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Abstract

Let (�t )t∈R+ be a Harris ergodic continuous-time Markov process on a general state
space, with invariant probability measure π . We investigate the rates of convergence
of the transition function P t (x, ·) to π ; specifically, we find conditions under which
r(t)‖P t (x, ·) − π‖ → 0 as t → ∞, for suitable subgeometric rate functions r(t), where
‖ · ‖ denotes the usual total variation norm for a signed measure. We derive sufficient
conditions for the convergence to hold, in terms of the existence of suitable points on
which the first hitting time moments are bounded. In particular, for stochastically ordered
Markov processes, explicit bounds on subgeometric rates of convergence are obtained.
These results are illustrated in several examples.
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1. Introduction

In the past few decades, much effort has been made to study ergodic theory for continuous-
time Markov processes. To the authors’ knowledge, the literature (e.g. [1], [3], [13], and
[14]) has focused on Harris ergodicity, exponential ergodicity, and strong ergodicity. For
discrete-time Markov processes, there has been much work (e.g. [15] and [18]) on subgeometric
ergodicity, which is, roughly speaking, a kind of convergence quicker than ordinary ergodicity
and slower than exponential convergence. However, there are few works on subgeometric
convergence for continuous-time Markov processes, the topic of this paper. To obtain our
results, we shall make the following assumption about the Markov process.

Assumption 1.1. There exists a state x0 such that whenever the Markov process hits x0, it will
sojourn there for a random time that is positive with probability 1.

It is easy to find many Markov processes satisfying Assumption 1.1, for example many
queueing processes and all the totally stable continuous-time Markov chains (i.e. continuous-
time Markov processes on countable state spaces). If a continuous-time Markov process satisfies
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Subgeometric rates of convergence 699

Assumption 1.1 then, due to the Markov property and the homogeneity of the process, it can be
easily proved that the sojourn time in state x0 is exponentially distributed with some parameter λ,
0 < λ < ∞. Thus, the state x0 behaves just like a state in a continuous-time Markov chain,
and we can apply the skeleton chain method, used to study continuous-time Markov chains, to
the continuous-time Markov process.

Throughout the paper, we denote by R+ the set of nonnegative real numbers, by Z+ the
set of nonnegative integers, and by N+ the set of positive integers. Let (�t )t∈R+ be a time-
homogeneous continuous-time Markov process satisfying Assumption 1.1 and taking values
in a general state space X endowed with a countably generated σ -field B(X). We denote by
P t(x, A), t ∈ R+, A ∈ B(X), the transition function of the Markov process:

P t(x, A) = Px[�t ∈ A] = Ex[1{�t∈A}].
Here, Px and Ex respectively denote the probability and expectation of the Markov process
under the initial condition �0 = x, and 1{·} is an indicator function.

In order to study the subgeometric rates of convergence, we suppose that �t is Harris ergodic
with unique invariant probability measure π , i.e. for all x ∈ X,

‖P t(x, ·) − π‖ → 0, t → ∞, (1.1)

where ‖µ‖ = sup|g|≤1 |µ(g)| denotes the usual total variation norm for a signed measure µ.
Obviously, if �t is Harris ergodic then it is ϕ-irreducible and Harris recurrent.

Now we introduce a collection of subgeometric rate functions that includes, for example, all
functions of the form r(t) = tα, α > 0. Here, r(t) is a continuous-time version of r(n) in [18],
originally introduced in [16]. To define this class, we first denote by �0 the family of those
functions r : (0, ∞) → (0, ∞) such that r(t) is continuous and increasing in t with r(1) ≥ 2
and

log r(t)

t
↓ 0 as t ↑ ∞. (1.2)

Denote by � those functions r for which both r(t) > 0 for all t ∈ R+ and there exists an
r0 ∈ �0 which is equivalent to r in the sense that

lim inf
t→∞

r(t)

r0(t)
> 0 and lim sup

t→∞
r(t)

r0(t)
< ∞.

Without loss of generality, we assume that r(0) < 1 whenever r ∈ �. The properties of these
functions r ∈ �0 that we will use most frequently below, which follow from (1.2), are

r(x + y) ≤ r(x)r(y) for all x, y ∈ [0, ∞), (1.3)

r(x + a)

r(x)
→ 1 as x → ∞, for each a ∈ (0, ∞). (1.4)

The structure of the paper is as follows. In Section 2, we obtain the main result, finding
conditions under which the subgeometric convergence

r(t)‖P t(x, ·) − π‖ → 0, t → ∞, (1.5)

holds for π -almost every (π -a.e.) x ∈ X, where r(t) is a subgeometric rate function. In
Section 3, this result is applied to the queue length process of the M/G/1 queue with multiple
vacations. In particular, when the Markov processes are stochastically ordered, we are interested
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in obtaining more explicit results for the subgeometric rates of convergence, i.e. in finding
explicit bounds on (a bounding function) M(x) such that

∫ ∞

0
r(t)‖P t(x, ·) − π‖ dt ≤ M(x)

for r ∈ � and every x ∈ X. In Section 4, we apply the coupling method to obtain explicit
bounds on M(x). In Section 5 and Section 6, we discuss the M/G/1 queue and continuous-time
birth–death chains, respectively – two stochastically monotone examples in which computable
bounds on M(x) are given.

2. Subgeometric rates of convergence

Let (�nh)n∈Z+ , h ∈ R+, be a skeleton chain of the Markov process (�t )t∈R+ . Theorem 1
of [17] states that if any skeleton chain �nh is Harris ergodic, then so is �t . In fact, if �t is
Harris ergodic, by setting t = nh in (1.1) we have ‖P nh(x, ·) − π‖ → 0, n → ∞, i.e. the
skeleton chain �nh is also Harris ergodic. The following lemma shows the equivalence between
the subgeometric convergences of �nh and �t .

Lemma 2.1. A Markov process �t is subgeometrically convergent if and only if so too is any
skeleton chain �nh of �t .

Proof. If �t is subgeometrically convergent then, by setting t = nh in (1.5), we know that
�nh is also subgeometrically convergent.

For any h > 0, suppose that �nh is subgeometrically convergent with invariant probability
measure π , i.e. (1.5) holds for t = nh. By virtue of Theorem 1 of [17], we know that, for every
bounded signed measure ν on (X, B(X)), the function t 
→ ‖νP t‖ is decreasing and π is the
unique invariant probability measure for P t . Choose a t > 0 such that (k − 1)h ≤ t < kh for
k ∈ Z+. By use of monotonicity and (1.3), we have

r(t)‖µP t(x, ·) − π‖ = r(t)‖(µ − π)P t (x, ·)‖
≤ r(kh)‖(µ − π)P (k−1)h(x, ·)‖
≤ r(h)r((k − 1)h)‖µP (k−1)h(x, ·) − π‖ → 0, t → ∞, (2.1)

for any probability measure µ. In particular, if in (2.1) we let µ(·) = 1{x}(·) be the single-point
probability measure, then we recover (1.5).

Now we recall the definition of a small set: a set C ∈ B(X) is called a small set if there exists
an n ∈ N+ and a nontrivial measure νn on B(X) such that, for all x ∈ C and B ∈ B(X), we
have P n(x, B) ≥ νn(B). Also, let τB = inf{n : �n ∈ B}, B ∈ B(X), and r0(n) = ∑n

k=0 r(k).
The following lemma can be deduced directly from Theorem 2.7 of [15].

Lemma 2.2. Let �n be a Harris ergodic Markov chain on X with invariant probability mea-
sure π . If B is a small set with π(B) > 0 and supx∈B Ex[r0(τB)] < ∞, then

r(n)‖P n(x, ·) − π‖ → 0, n → ∞, (2.2)

for π -a.e. x ∈ X.

Proof. Since B is a small set of the chain �n and Ex[r0(τB)] < ∞, by virtue of Theo-
rem 2.7(i) and Theorem 2.6 of [15] we have Ex[r(τB)] ≤ Ex[r0(τB)] < ∞ for π -a.e. x ∈ X.
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Let λ(·) = 1{x}(·) be the single-point probability measure in Theorem 2.7(ii) of [15]. We then
find that (2.2) holds for π -a.e. x ∈ X.

In the following, we will reveal the relationship between the moments of the first hitting
time of the continuous-time Markov process �t and those of its skeleton chain �nh.

We write r̂(t) = ∫ t

0 r(x) dx and r0(nh) = ∑n
k=0 r(kh). Recursively define

δn
x0

= inf{s > δn−1
x0

+ J1 : �t = x0},
where δ0

x0
= 0 and J1 is the first jump time of the Markov process �t . Thus, δn

x0
denotes the

time of the nth return of �t to x0. We write δx0 = δ1
x0

, i.e. δx0 is the time of the first return of
�t to x0 after the first jump. We also define δx0(h) = h inf{n ≥ 1 : �nh = x0} to be the first
hitting time at x0 of the skeleton chain �nh.

Theorem 2.1. Let �t be a continuous-time Markov process on X satisfying Assumption 1.1
and let r ∈ �. The following statements are equivalent.

(i) Ex0 [r̂(δx0)] < ∞.

(ii) There exists some h0 > 0 such that Ex0 [r0(δx0(h0))] < ∞.

Proof. Assumption 1.1 implies that the sojourn time in state x0 is exponentially distributed
with some parameter λ, 0 < λ < ∞. Owing to the equivalence between � and �0, we may
suppose that r ∈ �0.

Suppose that part (ii) holds and define hn = h0/2n, n ∈ Z+. Observe that δx0(hn) ≤ δx0(h0)

for all n. By the assumption that r(0) < 1, we can find an n such that P hn(x0, x0)r(hn) < 1 and
Ex0 [r0(δx0(hn))] < ∞. For the hn-skeleton chain, define J1(hn) = inf{m ∈ Z+ : �mhn �= �0}
and δ+

x0
(hn) = hn inf{m ≥ J1(hn) : �mhn = x0}. We clearly have

Ex0 [r0(δ+
x0

(hn))] =
∞∑

m=1

E[r0(δx0(hn) + mhn) | J1(hn) = m, �0 = x0]
× P[J1(hn) = m | �0 = x0]

=
∞∑

m=1

[P hn(x0, x0)]m−1
∫

X\{x0}
P hn(x0, dy) Ey[r0(δx0(hn) + mhn)]

≤
∞∑

m=1

[P hn(x0, x0)]m−1 [r(hn)]m+1

r(hn) − 1
Ex0 [r0(δx0(hn))]

< ∞,

which follows from the fact that

r0(δx0(hn) + mhn) ≤ r0(δx0(hn)) +
m∑

k=1

r(khn)r(δx0(hn)) ≤ r0(δx0(hn))
[r(hn)]m+1

r(hn) − 1
.

The statement of part (i) follows from this and the fact that δx0 ≤ δ+
x0

(hn).
Now suppose that part (i) holds. It is possible that the skeleton chain can ‘miss’ visits of the

continuous-time process to x0, and so result in δx0 < δx0(nh). Suppose that �0 = x0, let Dk be
the kth sojourn time at x0, and let Wk be the length of the interval between the kth exit from x0
and the next visit to x0 of the continuous-time Markov process �t . Then δn

x0
= ∑n

k=1(Dk+Wk).
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Note that the Wk are independent and that the Dk are independent of each other and the Wk .
Moreover, the Dk are identically exponentially distributed with parameter λ.

Define

N = min{n ≥ 1 : the h-skeleton chain is in state x0 during the interval Dn}.
Then δx0(h) ≤ ∑N−1

i=1 (Di + Wi) + h and, by using (1.3), we obtain

r̂

(
nh +

n−1∑
i=1

Wi

)
=

∫ nh

0
r(t) dt +

∫ nh+W1

nh

r(t) dt + · · ·

+
∫ nh+∑k

i=1 Wi

nh+∑k−1
i=1 Wi

r(t) dt + · · · +
∫ nh+∑n−1

i=1 Wi

nh+∑n−2
i=1 Wi

r(t) dt

=
∫ nh

0
r(t) dt +

∫ W1

0
r(t + nh) dt + · · ·

+
∫ Wk

0
r

(
t + nh +

k−1∑
i=1

Wi

)
dt + · · · +

∫ Wn−1

0
r

(
t + nh +

n−2∑
i=1

Wi

)
dt

≤ r̂(nh) + r(nh)r̂(W1) + · · · +
k−1∏
i=1

r(Wi)r(nh)r̂(Wk)

+ · · · +
n−2∏
i=1

r(Wi)r(nh)r̂(Wn−1). (2.3)

Since the Wk are independent and identically distributed, by virtue of (2.3) we obtain

h Ex0 [r0(δx0(h) − h)] ≤ Ex0 [r̂(δx0(h))] ≤ Ex0

[
r̂

(N−1∑
i=1

(Di + Wi) + h

)]

=
∞∑

n=1

Ex0

[
r̂

(n−1∑
i=1

(Di + Wi) + h

)
1{N=n}

]

≤
∞∑

n=1

Ex0

[
r̂

(n−1∑
i=1

Wi + nh

)
1⋂n−1

k=1{Dk≤h}

]

≤
∞∑

n=1

Ex0

[
r̂

(
nh +

n−1∑
i=1

Wi

)]
(1 − e−λh)n−1

≤
∞∑

n=1

(1 − e−λh)n−1
{
r̂(nh) + E[r̂(W1)]r(nh)

n−2∑
m=0

E[r(W1)]m
}

≤
∞∑

n=1

(1 − e−λh)n−1r(nh) E[r̂(W1)]E[r(W1)] − (E[r(W1)])n−1

1 − E[r(W1)]

+
∞∑

n=1

(1 − e−λh)n−1r̂(nh). (2.4)
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Now we show that we can choose a suitable h such that Ex0 [r0(δx0(h0))] < ∞. By using (1.4),
we obtain

lim
n→∞

r((n − 1)h + h)

r((n − 1)h)

(1 − e−λh)n

(1 − e−λh)n−1 = 1 − e−λh → 0 as h → 0 (2.5)

and, by using (1.3), we have

(1 − e−λh)n

(1 − e−λh)n−1

r̂(nh)

r̂((n − 1)h)
≤ (1 − e−λh)

r̂((n − 1)h) + hr(nh)

r̂((n − 1)h)

≤ (1 − e−λh)(1 + hr(2h)). (2.6)

It is obvious that W1 < δx0 ; hence, E[r̂(W1)] < ∞ follows from the fact that Ex0 [r̂(δx0)] < ∞.
By again using (1.3), we have

E[r(W1)] ≤ Ex0 [r(δx0)]
≤ Ex0 [r(δx0 − ε)r(ε)]

≤ r(ε)

ε
Ex0

[∫ δx0

δx0 −ε

r(t) dt

]

<
r(ε)

ε
Ex0 [r̂(δx0)] < ∞ (2.7)

for some positive real number ε. From (2.4)–(2.7), we can choose h0 to be sufficiently small
that

Ex0 [r0(δx0(h0))] ≤ (1 + r(h0)) Ex0 [r0(δx0(h0) − h0)] < ∞.

Thus, we have proved that part (ii) holds. This completes the proof of the theorem.

We make the following remarks concerning Theorem 2.1.

Remark 2.1. IfAssumption 1.1 holds then, by an argument similar to the proof of Theorem 2.1,
we can show that Ex0 [δx0 ] < ∞ if and only if Ex0 [δx0(h0)] < ∞ for some h0-skeleton chain.

Remark 2.2. For an ergodic continuous-time Markov chain, if Ej [r̂(δj )] < ∞ for some j ∈ X

then, from Theorem 2.1, we see that Ej [r0(δj (h0))] < ∞ for some h0-skeleton chain. It
follows, from Remark 2.8 of [15], that Ei[r0(δj (h0))] < ∞ for all i, j ∈ X. Again by virtue
of Theorem 2.1, we have Ei[r̂(δi)] < ∞ for any i ∈ X. When j , the initial state of �t , does
not equal i, we have δi ≤ δi(h0), meaning that, for each j �= i,

Ej [r̂(δi)] ≤ (1 + r(2)) Ej [r̂(δi − 1)]
≤ (1 + r(2)) Ej [r0(�δi
)]
≤ (1 + r(2)) Ej [r0(δi(h0))] < ∞,

where �x
 is the integer-part function. Thus, we see that if Ej [r̂(δj )] < ∞ for some j ∈ X,
then Ei[r̂(δj )] < ∞ for all i, j ∈ X. In particular, let r(t) = t l−1 for l ∈ R+, with l ≥ 1. If
Ei[δl

i ] < ∞ for some i ∈ X then Ei[δl
j ] < ∞ for all i, j ∈ X.

We are now in a position to establish our main result, which gives sufficient conditions for
the subgeometric convergence of a class of continuous-time Markov process.
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Theorem 2.2. Let �t be a Harris ergodic continuous-time Markov process satisfying Assump-
tion 1.1, with invariant probability measure π . If r ∈ � and Ex0 [r̂(δx0)] < ∞, then

r(t)‖P t(x, ·) − π(·)‖ → 0, t → ∞,

for π -a.e. x ∈ X.

Proof. It follows, from Lemma 2.1, that any skeleton chain �nh of �t is Harris ergodic.
Since P nh(x0, x0) ≥ e−λh for any h > 0, it follows that x0 is an atom and the single-point
set {x0} is a small set of the skeleton chain �nh. Hence, π(x0) > 0. From Theorem 2.1 and
Lemma 2.2, we see that there exists a skeleton chain �nh0 that is subgeometrically convergent.
The assertion therefore follows from Lemma 2.1.

Remark 2.3. For a continuous-time Markov chain �t , the total variation norm is such that

‖P t(i, ·) − π(·)‖ =
∑
j∈X

|P t(i, j) − π(j)|.

Hence, if Ej [r̂(δj )] < ∞ for some j ∈ X, by using Theorem 2.2 we see that

r(t)|P t(i, j) − π(j)| → 0, t → ∞,

for all i, j ∈ X. This result extends Theorem 1.2 of [12], which deals with the special case
r(t) = t l , l ∈ Z+, using a different method.

The following theorem and remark play a crucial role in bounding M(x) in Section 4.
The theorem is interesting in its own right and tells us that, under some conditions, the
subgeometrically convergent Markov chains do have stationary distributions with subgeometric
tails.

Theorem 2.3. Let �t be a Harris ergodic continuous-time Markov process satisfying As-
sumption 1.1, with invariant probability measure π . If r ∈ � and Ex0 [r̂(δx0)] < ∞, then
Eπ [r(δx0)] < ∞.

Proof. By virtue of Theorem 2.1, if Ex0 [r̂(δx0)] < ∞ we know that there exists a skeleton
chain �nh0 such that Ex0 [r0(δx0(h0))] < ∞. It follows, from Theorem 2.6 of [15], that

Eπ [r(δx0(h0))] < ∞.

If y, the initial state of �t , does not equal x0, then δx0 ≤ δx0(h), meaning that we have

Ey[r(δx0)] ≤ Ey[r(δx0(h0))]
for any y �= x0. Since Ex0 [r̂(δx0)] < ∞, it follows from (2.7) that Ex0 [r(δx0)] < ∞, whence

Eπ [r(δx0)] = π(x0) Ex0 [r(δx0)] +
∫

X\{x0}
π(dy) Ey[r(δx0)]

≤ π(x0) Ex0 [r(δx0)] + Eπ [r(δx0(h0))] < ∞.

Remark 2.4. Suppose that r, r̂ ∈ �. It follows fromTheorem 2.3 that if Ex0 [
∫ δx0

0 r̂(t) dt] < ∞,
then Eπ [r̂(δx0)] < ∞. Many subgeometric functions satisfy the required assumption. For
example, let r(t) = (l + 1)t l , l ∈ R+. Then r̂(t) = t l+1, and it is obvious that r, r̂ ∈ �.
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3. Length of the M/G/1 queue with multiple vacations

There is much literature (e.g. [2] and [9]) on M/G/1 queues with vacations. These queues
include, for example, the M/G/1 queue with step-up time, with N -policy, with single vacation,
or with multiple vacations. In this section, we consider the most complicated case: the M/G/1
queue with multiple vacations, which is denoted simply by M/G/1(E, MV). The other queues
can be studied more easily via the same method. For more details about M/G/1(E, MV), see
[5], [7], and [10]. This queue is obtained by introducing the strategy of exhaustive service and
multiple vacation to the classical M/G/1 queue: once the system has no customers, the server
begins a vacation of random length V immediately. If, when the vacation ends, the system
still has no customers, the server continues with further independent, identically distributed
vacations that do not end until the system has customers queueing when a vacation ends. Here
V is always assumed to be a nonnegative random variable, with distribution function V (x), that
has finite first and second moments, i.e. E[V ] < ∞ and E[V 2] < ∞. For M/G/1(E, MV), the
customers arrive according to a Poisson process with parameter λ, 0 < λ < ∞, and the service
time B has a general distribution B(x).

Let Lt be the queue length process of M/G/1(E, MV). It is known that Lt is not a Markov
process unless B(x) is exponentially distributed. We introduce a supplementary variable as
follows:

θt = the elapsed service time of the customer being served at time t

= 0 if the server is idle at time t.

Then (Lt , θt ) becomes a continuous-time Markov process on the two-dimensional state space
X = Z+ × R+. Several types of ergodicity for the discrete-time embedded chain of the queue
length process L(t) were studied in [8]. Here, we study the subgeometric convergence of the
continuous-time queue length process (Lt , θt ).

Let Qb be the number of customers in the system when one busy period begins. Then

P[Qb = j ] = vj

1 − v0
, j ∈ N+,

where

vj =
∫ ∞

0

(λt)j

j ! e−λt dV (t), j ∈ Z+,

is the probability that j customers join the queue during a vacation.
Denote by Dv the busy period of M/G/1(E, MV) and by D the busy period of the classical

M/G/1 queue. It is easy to see that

{Dv | Qb = k} = {D1 + D2 + · · · + Dk},
where Dk is the busy period of the classical M/G/1 queue caused by the kth customer, and the
Di are independent and identically distributed. Let J be the number of vacations during a series
of consecutive vacations. Then

P[J = j ] = v
j−1
0 (1 − v0), j ∈ N+.

Let Vv be the vacation period of M/G/1(E, MV). Then

{Vv | J = j} = {V1 + V2 + · · · + Vj },
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where Vi denotes the ith vacation and the Vi are independent and identically distributed. Define
1/µ = ∫ ∞

0 x dB(x) and ρ = λ/µ. From the known result E[D] = 1/µ(1 − ρ), we have

E[Dv] = ρ E[V ]
(1 − ρ)(1 − v0)

, E[Vv] = E[V ]
1 − v0

. (3.1)

The following proposition is a known result [17], which is adopted to study the Harris ergodicity
of the queue length process.

Proposition 3.1. Let �n be a discrete-time Markov chain on a general state space X. Suppose
that there exists a state x0 ∈ X such that

(i) gcd{n ≥ 1 : P n(x0, {x0}) > 0} = 1 (where gcd stands for ‘greatest common divisor’);

(ii) infx∈X Px[Sx0 < ∞] > 0, where Sx0 = inf{n ≥ 1 : �n = x0}; and

(iii) Ex0 [Sx0 ] < ∞.

Then �n is Harris ergodic.

It is easy to see that when (Lt , θt ) hits the state (0, 0), it will stay there for a random
length of time that is exponentially distributed with parameter λ, meaning that (Lt , θt ) satisfies
Assumption 1.1. We first study the Harris ergodicity of (Lt , θt ) and then investigate the
subgeometric rates of convergence based on Harris ergodicity.

Theorem 3.1. For M/G/1(E, MV), (Lt , θt ) is Harris ergodic if and only if ρ < 1.

Proof. Suppose that ρ < 1. From Lemma 2.1, we only need to prove that some skeleton
chain (Lnh0 , θnh0) is Harris ergodic.

It follows from
P nh((0, 0), {(0, 0)}) ≥ e−λnh, n ∈ N+,

that part (i) of Proposition 3.1 holds. Since ρ < 1 the system is stable, meaning that

P(i,x){(Lnh, θnh) = (0, 0), i.o.} = 1

for any (i, x) ∈ Z+ × R+, where ‘i.o.’ means ‘infinitely often’. Hence, part (ii) of Proposi-
tion 3.1 holds.

From (3.1), we know that if ρ < 1, then E(0,0)[δ(0,0)] = E[Dv] + E[Vv] < ∞. It follows
from Remark 2.1 that E(0,0)[δ(0,0)(h0)] < ∞ for some h0 > 0. Thus, part (iii) of Proposition 3.1
holds, (Lnh0 , θnh0) is Harris ergodic, and, by Lemma 2.1, if follows immediately that (Lt , θt )

is Harris ergodic.
On the other hand, suppose that (Lt , θt ) is Harris ergodic. Then, for any h > 0, (Lnh, θnh) is

also Harris ergodic. Since {(0, 0)} is a small set for (Lnh, θnh), we have E(0,0)[δ(0,0)(h)] < ∞
and it follows, from Remark 2.1, that E(0,0)[δ(0,0)] < ∞. From (3.1), we find that ρ < 1.

Theorem 3.2. Let l ∈ R+ such that l ≥ 1. For the process (Lt , θt ) of M/G/1(E, MV),
E(0,0)[δl

(0,0)] < ∞ if and only if
∫ ∞

0 t l dV (t) < ∞ and
∫ ∞

0 t l dB(t) < ∞.

Proof. For a k ∈ Z+ such that k ≥ 2, we have

kl = [(k − 1) + 1]l ≤ max{1, 2l−1}[(k − 1)l + 1] = 2l−1[(k − 1)l + 1] ≤ 2l (k − 1)l .
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For such a k, using the above inequality we have

∞∑
k=l+1

kl (λt)k

k! =
∞∑

k=l+1

kl−1 (λt)k−1

(k − 1)!λt

≤
∞∑

k=l+1

2l−1(k − 1)l−1 (λt)k−1

(k − 1)!λt

≤
∞∑

k=l−1

2l−12l−2kl−2 (λt)k

k! (λt)2

≤
∞∑

k=1

2l−12l−2 · · · 2l−lkl−l (λt)k

k! (λt)l

=
∞∑

k=1

2l(l−1)/2 (λt)k

k! (λt)l . (3.2)

Let {ui, i ∈ N+} be a sequence of nonnegative real numbers. For a p ∈ R+ such that p ≥ 1,
by using Jensen’s inequality on the convex function x → xp, x ≥ 0 we see that

(
1

n

n∑
i=1

ui

)p

≤ 1

n

n∑
i=1

u
p
i

and, thus, ( n∑
i=1

ui

)p

≤ np−1
n∑

i=1

u
p
i . (3.3)

Many research works study the moments of busy period D in the classical M/G/1 queue.
From Theorem 2.1 of [6] or Example 1 of [4], we know that E[Dl] < ∞ if and only if∫ ∞

0 t l dB(t) < ∞.
We first prove the sufficiency hypothesis. If

∫ ∞
0 t l dV (t) < ∞ and

∫ ∞
0 t l dB(t) < ∞ then,

from (3.2) and (3.3), we obtain

E[Dl
v] =

∞∑
k=1

P[Qb = k] E[(D1 + D2 + · · · + DQb)
l | Qb = k]

≤
∞∑

k=1

vk

1 − v0
kl E[Dl]

= E[Dl]
1 − v0

∞∑
k=1

∫ ∞

0
kl (λt)k

k! e−λt dV (t)

= E[Dl]
1 − v0

[ l∑
k=1

∫ ∞

0
kl (λt)k

k! e−λt dV (t) +
∞∑

k=l+1

∫ ∞

0
kl (λt)k

k! e−λt dV (t)

]

≤ E[Dl]
1 − v0

(ll + 2l(l−1)/2λl E[V l])
< ∞.
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Similarly, we have

E[V l
v ] =

∞∑
j=1

P[J = j ] E[(V1 + V2 + · · · + VJ )l | J = j ]

≤
∞∑

j=1

(1 − v0)v
j−1
0 j l E[V l]

< ∞.

Hence,

E(0,0)[δl
(0,0)] = E[(Dv + Vv)

l] ≤ max{1, 2l−1}(E[Dl
v] + E[V l

v ]) < ∞.

Now we prove the necessity hypothesis. If E(0,0)[δl
(0,0)] < ∞ then, owing to the fact that

E(0,0)[δl
(0,0)] = E[(Dv + Vv)

l] ≥ E[Dl
v] + E[V l

v ],

we find that
∫ ∞

0 t l dV (t) < ∞ and
∫ ∞

0 t l dB(t) < ∞, as required.

Let r(t) = t l for l ∈ R+ such that l ≥ 1. From Theorem 2.2 and Theorem 3.2, we have the
following result.

Theorem 3.3. Suppose that the process (Lt , θt ) of M/G/1(E, MV) is Harris ergodic. If
∫ ∞

0
t l dV (t) < ∞ and

∫ ∞

0
t l dB(t) < ∞,

then
t l−1‖P t((i, x), ·) − π(·)‖ → 0, t → ∞,

for π -a.e. (i, x) ∈ X.

4. Explicit rates of convergence for stochastically ordered Markov processes

In this section, we suppose that �t is a pathwise-ordered Markov process on the state space
X = [0, ∞); i.e. a sample path of the process with a high initial state is never below a sample
path of the process with a lower initial state. The ‘taboo’ probability of being in the set A at
time t without first passing through {0} is

0P
t(x, A) = Px[{�t ∈ A} ∩ {δ0 ≥ t}]

for x > 0. We will make the irreducibility assumption that, for some η > 0, the process can
travel from 0 to [η, ∞) with positive probability before first returning to 0, and, for each y,
y > x > 0, can travel from x to [y, ∞) without passing through {0}; i.e. there exist t1, t2 > 0
such that

0P
t1(0, [η, ∞)) > 0, 0P

t2(x, [y, ∞)) > 0. (4.1)

For a continuous-time Markov process as described above, the exponential convergence
rates were found explicitly in [11] using the coupling method. We aim to apply the coupling
method here to give explicit bounds on the subgeometric rates of convergence. The following
lemma establishes a property of stochastically ordered Markov processes.
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Lemma 4.1. Let �t be a stochastically ordered Markov process satisfying (4.1). If r ∈ � then
E0[r̂(δ0)] < ∞ if and only if Ex[r̂(δ0)] < ∞ for every x > 0.

Proof. Obviously r̂(t) is nondecreasing in t , so the pathwise ordering of �t shows that
Ex[r̂(δ0)] is nondecreasing in x. Hence, if Ex[r̂(δ0)] < ∞ for some x > 0 then Ey[r̂(δ0)] ≤
Ex[r̂(δ0)] < ∞ for each y < x. Let y > x and choose a t2 > 0 such that 0P

t2(x, [y, ∞)) > 0.
By the monotonicity of Ex[r̂(δ0)] in x, we have

Ex[r̂(δ0)] ≥
∫ ∞

y
0P

t2(x, dz) Ez[r̂(δ0)] ≥ Ey[r̂(δ0)]0P
t2(0, [y, ∞)).

Thus, we have proved that Ex[r̂(δ0)] < ∞ for some x > 0 if and only if Ex[r̂(δ0)] < ∞ for
every x > 0.

Now suppose that E0[r̂(δ0)] < ∞ and use the irreducibility assumption to choose a t1 > 0
such that 0P

t1(x, [y, ∞)) > 0. By the monotonicity of Ex[r̂(δ0)] in x, we now have

E0[r̂(δ0)] ≥
∫ ∞

η
0P

t1(0, dz) Ez[r̂(δ0)] ≥ Eη[r̂(δ0)]0P
t1(0, [η, ∞)).

Thus, if E0[r̂(δ0)] < ∞ then Eη[r̂(δ0)] < ∞ for some η > 0, meaning that Ex[r̂(δ0)] < ∞
for every x > 0.

We introduce further notation for the first hitting time as follows: τ0 = inf{t ≥ 0 : �t = 0}.
Note the relationships between δ0 and τ0: when �0 = 0 we have τ0 = 0 �= δ0, and when
�0 �= 0 we have τ0 = δ0.

Theorem 4.1. Let �t be a stochastically ordered Markov process satisfying Assumption 1.1
and (4.1). If r, r̂ ∈ � and E0[

∫ δ0
0 r̂(t) dt] < ∞, then

∫ ∞

0
r(t)‖P t(x, ·) − π(·)‖ dt ≤ M(x)

for every x ≥ 0, where

M(x) = 2 Ex[r̂(τ0)] + 2 Eπ [r̂(τ0)] < ∞.

Proof. Let �1
t and �2

t be two copies of the process, with the initial conditions �1
0 ≡ x and

�2
0 ≡ Y , where Y is a random variable on (�, F , P) with invariant probability measure π . We

define T = inf{t ≥ 0 : �1
t = �2

t } to be the coupling time and use the coupling inequality to
find that

‖P t(x, ·) − π(·)‖ ≤ 2 Px,π [T > t]. (4.2)

Owing to the path-wise ordering of �t , we have Px,π [T > t] ≤ Pv[τ0 > t], where v(A) =
P[max{Y, x} ∈ A] for A ∈ B(X). Hence, by virtue of the Markov inequality and (4.2) we
obtain

‖P t(x, ·) − π(·)‖ ≤ 2 Pv[τ0 > t]
= 2 P[Y ≤ x] Px[τ0 > t] + 2

∫ ∞

x

Pu[τ0 > t]π(du)

≤ 2 Px[τ0 > t] + 2 Pπ [τ0 > t].
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Since E0[
∫ δ0

0 r̂(t) dt] < ∞, we have E0[r̂(τ0)] ≤ E0[r̂(δ0)] < ∞. By applying Lemma 4.1,
we find that Ex[r̂(τ0)] ≤ Ex[r̂(δ0)] < ∞ for every x ∈ X. From Remark 2.4, we infer that
Eπ [r̂(τ0)] ≤ Eπ [r̂(δ0)] < ∞. Hence,

∫ ∞

0
r(t)‖P t(x, ·) − π(·)‖ dt ≤ 2

∫ ∞

0
r(t) Px[τ0 > t] dt + 2

∫ ∞

0
r(t) Pπ [τ0 > t] dt

= 2 Ex[r̂(τ0)] + 2 Eπ [r̂(τ0)]
= M(x)

< ∞
for every x ∈ X. Thus, our assertion holds.

5. Waiting time of the M/G/1 queue

Let Wt be the virtual waiting time of a customer who joins an M/G/1 queue at time t [17],
[11]. The sufficient and necessary conditions for Harris ergodicity and exponential ergodicity
were found in [17], and the best exponential convergence rates were investigated in [11]. It is
known that Wt is stochastically ordered and that (4.1) holds. For an M/G/1 queue, the customers
arrive according to a Poisson process with some parameter λ. Once Wt hits the state 0, it will
stay there for a random length of time that is exponentially distributed. Thus, Wt satisfies
Assumption 1.1.

Theorem 5.1. If the virtual waiting time Wt of an M/G/1 queue is Harris ergodic then, for
l ∈ R+, E0[τ l

0] < ∞ if and only if
∫ ∞

0 t l dB(t) < ∞. Moreover, if
∫ ∞

0 t l dB(t) < ∞ for some
l ≥ 2 then, for every x ∈ X,

∫ ∞

0
t l−2‖P t(x, ·) − π(·)‖ dt ≤ M(x),

where
M(x) = Ex[τ l−1

0 ] + Eπ [τ l−1
0 ] < ∞.

Proof. We know the result that E[Dl] < ∞ if and only if
∫ ∞

0 t l dB(t) < ∞. Since E0[τ l
0] =

E[Dl], it follows that E0[τ l
0] < ∞ if and only if

∫ ∞
0 t l dB(t) < ∞. Let r(t) = t l for l ∈ R+

such that l ≥ 2. It follows from Theorem 4.1 that our assertion holds.

6. Continuous-time birth–death chains

Let �t be a continuous-time irreducible birth–death chain on a countable space X = Z+
with Q-matrix as follows:

qi,i+1 = bi, i ∈ Z+; qi,i−1 = ai, i ∈ N+; qij = 0, |i − j | ≥ 2.

We suppose that the Q-matrix is conservative and totally stable. From [19], we see that �t is
stochastically ordered. It is obvious that (4.1) and Assumption 1.1 hold. Suppose that �t is
ergodic. Then the invariant probability measure π exists and can be computed as follows:

π = µi

µ
, µ =

∞∑
i=0

µi, µ0 = 1, µi = b0b1 · · · bi−1

a1a2 · · · ai

, i ∈ N+.
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Let r(t) = t l for l ∈ N+. According to Theorem 1.4 of [12], we can compute Ei[τ l
0] as follows:

Ei[τ 1
0 ] =

i−1∑
j=0

1

µjbj

∞∑
k=j+1

µk for every i ∈ N+,

Ei[τn+1
0 ] = n

i−1∑
j=0

1

µjbj

∞∑
k=j+1

µk Ek[(τ0)
n] for n ∈ N+.

Since π and Ei[τ 1
0 ] can be computed completely, so too can the bound M(i).

Theorem 6.1. Let �t be an irreducible, regular birth–death chain. For l ∈ Z+ such that l ≥ 2,
if E0[δl

0] < ∞ then, for any i ∈ X,

t l−1|P t(i, j) − πj | → 0, t → ∞.

Moreover, ∫ ∞

0
t l−2|P t(i, j) − πj | dt ≤ M(i),

where M(i) = Ei[τ l−1
0 ] + ∑∞

i=0 πi Ei[τ l−1
0 ] < ∞ and E0[τ l−1

0 ] = 0.

The following example, in which we can compute the quantities Ei[τ l−1
0 ] and Eπ [τ l−1

0 ], is
taken from [12].

Example 6.1. Let ai = bi = iγ , γ ∈ (1, 2]. For any l ≥ 1, if γ > 2 − 1/l then from [12] we
see that

E0[δl
0] < ∞ and Ei[τ l−1

0 ] ∼
i−1∑
j=0

j2(l−1)−1−lγ .

Hence, from Theorem 6.1, we have
∫ ∞

0
t l−2|P t(i, j) − πj | dt ≤ Ei[τ l−1

0 ] + Eπ [τ l−1
0 ] < ∞,

where

Ei[τ l−1
0 ] ∼

i−1∑
j=0

j2(l−1)−1−lγ , i ∈ N+, E0[τ l−1
0 ] = 0,

and

Eπ [τ l−1
0 ] ∼

∞∑
j=0

j2(l−1)−1−lγ

∑∞
i=j+1 i−γ∑∞
i=0 i−γ

.
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