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Abstract
In this paper, we compare the entropy of the original distribution and its corresponding compound distribution.
Several results are established based on convex order and relative log-concave order. The necessary and suffi-
cient condition for a compound distribution to be log-concave is also discussed, including compound geometric
distribution, compound negative binomial distribution and compound binomial distribution.

1. Introduction

The entropy H(X) of a random variable X measures the uncertainty of X. In this paper, we only consider
discrete random variables. Let X be a discrete random variable with probability mass function (pmf)
{x1, . . . , xn; p1, . . . , pn}, that is,

pi = P(X = xi), i = 1, . . . , n,

with pi ≥ 0, i = 1, . . . , n, and
∑n

i=1 pi = 1. Here, n may be finite or infinite. The Shannon entropy of X
is defined by [1]:

H (X) = −
n∑

i=1
pi log pi.

The comparisons between distributions with respect to Shannon entropy are regarded as a measure
of variability or dispersion. In insurance risk theory, similar comparisons are often established for com-
pound distributions. The randomvariables corresponding to the compound distributions can be recorded
as S =

∑M
i=1 Xi, which are extensively used in applied settings. For example, in [3], S can be used to

model the total claim amount, M is the number of claims, and the Xi are the sizes of claims.
Our results are closely related to those of [8], who established entropy comparison results concerning

compound distributions of random variables taking nonnegative integers based on convex ordering and
log-concavity. We recall the following definitions. First, denote N = {0, 1, 2, . . .}.

Definition 1.1. A sequence {hn, n ∈ N} is said to be log-concave (LC) if hn ≥ 0 for n ∈ N, and

h2
n ≥ hn+1hn−1, n ≥ 1.
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A log-concave sequence {hn, n ∈ N} does not have internal zeros, i.e., there does not exist i < j < k
such that h(i)h(k) ≠ 0 and h(j) = 0. A random variable X taking values in N is said to be log-concave,
if its pmf {fn, n ∈ N} is log-concave.

Definition 1.2. For an integer n ≥ 2, a positive sequence {hi, 0 ≤ i ≤ n} is called ultra-log-concave
of order n (ULC(n)) if,

h2
i+1( n

i+1
)2 ≥ hi(n

i
) hi+2( n

i+2
) , 0 ≤ i ≤ n − 2.

A random variable X taking values in N is said to be ULC(n), if its pmf {fi, 0 ≤ i ≤ n} is ULC(n).
Equivalently, X is ULC(n) if the sequence {fi/

(n
i
)
, 0 ≤ i ≤ n} is log-concave.

Definition 1.3. A random variable X taking values in N is said to be ultra-log-concave (ULC), if the
support of X is an interval on N, and its pmf { fi, i ∈ N} satisfies:

(i + 1)f 2i+1 ≥ (i + 2)fifi+2, i ≥ 0.

Equivalently, X is ULC if the sequence {i!fi, i ∈ N} is log-concave.

In fact, both ULC(n) and ULC can be defined in terms of the relative log-concave order ([5]).

Definition 1.4. Let f and g be two pmfs on N. Then f is relative log-concave to g, written as f ≤lc g, if

(1) the support of f and g are both intervals on N;
(2) supp( f ) ⊆ supp(g);
(3) fi/gi is log-concave on i ∈ supp ( f ).

From the above definitions, we have X ∈ ULC(n) is equivalent to X ≤lc B(n, p), and X ∈ ULC
is equivalent to X ≤lc Poi(_), where p ∈ (0, 1) and _ > 0. Also, we have the following inclusion
relationship ULC(1) ⊆ ULC(2) ⊆ · · · ⊆ ULC ⊆ LC.

Definition 1.5. For random variables X and Y on N, X is smaller than Y in the convex order, written as
X ≤cx Y, if E[k(X)] ≤ E[k(Y)] for all convex functions k on N, provided the expectations exist.

The convex order compares the spread or variability of two distributions. Actually, if X ≤cx Y and
both X and Y have finite means, we have E[X] = E[Y] and Var(X) ≤ Var(Y). Further properties of the
convex order can be found in [4]. Since entropy ordering also compares the variability of distributions,
it is reasonable to expect some connection with convex ordering. For compound distributions, [7–9]
draw the following conclusion.

Theorem 1.1 Suppose X and Y are two absolutely continuous or nonnegative integer-valued random
variables.

(1) [8],[9] If X ≤lc Y and E[X] = E[Y], then X ≤cx Y.
(2) [7],[8] If X ≤cx Y, and Y has a log-concave pdf or pmf, then H (X) ≤ H (Y).

Theorem 1.1 (2) provides a new method to prove entropy inequality. Compared with direct proof, it
is relatively easier to establish convex ordering and to verify log-concave condition. Many conclusions
in this paper involve Theorem 1.1.

The contributions and the outline of this paper are as follows.
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(i) In Section 2, based on Theorem 1.1, we give a direct proof for Lemma 3(2) in [6]. Our proofs
are different since [6] constructed a Markov chain whose limiting distribution is a Binomial
distribution.

(ii) It is interesting to compare the original distribution and its corresponding compound distribution in
the sense of the log-concave order. [8] considered the Poisson and Binomial distributions. Similar
result is established in Section 3 for the Negative Binomial distribution.

(iii) [8] obtained the necessary and sufficient conditions for a compound Poisson distribution to be log-
concave. In Section 4, we establish necessary and sufficient conditions under which a compound
Negative Binomial distribution or a compound Binomial distribution is log-concave.

(iv) The preservation of convex order under compound operation was investigated by [8]. In Section 5,
we consider whether the log-concave order is preserved under compound operation.

2. The entropy of ULC distribution

Suppose that ℱ is the set that contains all pmfs for nonnegative integer-valued random variables.
Consider two operators Sp and Tn defined on ℱ [6]:

(1) For all p ∈ (0, 1), Sp maps pmf f = { fi, i ∈ N} to another pmf g = {gi, i ∈ N}, where

gi = pfi−1 + (1 − p)fi, i ≥ 0,

and define fi = 0 for all i < 0. Suppose that f is the pmf of X, Z ∼ B(1, p), independent of X, then
Spf is the pmf of X +Z.

(2) For all n> 1, Tn maps pmf g = {gi, i = 0, . . . , n} to another pmf f = {fi, i = 0, . . . , n − 1}, where

fi =
n − i

n
gi +

i + 1
n

gi+1, i = 0, . . . , n − 1. (2.1)

Denote g as the pmf of Y. Given Y, consider hypergeometric distribution (n,Y , n−1), that is, suppose
there are n balls in an empty box, in which the number of white balls is Y. Now take n− 1 balls out
of the box randomly without putting them back, and define random variable X as the number of
white balls in the taken balls. Then Tng is the pmf of X.

Operators Sp and Tn satisfies [6]:

(1) If bn,p = {b(i, n, p), i = 0, . . . , n} is the pmf of B(n, p), then

Spbn,p = bn+1,p, Tn+1bn+1,p = bn,p, n ≥ 1.

So, Tn+1 ◦ Spbn,p = bn,p.
(2) ULC(n) contains all the pmfs that are Ultra-log-concave of order n. Moreover, we have Sp f ∈

ULC(n + 1) and Tn f ∈ ULC(n − 1) for all f ∈ ULC(n).

[6] proved that if X has pmf f ∈ ULC(n) with E[X] = np, p ∈ (0, 1), and Z ∼ B(1, p), independent
of X, and if Y is a hypergeometric distribution with parameters (n + 1,X + Z, n), then H (X) ≤ H (Y).
The proof uses the properties of operators Sp and Tn. By constructing a Markov chain whose limiting
distribution is B(n, p) and showing that the entropy never decreases along the iterations of this Markov
chain. Here, we give another method to prove the non-decreasing property of the corresponding entropy
based on Theorem 1.1.

Proposition 2.1. Suppose that X has a pmf f ∈ ULC(n), E[X] = np, p ∈ (0, 1), Z ∼ B(1, p), where
Z is independent of X. Let Y be a hypergeometric distribution with parameters (n + 1,X + Z, n). Then
X ≤cx Y.

https://doi.org/10.1017/S0269964823000293 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000293


4 W. Xia and W. Lv

Proof. Define differential operation Δhi = hi −hi−1 for any sequence {hi}, and let g = {gi, i = 0, . . . , n}
denote the pmf of Y. By (2.1), we have

gi =
n + 1 − i

n + 1
( pfi−1 + q fi) +

i + 1
n + 1

( pfi + qfi+1), q = 1 − p. (2.2)

Hence,

fi − gi =
1

n + 1
Δ
[
p(n − i)fi − q(i + 1)fi+1

]
= Δ(uihi),

where

ui = p − q
(i + 1)fi+1
(n − i)fi

, hi =
(n − i)fi
n + 1

, 0 ≤ i < n,

and uihi = 0, i = −1, n. Therefore, for any convex function sequence k = {ki}, we have

E[k(Y)] − E[k(X)] =
n∑

i=0
ki (gi − fi) = −

n∑
i−0

kiΔ(uihi) =
n−1∑
i=0

(ki+1 − ki)uihi.

Since hi ≥ 0 and
∑n

i=0 hi = nq/(n + 1), h can be modified to a probability function. On the other
hand, f ∈ ULC(n) means that ui is increasing in i ∈ {0, . . . , n − 1}; the convexity of k means that
ki+1 − ki is increasing in i, and

∑n−1
i=0 uihi = 0. Hence, by Chebyshev rearrangement theorem, we have∑n−1

i=0 (ki+1 − ki)uihi ≥ 0, that is, E[k(Y)] ≥ E[k(X)]. �

Under the assumptions of Proposition 2.1, Y ∈ ULC(n), and the corresponding pmf is log-concave.
Hence, by Theorem 1.1, X ≤cx Y leads to H (X) ≤ H (Y).

3. Log-concave ordering between the original distribution and its corresponding compound
distribution

Suppose that S is a nonnegative integer-valued random variable, defined by:

S =

M∑
i=1

Xi,

where {Xn, n ≥ 1} is a sequence of independent and identically distributed (iid) nonnegative integer-
valued random variables, and M is a counting random variable independent of all Xi’s. Let f and h be
the pmfs of Xi and M, respectively. The distribution of S is called a compound distribution with its pmf
denoted by ch ( f ). If M ∼ Poi(_), B(n, p) or NB(U, p), then the distribution of S is called compound
Poisson distribution, compound Binomial distribution or compound Negative Binomial distribution.
For U = 1, NB(1, p) reduces to the geometric distribution Geo(p).

In the following, the pmfs of Poi(_), B(n, p), NB(U, p) and Geo(p) distributions are denoted by
poi(_), b(n, p), nb(U, p) and geo(p), respectively. Similarly, the pmfs of the corresponding compound
distributions are denoted by cpoi(_) ( f ), cb(n,p) ( f ), cnb(U,p) ( f ) and cgeo(p) ( f ). Denote by `f the mean
of a distribution with pmf f. Then the means of the distributions with pmf cpoi(_) ( f ), cb(n,p) ( f ),
cnb(U,p) ( f ) are _`f , np`f and U(1 − p)`f /p, respectively.
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Proposition 3.1. ([8]) Let f be a pmf on N.

(1) If the compound Poisson distribution cpoi(_) ( f ) is non-degenerate and log-concave, and _,_∗ > 0,
then poi(_∗) ≤lc cpoi(_) ( f ).

(2) If the compound Binomial distribution cb(n,p) ( f ) is non-degenerate and log-concave, and p, p∗ ∈
(0, 1), then b(n, p∗) ≤lc cb(n,p) ( f ).

By Theorem 1.1 and Proposition 3.1, we have

_∗ = _`f =⇒ H (poi(_∗)) ≤ H (cpoi(_) ( f )), (3.1)

p∗ = p`f =⇒ H (b(n, p∗)) ≤ H (cb(n,p) ( f )). (3.2)

Here, _∗ = _`f ensures that two pmfs poi(_∗) and cpoi(_) ( f ) have the same mean. Similarly, p∗ =

p`f ensures that two pmfs b(n, p∗) and cb(n,p) ( f ) have the same mean. Suppose that M ∼ B(n, p),
M∗ ∼ B(n, p∗), and {Xi, i ≥ 1} are iid random variables with a common pmf f. Assume that all random
variables considered here and below are independent of each other. The explanation of (3.2) is as follows,
and the explanation of (3.1) can be given similarly. We consider two following cases:

(i) Suppose `f ≥ 1. Then p∗ ≥ p since p∗ = p`f in (3.2). Let {Ii, i ≥ 1} be a sequence of iid Bernoulli
random variables with P(Ii = 1) = p/p∗ ∈ (0, 1]. Since ∑M∗

i=1 Ii has the same distribution as M, it
follows that the pmf of

∑M∗

i=1 IiXi is cb(n,p∗ ) ( f̃ ) = cb(n,p) ( f ), where f̃ is the pmf of IiXi, given by:

f̃ =
p
p∗

f +
(
1 − p

p∗

)
X0,

where X0 is the pmf of a degenerate random variable Z = 0. Notice that `f̃ = p`f /p∗ = 1, and the
uncertainty of

∑M∗

i=1 IiXi is obviously stronger than that of M∗. Thus, (3.2) holds.
(ii) Suppose `f ∈ (0, 1). In this case, p∗ < p. Let {Ii, i ≥ 1} be a sequence of iid Bernoulli random

variables with P(Ii = 1) = p∗/p ∈ (0, 1]. Then ∑M
i=1 Ii ∼ B(n, p∗), and the pmf of

∑M
i=1 Xi is

cb(n,p) ( f ). Note that E[Ii] = E[Xi] = p∗/p and Ii ≤cx Xi for each i. Thus, the uncertainty of
∑M

i=1 Xi
is obviously stronger than

∑M
i=1 Ii, that is (3.2).

To obtain the similar result for a compound Negative Binomial distribution, we need the recursive
expression for the corresponding pmf.

Lemma 3.2. Denote the pmf of cnb(U,p) ( f ) as g. Then

(n + 1)gn+1 =
q

1 − qf0

n∑
j=0

[(U − 1)j + n + U]fj+1gn−j, n ≥ 0. (3.3)

Proof. In [3], it is assumed that f0 = 0. We consider a more general situation, f0 ≥ 0. The pmf of
NB(U, p) is denoted by {pn, n ≥ 0}, that is

pn =

(
U + n − 1

n

)
pUqn, n ≥ 0, q = 1 − p,

so

pn

pn−1
= a + b

n
, n ≥ 1,
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where a= q, b = (U − 1)q. Hence, for all n ≥ 0,

n+1∑
j=0

(
a + bj

n + 1

)
fjgn+1−j = qf0gn+1 +

q
n + 1

n∑
j=0

[(U − 1)j + n + U]fj+1gn−j . (3.4)

Denote by f (k) = {f (k)i , i ∈ N} the pmf of
∑k

i=1 Xi, where X1, . . . ,Xk are iid random variables with a
common pmf f. On the other hand, by using

∑n+1
j=0 jfjf (k)n+1−j =

n+1
k+1 f (k+1)n+1 , we have

n+1∑
j=0

(
a + bj

n + 1

)
fjgn+1−j =

n+1∑
j=0

(
a + bj

n + 1

)
fj

∞∑
k=0

pkf (k)n+1−j

=

∞∑
k=0

pk

n+1∑
j=0

(
a + bj

n + 1

)
fjf (k)n+1−j

=

∞∑
k=0

pk
©­«af (k+1)n+1 + b

n + 1

n+1∑
j=0

jfjf (k)n+1−j
ª®¬

=

∞∑
k=0

pk

(
a + b

k + 1

)
f (k+1)n+1

=

∞∑
k=1

pkf (k)n+1

= p0f (0)n+1 +
∞∑

k=1
pkf (k)n+1 [f (0)

ℓ
= 0, ℓ ≥ 1]

= gn+1. (3.5)

By (3.4) and (3.5), we conclude (3.3). �

Proposition 3.3. Let f be a pmf defined on N. If U∗ ≥ U ∈ (0, 1], p, p∗ ∈ (0, 1), and if the compound
Negative Binomial distribution cnb(U,p) ( f ) is non-degenerate and log-concave, then nb(U∗, p∗) ≤lc
cnb(U,p) ( f ).

Proof. Denote g = cnb(U,p) ( f ). Since g is non-degenerate and log-concave, we have gn > 0 for n ∈ N
and

gn−j

gn−j−1
≥ gn

gn−1
, 0 < j < n. (3.6)

Since U ∈ (0, 1) and U∗ ≥ U, it follows that:

(U − 1)j + n + U

(U − 1)j + n − 1 + U
≥ n + U

n + U − 1
≥ n + U∗

n + U∗ − 1
, j ≥ 1. (3.7)

In view of (3.6) and (3.7), we have
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(n + 1)gn+1 ≥ q
1 − qf0

n∑
j=0

[(U − 1)j + n + U]fj+1gn−j−1 ·
gn

gn−1

≥ gn

gn−1
· q
1 − qf0

n−1∑
j=0

[(U − 1)j + n + U]fj+1gn−j−1

≥ gn

gn−1
· q
1 − qf0

n−1∑
j=0

[(U − 1)j + n − 1 + U] U∗ + n
U∗ + n − 1

fj+1gn−j−1

≥ gn(U∗ + n)
gn−1(U∗ + n − 1) ·

q
1 − qf0

n−1∑
j=0

[(U − 1)j + (n − 1) + U]fj+1gn−j−1

=
gn(U∗ + n)

gn−1(U∗ + n − 1) · ngn, n ≥ 1.

The above inequality can be simplified to:[
gn(U∗+n−1
n

) ]2 ≤ gn−1(U∗+n−2
n−1

) · gn+1(U∗+n
n+1

) , n ≥ 1,

that is, gn/
(U∗+n−1

n
)
is log-convex, so nb(U∗, p∗) ≤lc g. �

Corollary 3.4. Suppose that f is a pmf defined on N with the mean ` > 0. For U ∈ (0, 1], if there exists
U∗ > U and p∗ ∈ (0, 1) such that:

U∗(1 − p∗)
p∗

=
U`(1 − p)

p
,

and cnb(U,p) ( f ) is non-degenerate and log-concave, then H (nb(U∗, p∗)) ≤ H
(
cnb(U,p) ( f )

)
.

Proof. By Proposition 3.3, nb(U∗, p∗) ≤lc cnb(U,p) ( f ). It is easy to verify that the means of nb(U∗, p∗)
and cnb(U,p) ( f ) are equal. Thus, the desired result follows from Theorem 1.1(1) directly. �

Proposition 3.5. Suppose that U > 0 and p ∈ (0, 1). If cnb(U,p) ( f ) is non-degenerate and log-concave,
then poi(_) ≤lc cnb(U,p) ( f ) for any _ > 0. In particular, when _∗ = U`(1−p)/p, we have H (poi(_∗)) ≤
H (cnb(U,p) ( f )).

Proof. The notations are the same as in the proof of Proposition 3.3. Obviously, gn > 0 for n ≥ 0 and
by the log-concavity of g, we have

gn−j

gn+1−j
≤ gn

gn+1
, j = 0, . . . , n.

Hence, for n ≥ 0,

(n + 1)gn+1 ≤ q
1 − qf0

n∑
j=0

[(U − 1)j + n + U]fj+1gn+1−j ·
gn

gn+1

≤ gn

gn+1
· q
1 − qf0

n+1∑
j=0

[(U − 1)j + n + 1 + U]fj+1gn+1−j
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=
gn

gn+1
· (n + 2)gn+2,

that is, n!gn is log-convex in n ∈ N. Thus, poi(_) ≤lc cnb(U,p) ( f ). The rest can be derived directly from
Theorem 1.1. �

4. Log-concavity of a compound distribution

[8] proved that if f is log-concave, then cpoi(_) ( f ) is log-concave if and only if _f 21 ≥ 2f2. In order
to show that Propositions 3.3, 3.5 and Corollary 3.4 are meaningful, we need to investigate the log-
concavity of compound Negative Binomial distribution. Firstly, we study the necessary and sufficient
condition for a compound Geometric distribution to be log-concave.

Proposition 4.1. Suppose f is a pmf defined on N such that f1 > 0. For p ∈ (0, 1), we have cgeo(p) ( f ) ∈
LC if and only if fk = 0 for all k ≥ 2.

Proof. Denote the pmf of Geo(p) as {pn, n ≥ 0}. Then the pmf of cgeo(p) ( f ) is g. By (3.3), we have:

gn+1 = [

n∑
j=0

fj+1gn−j, n ≥ 0, (4.1)

where [ = q/(1 − qf0) > 0.
First of all, observe that

(1) g0 = p0 +
∑∞

n=1 pnf n
0 = p +∑∞

n=1 pqnf n
0 = p/(1 − qf0) = p[/q > 0;

(2) f1 ≠ 0 =⇒ gn > 0 for n ≥ 0.

(=⇒) Prove that fn = 0 for all n ≥ 2 by induction. For n= 2, by (4.1), we have g1 = [f1g0, g2 =

[[f1g1 + f2g0]. Substituting in g2
1 ≥ g0g2, we have f2g0 = 0, that is, f2 = 0 and g2

1 = g0g2.
Now assume that fn = 0 for n = 2, · · · , k and g2

k−1 = gk−2gk . Notice that

gk−1 = [f1gk−2, gk = [f1gk−1, gk+1 = [[f1gk + fk+1g0] .

Substituting in g2
k ≥ gk−1gk+1, we have

f 21 g2
k−1 ≥ f 21 gkgk−2 + f1fk+1g0gk−2.

So, f1fk+1g0gk−2 = 0. Thus, fk+1 = 0 and in the meantime, g2
k = gk−1gk+1. The necessity is proved by

induction.
(⇐=) Suppose that fk = 0 for all k ≥ 2. By (4.1), we have

gn+1 = [f1gn = ([f1)n+1g0, n ≥ 0. (4.2)

It is obvious that g2
n = gn−1gn+1 for n ≥ 1 and, hence, g ∈ LC. �

Remark 4.2.

(1) By (4.2), we have

cgeo(p) ( f ) ∈ LC =⇒ cgeo(p) ( f ) = geo
(

p
1 − qf0

)
.
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(2) Assume that fn = 0 for n ≥ 2 with f1 > 0. Then g := cnb(U,p) ( f ) ∈ LC if and only if U ≥ 1. In fact,
if fn = 0 for n ≥ 2, then (3.3) can be simplified to:

gn+1 =
n + U

n + 1
[f1gn, n ≥ 0.

It is easy to verify that

g2
n+1 ≥ gngn+2 ⇐⇒ U − 1

n + 1
≥ U − 1

n + 2
,

that is, U ≥ 1.

Proposition 4.3. Suppose that f ∈ LC, and denote q = 1−p and [ = q/(1−qf0). Then g := cnb(U,p) ( f ) ∈
LC if and only if

(U − 1)[f 21 ≥ 2f2. (4.3)

The proof of Proposition 4.3 is postponed to Appendix A.1.

Remark 4.4. Suppose that f ∈ LC, 0 < U ≤ U∗ and p ≥ p∗ > 0. If g := cnb(U,p) ( f ) ∈ LC, then
cnb(U∗,p∗ ) ( f ) ∈ LC.

Next, the necessary and sufficient condition for a compound Binomial distribution to be log-concave
is discussed. To this end, we first give the recursive expression of its corresponding pmf.

Lemma 4.5. Denote g := cb(n,p) ( f ). Then the pmf {gk , k ∈ N} has recursive expression as follows:

(k + 1)gk+1 = X

k∑
j=0

[(n + 1)j + n − k]fj+1gk−j, k ≥ 0, (4.4)

where X = p/(pf0 + q) and q = 1 − p.

Proof. The proof of (4.4) is similar to (3.3) since

pk

pk−1
= −p

q
+ (n + 1)p

qk
= a + b

k
, ∀ k ≥ 1.

Here, (3.5) still holds,

k+1∑
j=0

(
a + bj

k + 1

)
fjgk+1−j = gk+1, k ≥ 0, (4.5)

and (3.4) is replaced by the following formula

k+1∑
j=0

(
a + bj

k + 1

)
fjgk+1−j

= −p
q

f0gn+1 +
p

q(n + 1)

k∑
j=0

[(n + 1)j + n − k]fj+1gk−j, k ≥ 0. (4.6)
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Thus, (4.4) follows from (4.5) and (4.6). �

Proposition 4.6. Denote g := cb(n,p) ( f ), and let f ∈ LC. If g ∈ LC, then

(n + 1)Xf 21 ≥ 2f2, (4.7)

where X = p/(pf0 + q) and q = 1 − p. In particular, for n= 1, (4.7) is also the sufficient condition for
cb(1,p) ( f ) ∈ LC. But for n ≥ 2, (4.7) is not the sufficient condition for g ∈ LC.

Proof. (1) By lemma 4.5, we have g1 = nXf1g0 and g2 = [(n − 1)Xf1g1 + 2nXf2g0]/2. In view of
g2
1 ≥ g0g2, we obtain (4.7).
(2) For n= 1, (4.7) holds, that is Xf 21 ≥ f2. Based on the random expression of the random variable

corresponding to g, we have g0 = q + pf0 and gk = pfk for k ≥ 1. To prove g ∈ LC, we only need to
prove g2

1 ≥ g0g2, that is, (4.7).
(3) Take a counterexample to illustrate: assume n= 2, and cb(2,p) ( f ) = cb(1,p) ( f ) ∗cb(1,p) ( f ). Denote

h = cb(1,p) ( f ), by (2), we have h0 = q + pf0, hk = pfk , k ≥ 1. Especially, take p = 20/23,

f =

(
1
20

,
1
5
,
3
10

,
9
20

, 0, 0, · · ·
)
.

Then

h =

(
4
23

,
4
23

,
6
23

,
9
23

, 0, 0, · · ·
)
.

Hence,

g = h ∗ h =

(
g0, g1, g2,

120
232

,
108
232

,
108
232

, g6, · · ·
)
.

Obviously, g2
4 < g3g5, which means that g is not log-concave. On the other hand, X = p/(pf0+q) = 5,

f ∈ LC, and 3Xf 21 = 3/5 = 2f2, that is (4.7) holds. Therefore, (4.7) is not the sufficient condition for
g ∈ LC. �

5. The relative log-concavity

Lemma 2 in [8] states that, for pmfs f , g, f ∗ and g∗ defined on Z+, if f ≤cx f ∗ and g ≤cx g∗, then
cg( f ) ≤cx cg∗ ( f ∗). On the other hand, g ≤lc poi(_) for any g ∈ ULC and _ > 0. Connected with
Theorem 1.1, it is easy to establish the following proposition.

Proposition 5.1.

(1) [8] If g ∈ ULC and `g = _, then cg( f ) ≤cx cpoi(_) ( f ).
(2) [8],[2] If g ∈ ULC, `g = _ > 0 and cpoi(_) ( f ) ∈ LC, then H (cg( f )) ≤ H (cpoi(_) ( f )).

Notice that g ∈ ULC(n) ⇐⇒ g ≤lc b(n, p) for all p ∈ (0, 1), and that g ∈ LC ⇐⇒ g ≤lc geo(_) for
all _ > 0. The following two propositions are easily established by Theorem 1.1.

Proposition 5.2.

(1) If g ∈ ULC(n) and `g = np, then cg ( f ) ≤cx cb(n,p) ( f ).
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(2) If g ∈ ULC(n), `g = np and cb(n,p) ( f ) ∈ LC, then H (cg( f )) ≤ H (cb(n,p) ( f )).

Proposition 5.3.

(1) If g ∈ LC and `g = (1 − _)/_, then cg( f ) ≤cx cgeo(_) ( f ).
(2) If g ∈ LC, `g = (1 − _)/_ and cgeo(_) ( f ) ∈ LC, then H (cg( f )) ≤ H (cgeo(_) ( f ).

Naturally, the following problems will arise:
Question

(1) If g ∈ ULC and `g = _, is it correct cg( f ) ≤lc cpoi(_) ( f )?
(2) If g ∈ ULC(n) and `g = np, is it correct cg( f ) ≤lc cb(n,p) ( f )?
(3) If g ∈ LC and `g = (1 − _)/_, is it correct that cg( f ) ≤lc cgeo(_) ( f )?

The following three counterexamples show that the assertions in Question 1 are negative.

Example 5.1. g ∈ ULC, `g = _ and f ∈ LC 6=⇒ cg( f ) ≤lc cpoi(_) ( f ).
Suppose that g = B(2,_/2) and 0 < _ < 2, f satisfies fj = 0 for j ≥ 3, and denote s = cg( f ) and

t = cpoi(_) ( f ). Then

s0 =
(
1 − _

2

)2
+ _

(
1 − _

2

)
f0 +

_2

4
f 20 , s1 = _

(
1 − _

2

)
f1 +

_2

2
f0f1,

s2 = _

(
1 − _

2

)
f2 +

_2

2
f0f2 +

_2

4
f 21 , s3 =

_2

2
f1f2, s4 =

_2

4
f 22 ,

and

t0 = e_( f0−1) , t1 = _f1e_( f0−1) , t2 =
_

2
(_f 21 + 2f2)e_( f0−1) ,

t3 = _2f1
(
1
6
_f 21 + f2

)
e_( f0−1) , t4 =

_2

4

(
1
6
_2f 41 + 2_f 21 f2 + 2f 22

)
e_( f0−1) .

Especially, we take _ = 1 and f = ( f0, f1, f2) = (1/3, 1/3, 1/3), that is, f is a discrete uniform distribution
on {0, 1, 2}. Obviously, f ∈ ULC. By calculation,(

s0
t0
,
s1
t1
,
s2
t2
,
s3
t3
,
s4
t4

)
=

(
4
9
,
2
3
,
9
14

,
9
19

,
54
145

)
e2/3.

It can be verified that (
s1
t1

)2
− s0

t0
s2
t2

> 0,
(
s3
t3

)2
− s2

t2
s4
t4

= −0.015 < 0.

Hence, sk/tk is not log-concave, so s �lc t.

Example 5.2. g ∈ LC, `g = (1 − _)/_ and f ∈ LC 6=⇒ cg( f ) ≤lc cgeo(_) ( f ).
Suppose that f and g satisfy fj = gj = 0 for j ≥ 3, and denote s = cg( f ) and t = cgeo( f ). Then

s0 = g0 + g1f0 + g2f 20 , s1 = g1f1 + 2g2f0f1,

s2 = g1f2 + g2(2f0f2 + f 21 ), s3 = 2g2f1f2, s4 = g2f 22 ,
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and

t1 = [f1t0, t2 = [( f1t1 + f2t0), t3 = [( f1t2 + f2t1), t4 = [( f1t3 + f2t2),

with [ = (1 − _)/[1 − (1 − _)f0]. If we take f = ( f0, f1, f2) = (1/3, 1/3, 1/3) ∈ LC, then

g = (g0, g1, g2) =
(
7_ − 3
4_

,
1 − _

2_
,
1 − _

4_

)
.

Given _ = 40/77, g is log-concave, that is, g ≤lc Geo(_). It is easy to verify that

(
s3
t3

)2
− s2

t2
s4
t4

= −0.082 < 0,

hence, sk/tk is not log-concave, so s �lc t.

Example 5.3. g ∈ ULC(n), `g = np, p ∈ (0, 1) and f ∈ LC 6=⇒ cg( f ) ≤lc cb(n,p) ( f ).
Suppose that f = ( f0, f1, f2) = (1/3, 1/3, 1/3) ∈ LC and g = (g0, g1, g2) = (1 − 3p/2, p, p/2). If

p ∈ (1/2, 2/3), then g ∈ ULC(2). Denote s = cg( f ) and t = cb(2,p) ( f ). Then sj and tj can be calculated
as in Example 5.2. Choose p = 7/12. Then

(
s3
t3

)2
− s2

t2
s4
t4

= −0.1728 < 0,

hence, sk/tk is not log-concave, so s �lc t.
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Appendix A. Proof of Proposition 4.3

Proof. For reading convenience, use P = g as pmf, and set Pi = 0 for i < 0. Denote rj = [fj+1, and rewrite
(3.3) as:

(n + 1)Pn+1 =
n∑

j=0
[(U − 1)j + n + U]rjPn−j, ∀ n ≥ 0. (A.1)

(=⇒) By (A.1), we have P1 = Ur0P0,P2 = [(1 + U)r0P1 + 2Ur1P0]/2. Since P ∈ LC, it follows that
P2
1 ≥ P0P1, and thus,

P1 · Ur0P0 ≥ 1
2
[(1 + U)r0P1 + 2Ur1P0]P0.

So (4.3) can be proved directly by simplify the above equation.
(⇐=) Suppose (4.3) holds. First, notice the following equations:

UPnPn+1 =
n∑

j=0
[(U − 1)j + n + U] (n + U)rjPn−jPn

−
n−1∑
j=0

[(U − 1)j + n − 1 + U] (n + 1 + U)rjPn−1−jPn+1,

(n + 1)2P2
n+1 =

n∑
k=0

n∑
l=0

[(U − 1)k + n + U] [(U − 1)l + n + U]rkrlPn−kPn−l,

n(n + 2)P2
n+1 =(n + 1)2P2

n+1 − P2
n+1,

n(n + 2)PnPn+2 =
n−1∑
k=0

n+1∑
l=0

[(U − 1)k + n − 1 + U] [(U − 1)l + n + 1 + U] × rkrlPn−1−kPn+1−l .

The first equation follows from the fact that the right hand side equals (n + U)Pn · (n + 1)Pn+1 − (n +
1 + U)Pn+1 · nPn = UPnPn+1. Define

J (1)
n = (Ur0Pn − Pn+1)Pn+1. (A.2)

Then,

n(n + 2) [P2
n+1 − PnPn+2]

= (Ur0PnPn+1 − P2
n+1) + (n + 1)2P2

n+1 − n(n + 2)PnPn+2 − Ur0PnPn+1

= J (1)
n +

n∑
k=0

n∑
l=0

[(U − 1)k + n + U] [(U − 1)l + n + U]rkrlPn−kPn−l

−
n−1∑
k=0

n+1∑
l=0

[(U − 1)k + n − 1 + U] [(U − 1)l + n + 1 + U]rkrlPn−1−kPn+1−l

− r0
n∑

j=0
[(U − 1)j + n + U] (n + U)rjPn−jPn

+ r0
n−1∑
j=0

[(U − 1)j + n − 1 + U] (n + 1 + U)rjPn−1−jPn+1
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= J (1)
n +

n∑
k=0

n∑
l=1

[(U − 1)k + n + U] [(U − 1)l + n + U]rkrlPn−kPn−l

−
n−1∑
k=0

n+1∑
l=1

[(U − 1)k + n − 1 + U] [(U − 1)l + n + 1 + U]rkrlPn−1−kPn+1−l

= J (1)
n +

n∑
k=0

n∑
l=0

[(U − 1)k + n + U] [(U − 1) (l + 1) + n + U]rkrl+1Pn−kPn−1−l

−
n∑

k=0

n∑
l=0

[(U − 1)k + n − 1 + U] [(U − 1) (l + 1) + n + 1 + U]rkrl+1Pn−1−kPn−l

= J (1)
n +

n∑
k=0

n∑
l=0

[U(k + 1) + n − k] [U(l + 2) + n − l − 1]rkrl+1Pn−kPn−1−l

−
n∑

k=0

n∑
l=0

[U(k + 1) + n − 1 − k] [U(l + 2) + n − l]rkrl+1Pn−1−kPn−l

= J (1)
n + J (2)

n + J (3)
n + J (4)

n ,

where J (2)
n , J (3)

n and J (4)
n are defined by

J (2)
n = U2

n∑
k=0

n∑
l=0

(k + 1) (l + 2)rkrl+1 [Pn−kPn−1−l − Pn−1−kPn−l]

= U2
∑
k≥l

[Pn−kPn−1−l − Pn−1−kPn−l] [(k + 1) (l + 2)rkrl+1 − (l + 1) (k + 2)rlrk+1],

J (3)
n =

n∑
k=0

n∑
l=0

[(n − k) (n − l − 1)Pn−kPn−1−l − (n − 1 − k) (n − l)Pn−1−kPn−l]rkrl+1

=
∑
k≥l

[(n − k) (n − l − 1)Pn−kPn−1−l − (n − 1 − k) (n − l)Pn−1−kPn−l] (rkrl+1 − rlrk+1),

J (4)
n = U

n∑
k=0

n∑
l=0

rkrl+1 [(k + 1) (n − l − 1) + (n − k) (l + 2)]Pn−kPn−1−l

− U

n∑
k=0

n∑
l=0

rkrl+1 [(k + 1) (n − l) + (n − k − 1) (l + 2)]Pn−1−kPn−l .

Define function h(k, l) = (k+1) (n− l) + (n−k−1) (l+2), which satisfies h(k, l) = h(l, k). Therefore,
J (4)

n can be simplified to:

J (4)
n = U

n∑
k=0

n∑
l=0

rkrl+1 [(h(k, l)) + l − k + 1)Pn−kPn−1−l − h(k, l)Pn−1−kPn−l]

= U

n∑
k=0

n∑
l=0

rkrl+1h(k, l) (Pn−kPn−1−l − Pn−1−kPn−l)

+ U

n∑
k=0

n∑
l=0

rkrl+1(l − k + 1)Pn−kPn−1−l

= U
∑
k≥l

h(k, l) (Pn−kPn−1−l − Pn−1−kPn−l) (rkrl+1 − rlrk+1)
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+ U

n∑
k=0

n+1∑
l=1

rkrl (l − k)Pn−kPn−l

= U
∑
k≥l

h(k, l) (Pn−kPn−1−l − Pn−1−kPn−l) (rkrl+1 − rlrk+1) + U

n∑
k=0

rkr0kPn−kPn

≥ U
∑
k≥l

h(k, l) (Pn−kPn−1−l − Pn−1−kPn−l) (rkrl+1 − rlrk+1). (A.3)

Then, we prove the log-concavity of {Pn, n ≥ 0} by induction. For k = 1, it is the same as (4.3). Now
assume P2

k ≥ Pk−1Pk+1 for all k ≤ n. To prove P2
n+1 ≥ PnPn+2, it suffices to prove:

J (1)
n + J (2)

n + J (3)
n + J (4)

n ≥ 0.

In fact, J (a)
n ≥ 0 for all a ∈ {1, 2, 3, 4}. Details are as follows.

• a = 1: By the assumption of induction, we have Ur0 = P1/P0 ≥ P2/P1 ≥ Pn+1/Pn and, hence,
J (1)

n ≥ 0 due to (A.2).
• a = 2: f ∈ LC implies that {(i + 1)ri, i ≥ 0} is also log-concave. Hence,

(k + 1) (l + 2)rkrl+1 ≥ (l + 1) (k + 2)rlrk+1, k ≥ l.

Furthermore, Pn−kPn−1−l ≥ Pn−1−kPn−l for k ≥ l, which holds by the assumption of induction.
So, J (2)

n ≥ 0.
• a = 3: The hypothesis means that Pk is log-concave in k ∈ {0, 1, · · · , n + 1}, implying that kPk is

log-concave in k ∈ {0, 1, . . . , n + 1}. Therefore,

(n − k) (n − l − 1)Pn−kPn−1−l ≥ (n − 1 − k) (n − l)Pn−1−kPn−l, k ≥ l.

Obviously, rkrl+1 ≥ rlrk+1 for k ≥ l. Thus, J (3)
n ≥ 0.

• a = 4: By the definition of h(k, l), we have

h(k, l) ≥ 0, ∀ k ≤ n − 1; h(n, n − 1) = 0; h(n, l) > 0, ∀ l ≤ n − 2.

Applying (A.3), we have

J (4)
n ≥U

∑
l≤k≥n−1

h(k, l) (Pn−kPn−1−l − Pn−1−kPn−l) (rkrl+1 − rlrk+1)

+ U

n∑
l=0

h(n, l)P0Pn−1−l (rnrl+1 − rlrn+1) ≥ 0.

Based on the above discussion, the log-concavity of {Pn, n ≥ 0} is proved by induction. �
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