
very strong habitat selection causes a substantial increase in robustness; (in this
model it is not meaningful to calculate robustness for h = 1, since that case
corresponds with two separate populations without any gene flow between them;
we have taken h = 09 instead).

4. TEMPORAL FITNESS VARIATION
In this section we study the robustness of temporal fitness variation models.

Suppose a large random-mating population is in an environment which can be in
one of two different states (denned by the selective values for the genotypes at an
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autosomal locus). We use the same selection schemes as in the preceding section.
Thus, with partial dominance of constant direction - fitness regime (1)-
environment 1 (where the genotypes Ax Av Ax A2 and A2 A2 have relative fitnesses
1, 1 — ks and 1 — s respectively) occurs with probability r, and environment 2 (with
fitnesses 1—5, 1 — (1 — k)s and 1) occurs with probability 1— r. Similarly, with
partial dominance of varying direction - fitness regime (2) - environment 1 (fit-
nesses 1, l — ks and 1— s) occurs with probability r, and environment 2 (fitnesses
1 — s, 1 — ks and 1) with probability 1 — r. Therefore, with temporal fitness variation
the parameter r plays the same role as the relative subpopulation size c in the
spatial models of the preceding section. The conditions for protected polymorphism
of this model were derived by Haldane & Jayaker (1963). For our purpose they
can be written in the following form:

(a) in the case of partial dominance of constant direction:

\og{(l-s)(l-(l-k)s)/(l-ks)}<r K log{(l-(l-k)s)/(l-ks)(l-s)}' ( 1 4 )

(6) in the case of partial dominance of varying direction:

log{l-fcs} log{(l-s)/(l-fcs)}
log{l-s} ^ log{l-s} • [ '

A graphical representation of conditions (14) is shown in Fig. 5 a, and of conditions
(15) in Fig. 56. Just as in the case of the spatial models, robustness is only
satisfactory when the heterozygote is close to the most fit homozygote in both
environments (k < \ with partial dominance of varying direction). Table 2 shows
the robustness figures (with respect to r) for weak and moderate selection (s = O01
and s = 0-1).

5. BOTH SPATIAL AND TEMPORAL FITNESS VARIATION

In this section we consider the robustness of a model in which selection varies
spatially as well as temporally. Again we distinguish partial dominance of constant
direction (selection regime (1)) and of varying direction (selection regime (2)). In
the former case the fitnesses of the three genotypes A1A1, AXA2 and AZA2 are as
follows:

In niche 1 In niche 2

With probability r: 1,1-fcs, 1-s l-s,l-(l-k)s,l\
With probability 1-r: l - s , l - ( l - f c ) s , 1 l,l-ks,l-s. j * '

In the latter case:

In niche 1 In niche 2

With probability r: 1,1— ks, 1— s 1— s, 1— ks, l \
With probability (1- r ) : l - s , l-ks, 1 1,1-fcs, 1-s.j ( '

In both cases the niche sizes are assumed to be constant: a fraction c of the total
population is in niche 1 and 1—c in niche 2. Thus the present model is a
combination of Levene's model discussed in Section 3 and of the temporal model
of Section 4. The conditions for protected polymorphism for this model were first
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Fig. 5. Range of values of the probability r of occurrence of a particular environment,
for which polymorphism is stable as a function of the selection coefficient s. The curves
are for the temporal model for three different degrees of dominance (k = O25—; k = 0-5
—; k = 0-75 . . . ) ; (a) fitness regime (1); (b) fitness regime (2).

Table 2. Robustness of the models discussed in Section 4
s = 001 s = 01

k = 0-25 ik = 0-50 k = 0-75 k = 0-25 k = 0-50 k = 075
Temporal model; fitness 0003 0003 0003 0026 0026 0026

regime (1)
Idem; fitness regime (2) 0502 0003 — 0-519 0026

derived by Hoekstra (1978). In the present special cases and in a suitable form
for analysing robustness they are as follows:

(a) for selection regime (1):

if c<\:

if c >

log {a/6}

< r <

log{e/d}

log {(!-«)/&}
log {a/6} '

where

a =c(l-*»)(l-«) + (l-c)(l-(l-*)«);

6 =c(l-(l-*)«) + (l-c)(l-fc»)(l-s);

e =c(l— i

(6) selection regime (2):

ife<i; |!iM<,<!ia4

*•>»= ^m<r<^m,

(18)

(19)
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where

y = 1 — cs.

We determine the robustness of this model with respect to the parameters c and
r in conjunction for the same two values of s as in the preceding sections, namely
s = O'Ol (weak selection) and s = 01 (moderate selection). Fig. 6a shows for which
combinations of values of c and r selection regime (1) produces protected
polymorphism (conditions (18)), and similarly Fig. 66 for selection regime (2)
(conditions (19)). When partial dominance is of constant direction, there is again
little robustness, as can be seen from Fig. 6a: when the model is very robust with
respect to c, the robustness with respect to r is very small, and vice versa.

(ft)
k = 0-25

0-5-

Fig. 6. Dependence of probability r of a particular environment and niche size c upon
each other as imposed by the conditions for protected polymorphism in a model of both
spatial and temporal fitness variation; (a) selection regime (1) and (b) selection regime
(2). In (a) the conditions are nearly independent of k, while in (b) there is no
polymorphism for k > 0-5. —, s = 0-01; ---, s = CM.

Furthermore, robustness is nearly independent of k. For s = 001 the model has
a maximum robustness in the order of 01 (when c and r are both about 05), and
for s = 01 the maximum robustness is in the order of 02, again for intermediate
values of c and r. As we have seen before, when dominance is allowed to vary from
one allele to the other, the robustness is quite good for small values of k.

From this analysis it is clear that for both selection regimes the combination
of spatial and temporal fitness variation produces a greater robustness than when
there is only spatial or only temporal variation; however, the gain in robustness
is not very great, and the qualitative difference in robustness associated with the
difference between the selection regimes (1) and (2) remains.

6. THE MODEL OF ARNOLD AND ANDERSON

Arnold & Anderson (1983) have developed a model for density-regulated
selection in a heterogeneous environment. The main features of their model are:

(i) the adults form a single random mating population,
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(ii) there is a number of different habitats, each of which receives a constant
fraction of the newly formed zygotes,

(iii) selection occurs in the habitats, and determines the fraction of adults
contributed by each habitat to the mating pool.

Thus, their model is a form of Dempster's model, discussed in Section 3. Arnold
& Anderson (1983) are aware of the fact that a number of models of selection in
a heterogeneous environment lack robustness. However, in this section we show
that their model is no exception in this respect.

In Arnold & Anderson's model the fitness of genotype Ai A^ (i,j = 1, 2) in habitat
h is defined as

wtj(h) = 1 + Ei}(h) [Ktj(h) - c(h) N]/Ktj(h). (20)

This is the well-known logistic formulation, where Rti is the intrinsic rate of
increase, and Ktj the carrying capacity. N denotes the total population size, which
is the sum of the subpopulation sizes. The following recursion describes the per
generation change in subpopulation size in habitat h:

N'(h)=W(h)N(h), (21)

where W(h) is the mean fitness in habitat h.
To analyse the robustness of this model, we consider the 2 habitat case, and we

reduce the number of parameters as follows. Suppose there is no variation in
intrinsic rate of increase, so that there is only variation between habitats and
genotypes in carrying capacity; (in the converse case of no variation in carrying
capacity, polymorphism is impossible in this model). The conditions for protected
polymorphism given by Arnold & Anderson (1983) the reduce to:

1 1 1
- c ) 7 # u ( 2 ) c*/Ku(l) + (1 -cf/K12{2) c*/K22(l) + (1 -c)*/K22(2)'

(22)

If there is partial dominance of constant direction (selection regime (1)) with
respect to the Ky, then conditions (22) reduce to:

bd—yjabd — d+^/abd / n o v—— < c < — - — , (2,6)
bd — a ab — d

where

d = 1 — ks,

while for partial dominance of varying direction (selection regime (2)) the
conditions become:

and

s> 1-

(24)
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A graphical representation of conditions (23) and (24) is shown in respectively
Figs, la and b. Although the conditions for protected polymorphism in this model
are similar to those in Levene's model, this model is less robust (compare Fig. 7
with Figs. 1 and 2).

Fig. 7. Range of niche sizes, c, for which polymorphism is stable as a function of the
selection coefficient s. The curves are for the model of Arnold & Anderson for three
different degrees of dominance: k = 0-25 (—), k = O5(—)and& = 075 (...). (a) Fitness
regime (1); (b) fitness regime (2).

We also have looked at a special case of Arnold & Anderson's model in which
both the Rtj and the Ki} are allowed to vary, but with the constraint that the
product of these parameters Rti Ki} is constant. The analytical analysis then runs
into difficulties, but numerical computations show that there is no gain in
robustness compared with the preceding case, in which there is only variation in
the Kiy

7. DISCUSSION

From an analysis of a number of models of spatial fitness variation, Maynard
Smith & Hoekstra (1980) conclude that niche differentiation can maintain genetic
polymorphism only if the selective differences between the genotypes at a single
locus are large, or if in all niches the heterozygote has a higher fitness than the
arithmetic mean of the homozygotes, as in a model proposed by Gillespie (1976).

In this paper we show that this general conclusion also holds when there is
habitat selection, when fitnesses vary temporally, and when fitness varies both in
space and in time.

The conclusion that habitat selection does not significantly improve the
robustness of the models requires some further discussion. We have analysed
habitat selection in a model formulated by Maynard Smith (1966, 1971) in which
habitat selection is based on conditioning (females tend to return to the niche in
which they were raised) rather than on genotypes selecting the niche in which they
have the highest fitness. A model based on the latter possibility would in all
probability be more robust, but seems to us of dubious plausibility, although there
are some reports of cases in which habitat choice based directly on genotype may
occur (see Jones (1980)). Apart from the fact that habitat selection based on
conditioning seems more plausible than when based on the genotype itself,
Maynard Smith's model is attractive because it can alternatively be interpreted
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as a model of restricted migration between subpopulations (especially in the case
of random mating within the niches, which we have analysed). Moreover, Maynard
Smith's model is applicable to animals as well as plants, whereas a model based
on genotypes selecting the niche in which they are most fit, is clearly less applicable
to plants.

We are then left with the conclusion that for weak and moderate selective
differences, environmental heterogeneity is unlikely to maintain genetic poly-
morphism unless there is arithmetic mean overdominance, as displayed by fitness
regime (2). A somewhat related result has been obtained by Avery (1978), who
studied a model of two intermigrating subpopulations of finite size with selection
acting in opposite directions in the subpopulations. He found that when the
direction of dominance was different in the two subpopulations a higher average
heterozygosity was established than when the direction of dominance was the
same.

How likely is the 'switching' of dominance as implied by fitness scheme (2) ? It
seems to us that — at least with regard to enzyme loci — there are reasonably strong
arguments in favour of some degree of dominance of the favourable allele. Kacser
& Burns (1973,1981) argue on the basis of a theoretical analysis of enzyme systems
that one should expect to find dominance at the physiological level, even if there
is strict additivity between the genotypes in enzyme activity. The assumption of
Gillespie (1976) that enzyme activities are additive, but that the fitness of a
genotype is a convex function of its enzyme activity, is in fact close in spirit to
the conclusions of Kacser & Burns. The ideas of Kacser & Burns have been
confirmed by Briscoe, Robertson & Malpica (1975), who found that the Adh-F allele
was dominant over the Adh-S alternative with respect to survival on ethanol
supplemented food, while the in vitro enzyme activity of Adh heterozygotes was
intermediate between the two homozygotes. A similar finding has been reported
by Van Delden, Boerema & Kamping (1978), although they found that the degree
of dominance could vary between different populations. A second argument comes
from the consideration that a heterozygote produces the same two molecules as
the homozygotes produce. Thus, if there is a difference in specificity between the
enzymes of the two homozygotes, the heterozygote will be able to perform both
functions. Such a case has been found by Zouros & Van Delden (1982), at the Est-4
locus of Drosophila mojavensis. There is a difference in substrate specificity between
two alleles at this locus. The heterozygote has both enzymes and is therefore able
to perform equally well on both substrates.

A third argument for dominance at enzyme loci concerns multimeric enzymes.
The different subunits of the molecule may interact in such a way that the hybrid
molecule is not intermediate in the various characteristics, but resembles one of
the monomers. This so-called 'oligomer effect' has for example been observed for
LDH, a tetrameric enzyme, both in the case when the subunits of the hybrid
molecule were derived from different isoenzymes (Braswell, 1975) and when
different allozyme subunits hybridized (Place & Powers, 1984). In the latter case
the hybrid molecule resembled one homomer in certain characteristics, but was
similar to the other homomer in other characteristics',. Of course, here the
dominance is at the protein level, and the precise cotrrespondence between
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biochemical characteristics and fitness is not known. But dominance with respect
to fitness seems not unlikely — also in view of the other two arguments.

On the basis of these three arguments we accept the idea that for enzyme loci
dominance of the favoured allele might be a common phenomenon. It is, however,
unfortunate that there is very little evidence of different environments favouring
different homozygotes at an enzyme locus (see Hedrick et al. 1976).

Normal situation

Gene activity

Environment 1

g.

Environment 2

A AIM
AtA2 A2A}

Gene activity Gene activity

Fig. 8. (a) All three genotypes are canalized to produce the same phenotype; (b) Ax At
falls outside the canalized range; At is dominant, (c) A2 A2 falls outside the canalized
range; Ax is dominant. In both environments the heterozygote has the same fitness
as the favoured (canalized) homozygote.

The above discussion concerns enzyme loci. What about loci coding for, say,
morphological structures? Although it is known that artificial selection may
reverse dominance relationships (Ford, 1940; Fisher & Holt, 1944), it seems
doubtful that dominance 'switching' for these characters is common. Moreover,
the arguments discussed above do not easily apply to this class of genes. In this
connection we would like to suggest the following possibility. Suppose for a
particular morphological characteristic the relationship between gene activity and
phenotype is canalized (see Rendel, 1967). If different environments cause a shift
in gene activity in opposite direction, then in each environment a different
homozygote may fall outside the canalized range (see Fig. 8). When the canalized
phenotype has the highest fitness, the favoured allele would be dominant (A1 in
environment 2 and A2 in environment 1).

We thank Phil Hedrick for useful comments on the manuscript.
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