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Abstract

Dependently typed languages such as Agda, Coq, and Idris use a syntactic first-order

unification algorithm to check definitions by dependent pattern matching. However, standard

unification algorithms implicitly rely on principles such as uniqueness of identity proofs

and injectivity of type constructors. These principles are inadmissible in many type theories,

particularly in the new and promising branch known as homotopy type theory. As a result,

programs and proofs in these new theories cannot make use of dependent pattern matching or

other techniques relying on unification, and are as a result much harder to write, modify, and

understand. This paper proposes a proof-relevant framework for reasoning formally about

unification in a dependently typed setting. In this framework, unification rules compute not

just a unifier but also a corresponding soundness proof in the form of an equivalence between

two sets of equations. By rephrasing the standard unification rules in a proof-relevant manner,

they are guaranteed to preserve soundness of the theory. In addition, it enables us to safely

add new rules that can exploit the dependencies between the types of equations, such as rules

for eta-equality of record types and higher dimensional unification rules for solving equations

between equality proofs. Using our framework, we implemented a complete overhaul of the

unification algorithm used by Agda. As a result, we were able to replace previous ad-hoc

restrictions with formally verified unification rules, fixing a substantial number of bugs in the

process. In the future, we may also want to integrate new principles with pattern matching,

for example, the higher inductive types introduced by homotopy type theory. Our framework

also provides a solid basis for such extensions to be built on.

1 Introduction

Unification is a generic method for solving symbolic equations algorithmically.

It is a fundamental algorithm used in many areas in computer science, such as

logic programming, type inference, term rewriting, automated theorem proving,

and natural language processing. In particular, type checkers for languages with

dependent pattern matching (Coquand, 1992) such as Agda (Norell, 2007), the
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2 J. Cockx and D. Devriese

equations package for Coq (Sozeau, 2010), Idris (Brady, 2013), and Lean (de Moura

et al., 2015) use first-order unification to determine whether a set of constructors

covers all possible cases.1

Although first-order unification is well understood in the untyped or simply typed

setting, its interaction with dependent types has been mysterious so far. In particular,

some standard unification rules are no longer valid in the presence of universes and

indexed datatypes, two common features of dependently typed languages. Examples

of how this can go wrong follow later in this introduction, but we start with an

example where first-order unification works as intended.

Example 1. Consider the type of length-indexed vectors Vec A n (i.e. the type of

vectors containing n elements of type A), where nil : Vec A zero is the empty vector

and cons n x xs is the vector with head x : A and tail xs : Vec A n. We can define a

safe tail function on vectors by dependent pattern matching as follows:

tail : (n : �) → Vec A (suc n) → Vec A n

tail .m (cons m x xs) = xs
(1)

The function tail needs only be defined in the case for (cons n x xs): the case

for nil is impossible because unification of zero (the length of nil) with suc n

reports an absurdity. This is all the better because there is no way to take the tail

of an empty vector! In the cases where unification succeeds, it can also teach us

something extra about the type of the right-hand side. For example, in the remaining

case tail .m (cons m x xs), unification of suc m with suc n tells us that n must

be equal to m, as indicated by the so-called inaccessible pattern .m. This method of

solving equations to either gain more information about the type of the right-hand side

or to derive an absurdity is called specialization by unification (Goguen, McBride,

and McKinna, 2006).

In a language that has dependent pattern matching as a primitive such as Agda

(Norell, 2007), the particularities of the unification rules used become crucial for the

language’s notion of equality. Indeed, we can match on a proof of u ≡A v with the

constructor refl precisely when the unification algorithm is able to unify u with v.

For example, if the unification algorithm is allowed to delete reflexive equations of

the form u = u, then this allows us to prove uniqueness of identity proofs (UIP)

by pattern matching (Coquand, 1992). So it is important to have a solid theoretical

understanding of unification in order to study these languages.

When dependently typed terms themselves become the subject of unification, the

unification algorithm can encounter heterogeneous equations: equations in which the

left- and right-hand side have different types that only become equal after previous

equations have been solved. For example, consider the type ΣA:SetA with elements

(A, a) packing a type A together with an element a of that type. By injectivity of

the pair constructor , , an equation (A, a) = (B, b) can be simplified to A = B

and a = b, but the type of the second equation is now heterogeneous since a : A

and b : B. Because traditional unification algorithms only look at the syntax of the

1 They also use a different higher order unification algorithm to solve constraints and derive the values
of implicit arguments, but this is not the focus of this paper.
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terms they are trying to unify, they cause problems when applied to heterogeneous

equalities.

Example 2. Consider the equation (Bool, true) = (Bool, false) of type ΣA:SetA. By

injectivity of the constructor , , we can simplify this equation to the two equations

Bool = Bool and true = false and then derive an absurdity from the second

equation. However, this line of reasoning depends on the principle of equality of second

projections, which is equivalent to UIP (Streicher, 1993). In a univalent theory such

as HoTT (The Univalent Foundations Program, 2013), it is actually possible to prove

that (Bool, true) = (Bool, false) of type ΣA:SetA under the equivalence between Bool

and itself swapping true and false, refuting the use of injectivity above. So the naive

injectivity rule above cannot be used in such a theory.

On the other hand, consider the exact same unification problem (Bool, true) =

(Bool, false), but this time the type of the equation is a non-dependent product Set ×
Bool (defined as Σ :SetBool). In this case, it is possible to derive an absurdity, even

in a univalent theory. However, a unification algorithm can never distinguish between

these two equations unless it takes their types into account.

Example 3. Suppose we define two copies Bool1 and Bool2 of the boolean type with

constructors true1, false1 and true2, false2, respectively, then it is unsound to apply

the conflict rule on the (heterogeneous) equation true1 = false2. Doing so would

allow us to prove that Bool1 �≡Set Bool2, again contradicting univalence.

Example 4. The problem is not limited to theories that do not support UIP, either.

Problems can also occur when we use a naive injectivity rule for constructors of indexed

datatypes. Let A be an arbitrary type and Singleton : A → Set be an indexed

datatype with one constructor sing : (x : A) → Singleton x and consider the

unification problem (Singleton s, sing s) = (Singleton t, sing t). If we allow the

injectivity rule to simplify sing x = sing y to x = y, then this problem can be solved

with solution y �→ x. However, this would allow us to prove injectivity of the type

constructor Singleton. In general, injectivity of type constructors is an undesirable

property because it is not only incompatible with the law of the excluded middle

(Theorem 93), but also with univalence (Theorem 92) and with an impredicative

universe of propositions (Miquel, 2010). In particular, if we let A = Set → Set

in the above example, then the injectivity of the Singleton type constructor allows us

to refute the law of the excluded middle.

The unification algorithm used by Agda 2.4 (and older) for checking definitions

by dependent pattern matching contains a number of restrictions to avoid bad

unification steps like in the above examples. One of these restrictions is to not delete

equations of the form u = u if the theory does not support UIP (Cockx et al.,

2016a). The rule for simplifying equations of the form c u1 . . . un = c v1 . . . vn
is also restricted in case c is a constructor of an indexed datatype. However, these

ad-hoc restrictions make the unification algorithm hard to prove correct, modify, or

extend.

Contributions. In this paper, we give a typed and proof-relevant account of the

first-order unification algorithm used for checking definitions by dependent pattern
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matching, in order to solve the problems with untyped unification in general and

put unification in type theory back on a solid theoretical foundation. Concretely, we

make the following contributions:

• We give a new representation of unification rules and most general unifiers in a

dependently typed setting as equivalences between solution spaces represented

by telescopic systems of equations, serving as evidence of their soundness

(Section 3). This allows us to use type information to decide when a unification

rule is applicable and avoid the use of any axioms such as UIP.

• We show how the standard first-order unification rules used by Goguen et al.

(2006) can be implemented as equivalences (Section 4). We extend these rules

to the case of indexed families of datatypes. These rules work on heterogeneous

equations and can solve multiple equations at once, making them more general

than the ones in our previous work (Cockx et al., 2014). We also show how to

extend the unification algorithm with rules for η-equality of record types.

• To guarantee good computational properties of the unifiers produced by our

unification algorithm, we introduce the notion of a strong unification rule

(Section 5). We show that all the unification rules used by our algorithm are

strong ones, except for the (optional) deletion rule.

• We show how to make the injectivity rule for indexed datatypes more general

by a technique called higher dimensional unification (Section 6). In particular,

this technique formalizes the concept of forced constructor arguments, a

heuristic that allows unification to skip certain constructor arguments if they

are determined by the type of the constructor (Corollary 67).

• We reimplement the unification algorithm used by Agda for pattern matching

on indexed families of datatypes based on our framework for proof-relevant

unification, eliminating the previous ad-hoc restrictions and fixing a number

of bugs in the process (Section 8). This new unification algorithm has been

released as part of Agda version 2.5.1.2

This paper is based on the work of two conference papers (Cockx et al., 2016a;

Cockx and Devriese, 2017), as well as the first author’s PhD thesis (Cockx, 2017).

Compared to the conference papers, we made the following additions:

• We give a new definition of a strong unifier (Definition 53). Compared the

previous definition (Cockx et al., 2016a), this definition is more natural to work

with and allows us to prove that functions constructed by unification satisfy

the expected computational behaviour (Lemma 56), while it is still satisfied by

all the unification rules.

• We prove that lifting a strong unifier results again in a strong unifier (Lemma

73).

• We give a formal proof that (a suitably internalized notion of) a most general

unifier is really equivalent to an equivalence (Lemmas 17 and 18).

• The presentation of many examples, definitions, lemmas, and theorems was

improved compared to the conference version.

2 Available from http://wiki.portal.chalmers.se/agda/.
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Fig. 1. The syntax for contexts, types, and terms.

Overview. First, we give an overview of the type theory we work in, including syntax

and typing rules for telescopes and telescopic equality (Section 2). We start the paper

proper with a general description of our framework for reasoning about unification

in a dependently typed setting (Section 3). We phrase the basic unification rules

in this framework and show how our algorithm can easily be extended by adding

more unification rules (Section 4). We pay special attention to the computational

behaviour of unification rules when viewed as terms in type theory (Section 5). To

augment the power of the unification rules for indexed datatypes, we introduce a

new technique called higher dimensional unification (Section 6). We show that our

unification rules are conservative over standard type theory by translating them to

the standard datatype eliminators (Section 7). We also discuss the implementation of

our unification algorithm in Agda (Section 8). We finish the paper with a discussion

of related work (Section 9) and future work (Section 10). The appendix contains a

proof of the incompatibility between injective type constructors on one hand and

univalence and the law of the excluded middle on the other hand (Appendix A).

2 Preliminaries

We base ourselves on Martin-Löf’s Intuitionistic Theory of Types with dependent

function types, inductive families, and universes (Martin-Löf, 1972, 1984). However,

the results in this paper should be equally applicable in other type theories with

inductive families such as the Unified Theory of Dependent Types by Luo (1994) or

the calculus of inductive constructions used by Coq. The main reason we do not use

these more expressive calculi is because we do not need their additional features,

and not using them makes our results more generally applicable.

2.1 Basic syntax and typing rules

We use a syntax closely resembling that of Agda (Figure 1). Types and terms share

the same syntactic class. As a convention, types are indicated by capital letters A, B,

. . . and other terms by small letters u, v,. . . Aside from the standard type-theoretic

constructs, the syntax includes datatypes D, constructors c, and defined functions f.

The set of variables that occur freely in u is indicated by FV (u). Simultaneous

substitution u[x1 �→ v1, . . . , xn �→ vn] is defined by simultaneously replacing all free
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Fig. 2. The typing rules for valid contexts.

Fig. 3. The core typing rules including dependent function types (x : A) → B and an infinite

hierarchy of universes Set0, Set1, Set2,. . . .

occurrences of x1, . . . , xn in u by v1, . . . , vn, avoiding variable capture by renaming

bound variables when necessary.

The basic rules for context validity, typing, and definitional equality are given in

Figures 2–4, respectively. In addition to these rules, we assume one rule for each

datatype D, constructor c, and defined function f, asserting that the symbol has its

declared type in any valid context.

2.2 Inductive families of datatypes

Inductive families of datatypes are (dependent) types inductively defined by a

number of constructors (Dybjer, 1991). Inductive families can also have parameters

and indices. In the syntax (Figure 1), datatypes are written D and constructors c.

Example 5. � is defined as an inductive datatype with the constructors zero : � and

suc : � → �.

Example 6. Vec A n is an inductive family with one parameter A : Set, one index

n : �, and two constructors nil : Vec A zero and cons : (n : �) → A → Vec A n →
Vec A (suc n).

In the original definition of indexed families by Dybjer (1991), parameters are

required to occur uniformly everywhere in the definition of the datatype, while

indices can vary from constructor to constructor. Agda is less restrictive and also

allows parameters to occur non-uniformly in the types of recursive constructor
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Fig. 4. The rules for definitional equality, including rules for β-equality, reflexivity,

symmetry, transitivity, and congruence.

arguments, but not in their return types. The work in this paper is valid for both

variants of the definition.

The values of the parameters are not arguments to the constructor c, not even

implicitly. This is intentional: requiring constructors to remember their parameters

is impractical from an implementation perspective, so we make sure they are never

needed for the unification algorithm described in this paper.

2.3 The identity type

The propositional equality type x ≡A y expresses the property that x and y are

equal elements of type A (Martin-Löf, 1984). The basic way to prove a propositional

equality is by using refl : x ≡A x (short for reflexivity); for example, refl is a

proof of zero ≡� zero. The identity type comes equipped with a number of useful

reasoning principles besides refl:

• sym : {x y : A} → x ≡A y → y ≡A x expresses the symmetry of propositional

equality.3

• trans : {x y z : A} → x ≡A y → y ≡A z → x ≡A z expresses the transitivity of

propositional equality.

3 As in Agda, we use two function spaces (x : A) → B and {x : A} → B for explicit and implicit
functions, respectively. The values of implicit arguments can always be deduced from the types of the
other arguments, so we omit them when applying the function. For example, we write sym e instead
of sym x y e. In case we do want to make these arguments explicit, we write them between curly
brackets as well, for example, sym {x} {y} e.
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• cong : (f : A → B) → {x y : A} → x ≡A y → f x ≡A f y expresses

congruence: Applying a function to equal arguments gives equal results.

• subst : (P : A → Set) → {x y : A} → x ≡A y → P x → P y expresses

substitution: If two types are equal up to some propositionally equal terms,

then we can transport elements from one type to the other.

In particular, if we take A = Set and P = λX. X in the type of subst, the result

is a function of type (X Y : Set) → (X ≡Set Y ) → X → Y . This function is often

called coerce because it allows us to coerce a term from one type to another if the

types are propositionally equal.

The standard eliminator for the identity type x ≡A y is called the J rule:

J : {x : A}(P : (y : A) → x ≡A y → Set)(p : P x refl)(y : A)(e : x ≡A y) → P y e

(2)

This rule is a generalization of subst where the type P is allowed to depend on

the given equality proof. Using only J, it is possible to define sym, trans, cong, and

subst, and coerce.

We will also rely on the concept of pointwise equality between two functions.

Definition 7 (Pointwise equality). Let f, g : (x : A) → B x be two functions. The

pointwise equality type f
.
= g is defined as (x : A) → f x ≡B x g x. Similarly, if σ, τ :

Δ → Γ are two telescope mappings, then σ
.
= τ is defined as (x̄ : Δ) → σ x̄ ≡Γ τ x̄.

In case we have access to functional extensionality, pointwise equality becomes

equivalent with regular propositional equality. However, we do not rely on functional

extensionality for any of the work in this paper.

2.4 Equivalences

The central concept we use to represent unification rules in this paper is the notion

of an equivalence. We use Definition 4.3.1 from The Univalent Foundations Program

(2013):

Definition 8. A function f : A → B is an equivalence if we have two functions

g1 : B → A and g2 : B → A and proofs that they are, respectively, a left and a right

inverse of f (i.e. terms of type (x : A) → g1 (f x) ≡A x and (y : B) → f (g2 y) ≡B y).

Two types A and B are equivalent if there exists an equivalence from A to B. The

type of all equivalences f : A → B is written as A � B.

If f : A � B is an equivalence, then we also write f for the function f : A → B.

We write linv f for the function g1 (for the left inverse of f), and isLinv f for the

proof of (x : A) → linv f (f x) ≡A x. Similarly, rinv f stands for the function g2

and isRinv f for the proof of (y : B) → f (rinv f y) ≡B y. For many equivalences,

linv f and rinv f are definitionally equal. In that case, we write f−1 for their

common value.

The notion of equivalence plays a central role in Voevodsky’s univalence axiom.

However, our work does not require any primitives on the top of the basic

intuitionistic type theory (such as univalence). In fact, our work can be equally
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Fig. 5. The typing rules for telescopes.

well understood without any knowledge of HoTT, and is still useful in a setting

that assumes entirely different axioms (such as the law of the excluded middle from

classical logic).

2.5 Telescopes

A telescope is a list of typed variable bindings where each type can depend on

the previous variables (de Bruijn, 1991). For example, (m : �)(p : m ≡� zero) is

a telescope of length 2. Telescopes are much like contexts in the sense that they

consist of a sequence of variable typings of the form (x : A). However, they are used

for different purposes so it is best to keep the two concepts separate. While contexts

grow to the right, telescopes grow to the left. One way to think about a telescope

is as the tail of a context: While a context must always be closed, a telescope can

contain free variables from an ambient context, and the telescope can be added to

that context to produce a new, extended context.

If there are multiple variables of the same type after each other, then we usually

only write the type once. For example, (x y z : A) stands for the telescope (x : A)(y :

A)(z : A).

Telescopes are used as the type of a list of terms. A list of terms is indicated by

a bar above the letter, for example, t̄ = (zero; refl) : (m : �)(p : m ≡� zero). We

also write () for the empty list of terms. The typing rules for telescopes and lists of

terms are given in Figure 5.

Telescopes are useful for various other purposes: a telescope can be used

. . . as an extension to the context: ΓΔ is defined by Γ() := Γ and Γ((x : A)Δ) :=

(Γ(x : A))Δ. In particular, if Δ is a valid telescope in the empty context, then

Δ can be used as the context ()Δ.

. . . as the names of the variables of a parallel substitution: u[Δ �→ v̄] is defined by

substituting the values v̄ for the variables of Δ in u.

. . . as the argument types of an iterated function type: Δ → B is defined by

() → B := B and (x : A)Δ → B := (x : A) → (Δ → B).

. . . in the definition of an iterated lambda abstraction: λΔ. u is defined by λ(). u :=

u and λ((x : A)Δ).u := λx. (λΔ. u).
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. . . as a list of the variables in the telescope: f Δ is defined by f () := f and

f ((x : A)Δ) := (f x) Δ.

These various interpretations of telescopes can be used together. For example, if

Γ � f : Δ → B, then we have ΓΔ � f Δ : B.

If D is a datatype with indices Ξ, we write D for the telescope (ū : Ξ)(x : D ū), for

example, Vec A = (n : �)(x : Vec A n).

A function between telescopes is called a telescope mapping. A telescope mapping

f : Δ → Δ′ maps variables of type Δ to values of type Δ′. Telescope mappings

generalize the concept of a (non-dependent) function to multiple inputs and multiple

outputs. They could be encoded as normal functions by representing a telescope by

an iterated Σ-type, but we find it useful to define them as a first-class concept.

Another way to view a telescope mapping f : Δ → Δ′ is as a typed variant of a

substitution. In particular, if we have a term u : A with free variables coming from

Δ′, then we can apply the substitution [Δ′ �→ f Δ] to it, replacing the variables from

Δ′ by the values given by f Δ, to get a term u′ with free variables coming from Δ.

Example 9. Suppose Δ = (k : �) and Δ′ = (m n : �) and let f k = (zero; suc k). We

have Δ′ � m+n : �, so applying the substitution [Δ′ �→ f Δ] = [m �→ zero; n �→ suc k]

gives us Δ � zero + suc k : �.

When we use a telescope mapping f : Δ → Δ′ as a substitution, the substitution

goes in the ‘opposite’ direction: it takes terms with free variables Δ′ to terms with

free variables Δ. In this case, the type of f is often written as Δ � f : Δ′. However,

since in this paper we use telescope mappings mainly as functions rather than as

substitutions, we stick to the notation f : Δ → Δ′.

2.6 Heterogeneous and telescopic equality

The identity type x ≡A y only allows equations between elements of the same type, so

we still need a way to represent heterogeneous equations. For this purpose, McBride

(2000) introduced a heterogeneous equality type x A
∼=B y where x : A and y : B

can be of different types, but x A
∼=B y can only be proven if the types A and B are

actually the same. Using this type, a unification problem can be represented by the

(non-dependent) product of the individual equalities. By maintaining the invariant

that the leftmost equation is always homogeneous, the equations can be solved step

by step, from left to right. However, using this heterogeneous equality type causes a

number of problems:

• Turning a proof of heterogeneous equality between elements of the same type

into a homogeneous one requires UIP. So in a theory without UIP (such as

HoTT), heterogeneous equalities are worthless.

• Using heterogeneous equality causes information about dependencies between

the equations to be lost. For example, if we have two equations Bool Set
∼=Set

Bool and true Bool
∼=Bool false, there is no way to see whether the type of the

second equation depends on the first. Example 2 shows that both cases are

possible, and that it is essential to know the difference!
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• Finally, it is unsound to postpone an equation and continue with the next one

when working with heterogeneous equality, since this allows us to prove things

such as injectivity of certain type constructors (Example 4).

To avoid these problems and keep track of the dependencies between equations,

we use the concept from HoTT of an equality ‘laying over’ another one. There are

multiple equivalent ways to define this type; for the sake of simplicity, we use the

following definition in terms of the regular homogeneous equality by substituting

on the left:

Definition 10. Let e : s ≡A t and P : (x : A) → Set. We define the type u ≡e
P v of

equality proofs between u : P s and v : P t laying over e by

u ≡e
P v = (subst P e u) ≡(P t) v (3)

In practice, the exact definition of u ≡e
P v does not have much impact, what is

important is that (u ≡refl
P v) = (u ≡P s v) whenever s = t. An alternative definition

would be to define u ≡e
P v as a new datatype indexed over s, t, e, u, and v with a

single constructor refl : u ≡refl
P u. Yet, another alternative definition would be to

define the type u ≡e
P v by matching on e, giving (u ≡refl

P v) = u ≡P s v in case e is

refl. We prefer our definition to these more symmetric alternatives because it does

not require auxiliary datatypes or large eliminations.

We often write u ≡P e v instead of u ≡e
P v. For example, if e : m ≡� n and

u : Vec A m and v : Vec A n are two vectors, then we may form the type u ≡Vec A e v.

This notation is inspired by cubical type theory (Cohen et al., 2016), where a function

f : A → B is automatically lifted to a function x ≡A y → f x ≡B f y. In our setting,

it is merely a convenient abuse of notation.

Using this notion of an equality proof laying over another, we can define a version

of cong that works for dependent functions:

dcong : (f : (x : A) → B x) → {x y : A} → (e : x ≡A y) → f x ≡B e f y

dcong f refl = refl
(4)

Telescopic equality is defined as follows:

Definition 11. Let Δ be a telescope and Γ � s̄, t̄ : Δ. We define a new telescope

(ē : s̄ ≡Δ t̄) called the telescopic equality between s̄ and t̄ inductively on the length of

Δ by () ≡() () = () and

(e; ē : s; s̄ ≡(x:A)Δ t; t̄) = (e : s ≡A t)(ē : s̄ ≡Δ[x �→e] t̄) (5)

For each t̄ : Δ, we define refl : t̄ ≡Δ t̄ as refl; . . . ; refl.

For example, ((e1; e2) : (m; u) ≡(x:�)(y:Vec A x) (n; v)) stands for the telescope (e1 :

m ≡� n)(e2 : u ≡Vec A e1
v).

Lemma 12. We have the telescopic equality eliminator

J : (P : (̄s : Δ) → r̄ ≡ s̄ → Seti) → P r̄ refl → (̄s : Δ) → (ē : r̄ ≡ s̄) → P s̄ ē (6)
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12 J. Cockx and D. Devriese

Construction

We define J by eliminating the equations ē from left to right using J:

J P p () () = p

J P p (s; s̄) (e; ē) = J (λs; e. (̄s : Δ)(ē : r̄ ≡ s̄) → P (s; s̄) (e; ē))

(λs̄; ē. J (λs̄; ē. P (r; s̄) (refl; ē)) p ē)

e s̄ ē

(7)

Each elimination of an equation ei : ri ≡ si fills in refl for all occurrences of ei,

allowing the next equations to reduce and in particular ensuring that the following

equation is of the correct form.

Using J, we also define telescopic versions of subst, cong, and dcong:

subst : (P : Δ → Set�) → {ū v̄ : Δ} → ū ≡Δ v̄ → P ū → P v̄

cong : (f : Δ → T ) → {ū v̄ : Δ} → ū ≡Δ v̄ → f ū ≡T f v̄

dcong : (f : (x̄ : Δ) → T x̄) → {ū v̄ : Δ} → (ē : ū ≡Δ v̄) → f ū ≡T ē f v̄

(8)

3 Unification in dependent type theory

In this section, we describe our new framework for unification of dependently

typed data. First, we represent the input of the unification problem by a telescopic

equality where each type in this telescope corresponds to one equation of the

unification problem (Section 3.1). The output of the unification algorithm is then an

equivalence between the original telescope of equations and a trivial one (Section

3.2). This equivalence contains not only the substitution computed by the unification

algorithm, but also evidence that the output is sound. The unification algorithm

itself works by successively applying unification rules, which are represented by

equivalences between two telescopes of equations (Section 3.3). The aggregate

equivalence produced by unification can be used for specialization by unification,

an essential part of the translation of definitions by dependent pattern matching to

eliminators (Section 3.4).

3.1 Unification problems as telescopes

To represent equations internally, we use the propositional equality type x ≡A y. For

example, the equation suc m = suc n is represented by the type suc m ≡� suc n.

In general, a unification problem can consist of multiple equalities and the type of

an equality may depend on the solution of the previous equalities. To keep track of

these dependencies, we give a type to the list of equations in the form of a telescope.

By the nature of a telescope, the type of each equation can depend on the previous

equations.

Definition 13. A unification problem is a telescope of the form Γ(ē : ū ≡Δ v̄). The

variables in Γ are called the flexible variables.
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Example 14. A unification problem between two vectors can be represented by the

telescope

(m n : �)(x y : A)(xs : Vec A m)(ys : Vec A n)

(e1 : suc m ≡� suc n)(e2 : cons m x xs ≡Vec A e1
cons n y ys)

(9)

3.2 Unifiers as equivalences

Traditionally, a unifier for a unification problem ū = v̄ is defined as a substitution σ

such that ūσ and v̄σ are equal. So how do we translate this definition to type theory?

Consider a unification problem of the form Γ(ē : ū ≡Δ v̄). We could represent a

unifier as a telescope mapping σ : Γ′ → Γ satisfying ū[Γ �→ σ Γ] = v̄[Γ �→ σ Γ], but

then the soundness property is still external to the theory. Instead, we use the power

of dependent types to express the fact that the equations are satisfied internally:

Definition 15. Let Γ and Δ be telescopes and ū and v̄ be lists of terms such that Γ �
ū, v̄ : Δ. We define a unifier of ū and v̄ as a telescope mapping σ : Γ′ → Γ(ē : ū ≡Δ v̄)

for some Γ′.

A unifier σ returns not only values of type Γ but also evidence that the equations

are indeed satisfied by these values.

Example 16. The telescope mapping σ : (k : �) → (k l : �)(e : suc k ≡� suc l)

defined by σ = λk. k; k; refl is a unifier of suc k and suc l. The evidence here

is refl : suc k = suc k, proving that suc k and suc l become equal under the

substitution [k �→ k; l �→ k].

Usually, the goal of a unification algorithm is not just to output any unifier but

a most general one, i.e. a unifier σ : Γ′ → Γ(ē : ū ≡A v̄) such that any other unifier

σ′ : Γ′′ → Γ(ē : ū ≡A v̄) can be written as σ ◦ ν for some ν : Γ′′ → Γ′.

Again, we should think how to represent this concept internally. One way to do

this is to translate the definition of most general unifier directly to a type. However,

to do this, we need to quantify over all possible telescopes Γ′′ and unifiers σ′, making

the definition more unwieldy than necessary. Can we find a better definition?

Lemma 17. Let Γ and Γ′ be telescopes and σ : Γ′ → Γ. The following two statements

are equivalent:

• For any telescope Γ′′ and σ′ : Γ′′ → Γ, there exists at least one ν : Γ′′ → Γ′

such that σ′ .
= σ ◦ ν.

• There exists a τ1 : Γ → Γ′ such that σ ◦ τ1
.
= id.

Proof

First, suppose that we have a telescope mapping τ1 : Γ → Γ′ such that σ ◦ τ1
.
= id

is the identity function on Γ. This allows us to define ν = τ1 ◦ σ′, which gives us

σ ◦ ν
.
= σ ◦ τ1 ◦ σ′ .

= σ′, as we wanted.

For the other direction, we take Γ′′ = Γ and σ′ = id. Then by assumption, we

have a τ1 : Γ → Γ′ such that id
.
= σ ◦ τ1.
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14 J. Cockx and D. Devriese

Fig. 6. Lemma 17 allows us to construct a right inverse τ1 to σ from the existence of the

telescope mapping ν, while Lemma 18 gives us a left inverse τ2 from its uniqueness.

It is often useful to require that the function ν is unique, for otherwise Γ′ may

contain ghost variables that are not actually used by σ. For example, for a unification

problem with Γ = (b : Bool) and a single equation b ≡Bool true, we have the unifier

σ : () → (b : Bool)(e : b ≡Bool true) that we would like to recognize as the most

general one. However, if ν is not required to be unique, then there may be other

most general unifiers with a non-equivalent choice of Γ′. For example, we could

also have taken σ′ : (b′ : Bool) → (b : Bool)(e : b ≡Bool true) that ignores its

argument b′.

Lemma 18. Let Γ and Γ′ be telescopes and let σ : Γ′ → Γ. The following two

statements are equivalent:

• For any telescope Γ′′ and σ′ : Γ′′ → Γ, there exists at most one ν : Γ′′ → Γ′

such that σ′ .
= σ ◦ ν.

• There exists a τ2 : Γ → Γ′ such that τ2 ◦ σ
.
= id.

Proof. Suppose that we have a τ2 such that τ2 ◦σ .
= id. If ν and ν ′ are two telescope

mappings such that σ ◦ ν
.
= σ′ .

= σ ◦ ν ′, then we have ν
.
= τ2 ◦ σ ◦ ν

.
= τ2 ◦ σ ◦ ν ′ .

=

ν ′, so ν is unique.

For the other direction, we assume that ν is unique. Let Γ′′ = Γ′ and σ′ = σ and

ν = τ1 ◦ σ and ν ′ = id. This gives us that σ ◦ ν
.
= σ

.
= σ ◦ ν ′, so by uniqueness,

we have τ1 ◦ f
.
= id. Hence, taking τ2 = τ1 gives us the desired telescope mapping

τ2.

The proofs of Lemmas 17 and 18 are illustrated in Figure 6. If we replace the

telescope Γ by a unification problem Γ(ē : ū ≡Δ v̄), then Lemmas 17 and 18 together

give us that σ : Γ(ē : ū ≡Δ v̄) → Γ′ is a most general unifier if and only if it is an

equivalence between Γ′ and Γ(ē : ū ≡Δ v̄). This brings us to the following definition

of a most general unifier:

Definition 19. Let Γ and Δ be telescopes and ū and v̄ be lists of terms such that

Γ � ū, v̄ : Δ. Then a most general unifier of ū and v̄ is an equivalence f : Γ(ē : ū ≡Δ

v̄) � Γ′ for some telescope Γ′.

The unifier σ : Γ′ → Γ(ē : ū ≡Δ v̄) corresponds to the inverse function f−1.

Intuitively, f allows us to recover the values of the variables in Γ′ for any values of

Γ that satisfy ū ≡Δ v̄.
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The definition of a most general unifier does not prevent us from choosing

Γ′ = Γ(ē : ū ≡Δ v̄) and f = id. In fact, this is a valid (if trivial) most general unifier

from a logical point of view.

In case unification succeeds negatively, we need evidence that the equations are

indeed impossible. For this purpose, we use the empty type ⊥:

Definition 20. Let Γ and Δ be telescopes and ū and v̄ be lists of terms such that

Γ � ū, v̄ : Δ. A disunifier of ū and v̄ is an equivalence f : Γ(ē : ū ≡Δ v̄) � ⊥.

Any function f : A → ⊥ is automatically an equivalence A � ⊥, as the other

components of the equivalence can be constructed by using the eliminator elim⊥ :

(A : Set�) → ⊥ → A. So the only interesting part of a disunifier is the function

f : A → ⊥.

3.3 The unification algorithm

Now that we know how to represent the input and the output of the unification

algorithm, we can start thinking about the unification algorithm itself. Since the

end result of the unification process (the most general unifier) is an equivalence, it

is natural to represent unification rules as equivalences as well. These unification

rules can then be chained together by transitivity of � to produce the most general

unifier f.

Definition 21. A positive unification rule is an equivalence of the form r : Γ(ē : ū ≡Δ

v̄) � Γ′(ē′ : ū′ ≡Δ′ v̄′).

For example, the unification rule for injectivity of the suc constructor for � is

injectivitysuc : (e : suc m ≡ suc n) � (e : m ≡ n) (10)

Another important example of a positive unification rule is the solution rule used

to solve equations where one side is a variable:

solution : (x : A)(e : x ≡A t) � () (11)

In addition to unification rules of this form, that transform one set of equations

into another, there are also unification rules that refute absurd equations like

true ≡Bool false.

Definition 22. A negative unification rule is an equivalence of the form r : Γ(ē : ū ≡Δ

v̄) � ⊥.

For example, the unification rule for conflict between true and false is

conflicttrue,false : (true ≡Bool false) � ⊥ (12)

The unification algorithm tries to construct an equivalence Γ(ē : ū ≡Δ v̄) � Γ′

by successively applying the unification rules to the unification problem, simplifying

one or more equations in each step. This process continues until one of the following

three possible situations occurs:
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16 J. Cockx and D. Devriese

• If there are no more equations left, the algorithm succeeds positively. In this

case, it returns an equivalence between the original problem Γ(ū ≡Δ v̄) and the

reduced telescope Γ′.

• If a contradictory equation is encountered, the algorithm succeeds negatively.

In this case, it returns an equivalence between the original problem Γ(ū ≡Δ v̄)

and the empty type ⊥.

• If there are no more applicable rules, the algorithm results in a failure.

We do not yet give an explicit strategy on which rule to apply in a specific situation.

This leaves more freedom to the implementation to choose which rule to try first.

When we discuss our implementation in Section 8, we give one concrete strategy.

Example 23. Consider the unification problem consisting of flexible variables k l : �
and a single equation between suc k and suc l. First, we simplify the equation by

applying the equivalence injectivitysuc : (e : suc k ≡� suc l) � (e : k ≡� l).

Applying this rule leaves the two variables k and l unchanged. Next, we apply the

solution rule, which tells us that (l : �)(e : k ≡� l) � (). This leaves only the single

variable k : �. Since there are no more equations left in the telescope, unification ends

in a positive success.

We write down the unification process as a series of telescopes (representing

unification problems) with equivalences between them (representing the individual

unification steps). In each step, we underline the variables and equations that are

being solved or simplified.

(k l : �)(e : suc k ≡� suc l)

� (k l : �)(e : k ≡� l)

� (k : �)

(13)

To get the substitution from (k : �) to (k l : �)(e : suc k ≡� suc l) computed by the

unification process, we only need to compose the functions embedded in the equivalences

from the bottom to the top. The solution rule assigns l to be k and e to be refl, and

the injectivity rule maps e : k ≡� l to cong suc e : suc k ≡� suc l, so the aggregate

unifier f−1 : (k : �) → (k l : �)(e : suc k ≡� suc l) here is λk. k; k; refl (since

cong suc refl = refl).

Before we continue with the general form of the unification rules in the next

section, we first give three easy but useful manipulations on equivalences (and

hence on unification rules) that allow us to postpone and reorder equations. These

principles are used when we want to apply a unification rule, but the problem

contains some additional variables or equations that are not mentioned in the rule.

For example, in the second step of Example 23, the solution rule did not affect the

variable k. In what follows, we often make use of these manipulations implicitly.

Lemma 24. If we have an equivalence f : Δ � Δ′ where Δ and Δ′ possibly contain free

variables from a telescope Γ, then we also have an equivalence fΓ : ΓΔ � ΓΔ′.

Lemma 25. If we have an equivalence f : Γ � Γ′ and a telescope Δ possibly containing

free variables from Γ, then we also have an equivalence fΔ : ΓΔ � Γ′Δ′, where

Δ′ = Δ[Γ �→ linv f Γ′].
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Lemma 26. If we have a telescope Γ, and Γ′ is a reordering of the variable bindings

in Γ that preserves the order of dependencies, then we have an equivalence f : Γ � Γ′.

Construction. The construction of the equivalence is in all three cases

straightforward, relying on J to prove that the functions are mutual inverses.

3.4 Specialization by unification

When performing case analysis on a variable from an inductive family, the

typechecker of a dependently typed language needs to determine which constructors

can occur in a given position and how the variables need to be instantiated for

the pattern to be well-typed. To do this, it applies unification to the indices of the

datatype in question. If unification determines that there can be no such substitution,

then we can skip the case for the corresponding constructor. This method of solving

equations to either gain more information about the type of the right-hand side or

to derive an absurdity is called specialization by unification.

Specialization by unification allows us to construct functions of the form

m : (x̄ : Γ)(ē : ū ≡Δ v̄) → T x̄ ē (14)

It can be seen as a generic method of constructing an inversion principle (McBride,

1998b). It is also a core component in the translation of definitions by pattern

matching to eliminators (Goguen et al., 2006; Cockx, Devriese, and Piessens, 2016b).

Definition 27 (Specialization by unification). Consider a problem of the form m : (x̄ :

Γ)(ē : ū ≡Δ v̄) → T x̄ ē and suppose that unification of ū with v̄ with Γ as flexible

variables succeeds either positively or negatively, then we construct the function m:

• In case the unification succeeds positively with most general unifier f : Γ(ē : ū ≡Δ

v̄) � Γ′, we have

isLinv f : (x̄ : Γ)(ē : ū → f−1 (f x̄ ē) ≡Γ(ē : ū x̄; ē) (15)

Then we define m by

m x̄ ē = subst T (isLinv f x̄ ē) (ms (f x̄ ē)) (16)

with the new subgoal of constructing ms : (x̄′ : Γ′) → T (linv f x̄′).

• In case the unification succeeds negatively with disunifier f : Γ(ē : ū ≡Δ v̄) � ⊥,

then we define m by

m x̄ ē = elim⊥ (T x̄ ē) (f x̄ ē) (17)

with no additional assumptions.

Example 28. We apply specialization by unification to construct two functions

mlz : (m : �)(k : �)(y : k � zero) →
(zero;m; lz m) ≡(m n:�)(x:m�n) (k; zero; y) → zero ≡� k

(18)

and

mls : (m n : �)(x : m � n)(k : �)(y : k � zero) →
(suc m; suc n; ls m n x) ≡(m n:�)(x:m�n) (k; zero; y) → zero ≡� k

(19)
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18 J. Cockx and D. Devriese

In case of mlz, unification of ū = zero;m; lz m with v̄ = k; zero; y in the context

Γ = (m : �)(k : �)(y : k � zero) results in a positive success with most general

unifier f : Γ(ū ≡(m n:�)(x:m�n) v̄) � () with f−1 () = zero; zero; lz zero; refl, where

refl : zero; zero; lz zero ≡(m n:�)(x:m�n) zero; zero; lz zero. Specialization by

unification gives us the function mlz on the condition we can construct mlz
s : zero ≡�

zero, which we can do easily as mlz
s = refl.

For mls, unification of ū = suc m; suc n; ls m n x with v̄ = k; zero; y results in a

negative success, so specialization by unification gives us the function mls without any

additional assumptions.

4 Unification rules

In this section, we state the basic unification rules from McBride (1998b) in our

framework. We first handle the unification rules for simple datatypes (Section 4.1)

before moving on to the more challenging rules for indexed datatypes (Section 4.2).

We also show how to extend the unification algorithm with rules for η-equality for

record types (Section 4.3).

4.1 The basic unification rules

The first two rules are generic in the sense that they work for any type A.

Lemma 29. For any type A and term t : A, we have an equivalence

solution : (x : A)(e : x ≡A t) � () (20)

satisfying solution−1 () = t; refl.

In this rule, the variable x should not occur freely in t.

Construction of solution. The construction of the functions solution : (x :

A)(x ≡A t) → () and isRinv solution : () → () ≡() () is trivial since they both

target an empty telescope. The function solution−1 : () → (x : A)(e : x ≡A t)

is defined by solution−1 () = t; refl. Finally, isLinv solution, of type

(x : A)(e : x ≡A t) → t; refl ≡(x:A)(e:x≡At) x; e, is a direct application of the J

rule.

Lemma 30. For any type A that satisfies UIP and any term t : A, we have an

equivalence

deletion : (e : t ≡A t) � () (21)

Construction of deletion. This follows directly from the UIP at type A.

The injectivity, conflict, and cycle rules are specific to an inductive datatype D. We

present them here for a simple (non-indexed) datatype and for an indexed datatype

in the next section.
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Fig. 7. The structural order ≺ is used to check termination and to detect cycles during

unification.

Lemma 31. Let c : Δc → D be a constructor of the datatype D : Set� and let x̄, x̄′ : Δc.

We have an equivalence

injectivityc : (c x̄ ≡D c x̄′) � (x̄ ≡Δc
x̄′) (22)

such that injectivityc−1 ē = cong c ē.

Lemma 32. Let c1 : Δ1 → D and c2 : Δ2 → D be two distinct constructors of the

datatype D : Set� and x̄1 : Δ1 and x̄2 : Δ2. We have an equivalence

conflictc1 ,c2 : (c1 x̄1 ≡D c2 x̄2) � ⊥ (23)

To state the cycle rule, we need the structural order ≺ defined in Figure 7. This

definition is somewhat different from the one given by Goguen et al. (2006). It

describes the same relation in case the left- and right-hand sides are elements of the

datatype D, but it enforces that the left- and right-hand sides are actually elements

of the datatype. This prevents odd structural orders that are allowed by the original

definition. For example, if we have a datatype D with a constructor c : (A → D) → D,

then the definition by Goguen et al. allows us to derive for any a : A that a ≺ c a ≺ c,

even though a does not occur in c.

Lemma 33. Let D : Set� be a datatype and let x, t : D be such that x ≺ t. We have an

equivalence

cyclex,t : (x ≡D t) � ⊥ (24)

Once again, the type of the equation should be exactly D. We postpone the proof

of this lemma until Section 7.

Example 34. Consider the sum type A � B (where A,B : Set are arbitrary types)

with two constructors left : A → A � B and right : B → A � B. An expression of

the form left x is never equal to right y, so any equality between those two terms

is equivalent to ⊥:

(x : A)(y : B)(e : left x ≡A�B right y) � ⊥ (25)

This is exactly the conflict rule between left and right.

The type of the equation on the left in Lemmas 31 and 32 should be exactly D, in

particular, the constructor c must be fully applied.

Counterexample 35. An equation between the constructors left and right is not

always absurd when they are not fully applied. Let A = B = ⊥, then (e : left ≡⊥→⊥�⊥
right) is not equivalent to ⊥. This is because when viewed as functions of type ⊥ →
⊥ � ⊥, the constructors inj1 and inj2 coincide on all possible inputs (i.e. none).

The principle of functional extensionality then tells us that these two functions are

equal. So if we would consider this equation to be absurd, we would prohibit ourselves
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Fig. 8. The basic unification rules can be formulated as equivalences.

from having a general rule for functional extensionality in our language, nevertheless

a desirable property to have! Wrongly applying the conflict rule in this way led to the

problem described by issue #1497 on the Agda bug tracker (Dijkstra, 2015).

4.2 Rules for indexed datatypes

The injectivity, conflict, and cycle rules defined in the previous section all work on

regular datatypes, but unification only becomes really interesting once we consider

indexed families of datatypes. Where the unification rules that we have seen so far

only have a single equation on the left side, the rules for indexed datatypes have a

telescope of equations: one equation for each index, and one final equation for the

datatype itself.

Lemma 36. Let c : Δ → D ū be a constructor of the datatype D : Ξ → Set�. Then we

have an equivalence

injectivityc : (ū[Δ �→ x̄]; c x̄ ≡D ū[Δ �→ x̄′]; c x̄′) � (x̄ ≡Δ x̄′) (26)

where x̄, x̄′ : Δ and injectivityc−1 ē = dcong (λx̄. ū; c x̄) ē.

Lemma 37. Let c1 : Δ1 → D ū1 and c2 : Δ2 → D ū2 be two distinct constructors of

the datatype D : Ξ → Set�. Then we have an equivalence

conflictc1 ,c2 : (ū1[Δ1 �→ x̄1]; c1 x̄1 ≡D ū2[Δ2 �→ x̄2]; c2 x̄2) � ⊥ (27)

where x̄1 : Δ1 and x̄2 : Δ2.

Lemma 38. Let D : Ξ → Set� be a datatype and let (ū; x), (v̄; t) : D be such that x ≺ t.

Then we have an equivalence

cyclex,t : (ū; x ≡D v̄; t) � ⊥ (28)

Again, we postpone the proof of this lemma until Section 7. The unification rules

are summarized in Figure 8. To these basic rules, we will add rules for η-equality

for record types (Section 4.3), generalized rules for conflict and acyclicity (Section

6.1), and higher dimensional unification (Section 6.2). We give a complete list of the

unification rules with all these additions in Figure 9.

Example 39. Consider the indexed datatype Vec A : � → Set with the two

constructors nil : Vec A zero and cons : (n : �) → A → Vec A n → Vec A (suc n).
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Fig. 9. The complete list of rules of the unification algorithm.

The injectivity rule for cons gives us the following equivalence:

(suc m; cons m x xs ≡Vec A suc n; cons n y ys)

� (m; x; xs ≡(n:�)(x:A)(xs:Vec A n) n; y; ys)
(29)

This rule not only simplifies the equation between the two cons constructors, but

simultaneously simplifies the equation between the indices suc m and suc n. Now

let us see how this rule works in action:

(m n : �)(x y : A)(xs : Vec A m)(ys : Vec A n)

(e1 : suc m ≡� suc n)(e2 : cons m x xs ≡Vec A e1
cons n y ys)

� (m n : �)(x y : A)(xs : Vec A m)(ys : Vec A n)

(e1 : m ≡� n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1
ys)

� (n : �)(x : A)(xs : Vec A n)

(30)

The first step is an application of the injectivity rule, while the next step consists of

three applications of the solution rule.

To apply injectivity of cons, the type of the equation has to be of the form Vec A e

where e refers to a previous equation. This implies that this rule cannot be applied

directly to an equation of the form cons n x xs ≡Vec A (suc n) cons n y ys where

xs : Vec A n and ys : Vec A n have the same length ‘on the nose’. We show how to

solve this deficiency in Section 6.

Example 40. In the previous example, it was not really necessary to simplify the

equation between the indices together with the equation between the constructors, as we

could also have applied injectivitysuc to the equation suc m ≡� suc n. However,

sometimes this simplification gives a real increase to the power of unification. For

example, let f : A → B be a (possibly very complex) function, then in general there

is no way to solve an equation of the form f x ≡B f y. Now consider the following

datatype:

data Im f : B → Set where

image : (x : A) → Im f (f x)
(31)
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The injectivity rule for image simultaneously solves the equations e1 : f x ≡B f y and

e2 : image x ≡Im f e1
image y:

(x y : A)(e1 : f x ≡B f y)(e2 : image x ≡Im f e1
image y)

� (x y : A)(e : x ≡A y)

� (x : A)

(32)

Having an injectivity rule that works in this way is useful when giving semantics to an

embedded language (Danielsson, 2015).

Contrast this with the unification problem

(x y : A)(e1 : Im f (f x) ≡Set Im f (f y))(e2 : image x ≡e1
image y) (33)

Here, it is not allowed to use injectivity on the second equation e2 since its type is

not a datatype but a variable e1. Like in Example 2, there is no way to distinguish

between these two cases unless we keep track of the dependency of the type of e2 on

the equation e1. Wrongly applying injectivity in situations like this led to the problems

described by Abel (2015a,c) on the Agda bug tracker.

Example 41. Let D : Bool → Set be an indexed datatype with two constructors

tt : D true and ff : D false. Then the conflict rule between tt and ff gives us the

following equivalence:

(e1 : true ≡Bool false)(e2 : tt ≡D e1
ff) � ⊥ (34)

On the other hand, the conflict rule cannot be applied if the first equation is between

the types D true and D false:

(e1 : D true ≡Set D false)(e2 : tt ≡e1
ff) �� ⊥ (35)

Allowing the conflict rule to apply in this case would mean that we can distinguish

between D true and D false, which means that the type constructor D is injective. In

particular, this would be incompatible with univalence: there is an equivalence between

D true and D false under which tt is identified with ff, so univalence allows us

to prove that D true ≡Set D false. Note again that we need information about how

the type of e2 depends on e1 to distinguish between these two cases. Wrongly applying

conflict in situations like this led to the problems described by Danielsson (2010) and

Vezzosi (2015) on the Agda bug tracker.

Example 42. This example is based on issue #1071 on the Agda bug tracker

(Danielsson, 2014). Let A : Set, F : Set → Set and P : Set → Set1 be a datatype

with one constructor c : (A : Set) → P (F A). Then, we have

(f : F A)(R : Set)(f′ : F R)

(e1 : F A ≡Set F R)(e2 : f ≡e1
f′)(e3 : c A ≡P e1

c R)

� (f : F A)(R : Set)(f′ : F R)(e′
3 : A ≡Set R)(e2 : f ≡F e′

3
f′)

� (f : F A)(f′ : F A)(e2 : f ≡F A f′)

� (f : F A)

(36)

At each point during the unification process, there is only one valid way to proceed. At

the first step, the second equation f ≡e1
f′ cannot be solved right away as the type is
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heterogeneous and the solution rule only applies to homogeneous equations. The first

equation cannot be solved either as this would require injectivity of the functor F . The

only possibility is to apply the injectivity of c to the third equation. At the second step,

f ≡F e′
3
f′ cannot be solved because the type F e′

3 is heterogeneous, so e′
3 has to be

solved first instead.

4.3 Rules for record types

One of the big advantages of having a general notion of ‘unification rule’ and

‘most general unifier’ is that we have an easy way to check the soundness of new

unification rules. Alternatively, it can be used to assess the impact of adding a

new unification rule to the algorithm. In this section, we extend our algorithm with

two unification rules that deal with η-equality for record types.

A record type is a type for grouping values together. One of the properties that

sets a record type apart from a regular datatype with a single constructor, are the

additional laws for equality of records called η-laws (not to be confused with the

η-law for functions).

Definition 43. A record type R : Set� is defined by a number of fields (also called

projections):

f1 : (r : R) → A1

f2 : (r : R) → A2 (f1 r)
...

fn : (r : R) → An (f1 r) . . . (fn−1 r)

(37)

To construct an element of the record type from values x1 : A1, . . . , xn : An x1 . . . xn−1,

we use the syntax record{f1 = x1; . . . ; fn = xn}. Applying one of the projections to a

record constructed this way gives back the field:

fi (record{f1 = x1; . . . ; fn = xn}) = xi (38)

The type Ai of each field can depend on the values of the previous fields fj r

for j < i. For example, Σx:A (B x) can be defined as a record with two projections

fst : Σx:A (B x) → A and snd : (p : Σx:A (B x)) → B (fst p). Then x, y is shorthand

for record{fst = x; snd = y}.
The η-law states that for any r : R, we have

r = record{f1 = f1 r; . . . ; fn = fn r} (39)

We use the η-law to construct two unification rules. The first rule applies η to expand

a variable of record type into its constituent fields, while the second rule performs

a similar expansion on an equation between two elements of a record type.4

Lemma 44. Let R : Set� be a record type with fields given by Equation (37). Then we

have an equivalence:

ηvarR : (r : R) � (f1 : A1) . . . (fn : An f1 . . . fn−1) (40)

4 A cubical type theorist might say these are two instances of the same rule.
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Construction of ηvarR. We define ηvarR r by f1 r; . . . ; fn r, and ηvarR−1 f1 . . . fn
by record{f1 = f1; . . . ; fn = fn}. The proofs of both isLinv and isRinv is refl:

in the former case this is type-correct because of the η-law (39), and in the latter

case because of the computation rules for projections (38).

Example 45. This rule is especially useful for solving equations where one side is a

projection applied to a variable. Consider the type A × B = Σ :AB. Then we can solve

the equation fst p ≡� zero as follows:

(p : � × �)(e : fst p ≡� zero)

� (x : �)(y : �)(e : x ≡� zero)

� (y : �)

(41)

Here the composite telescope mapping σ : (y : �) → (p : � × �)(e : fst p ≡� zero)

from bottom to top is λy. (zero, y); refl.

Lemma 46. Let R : Set� be a record type with fields given by Equation (37). Then we

have an equivalence:

ηeqR : (e : r ≡R s) � (e1 : f1 r ≡A1
f1 s) . . . (en : fn r ≡An e1 ... en−1

fn s) (42)

Construction of ηeqR. To construct ηeqR, we rely on ηvarR and cong: We define

ηeqR e = cong ηvarR e and ηeqR−1 ē = cong ηvarR−1 ē. The proofs of isLinv and

isRinv are straightforward applications of J.

Example 47. This rule is useful when one side of an equation is of the form

record{. . .}. If f : � → � × �, then we can solve the equation x, y ≡�×� f z

as follows:

(x y z : �)(e : x, y ≡�×� f z)

� (x y z : �)(e1 : x ≡� fst (f z))(e2 : y ≡� snd (f z))

� (y z : �)(e2 : y ≡� snd (f z))

� (z : �)

(43)

5 Computational behaviour of unification rules

Until now, we have only been interested in an equivalence representing a most

general unifier insofar that it has the correct type. But as a term in type theory,

it also has a certain computational behaviour. This computational behaviour is

important for the applications we have in mind, in particular, the translation of

pattern matching to eliminators (Cockx et al., 2016b).

In particular, an important step during the translation of a case split to the

application of an eliminator is to generate auxiliary equations that are then solved

by unification (Definition 27). However, in the end, these equations are filled in with

refl.

Example 48. Consider the definition of the function tail (Example 1):

tail : (n : �) → Vec A (suc n) → Vec A n

tail .m (cons m x xs) = xs
(44)
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To translate this definition to eliminators, the first step is to generalize the problem to

constructing tail′ : (k n : �) → Vec A k → k ≡� suc n → Vec A n and then let

tail n xs = tail′ (suc n) n xs refl. Note in particular that the final argument to

tail′ is refl!

The next step in the translation is to apply case analysis on xs, which instantiates

k with zero in the case for nil and suc m in the case for cons. The equations

zero ≡� suc n and suc m ≡� suc n are then solved by unification:

• In the first case, we get a negative unifier

f1 : (n : �)(zero ≡� suc n) � ⊥ (45)

and in particular f n e : ⊥, so the case can be handled by applying absurd :

(A : Set�) → ⊥ → A.

• In the second case, we get a positive unifier

f2 : (m n : �)(x : A)(xs : Vec A m)(suc m ≡� suc n) � (m : �)(x : A)

(xs : Vec A m) (46)

This unifier is used in the further translation of the right-hand side of tail.

When (the translated version of) tail is called with arguments m and cons m x xs,

it will evaluate to tail′ (suc m) m (cons m x xs) refl by definition. In particular,

the proof of suc m ≡� suc n that is passed to the equivalence f2 is refl.

So if we care about the computational behaviour of the output of this translation,

we should worry about what happens when we apply a unification rule to refl, i.e.

when the equations on one side of the equivalence hold in fact definitionally.

Intuitively, a unification rule r : Γ(ē : ū ≡Δ v̄) � Γ′(ē′ : ū′ ≡Δ′ v̄′) should satisfy

the property that if the equations on the left hold definitionally, then the ones on

the right also hold definitionally and vice versa. Moreover, the proofs isLinv r and

isRinv r should be trivial in those cases. In other words, the various components

of the equivalence should satisfy the principle ‘refl in, refl out’. This leads us to

the following definition of a strong unification rule:

Definition 49 (Strong unification rule). A positive unification rule r : Γ(ē : ū ≡Δ v̄) �
Γ′(ē′ : ū′ ≡Δ′ v̄′) is a strong unification rule if for any Γ0 and for any s̄ and s̄′ such

that Γ0 � refl : ū[Γ �→ s̄] ≡Δ v̄[Γ �→ s̄] and Γ0 � refl : ū′[Γ′ �→ s̄′] ≡Δ′ v̄′[Γ′ �→ s̄′],

it satisfies the following five properties:

1. Γ0 � r s̄ refl = (̄t′; refl) : Γ′(ē′ : ū′ ≡Δ′ v̄′) for some t̄′ : Γ′.

2. Γ0 � linv r s̄′ refl = (̄t1; refl) : Γ(ē : ū ≡Δ v̄) for some t̄1 : Γ.

3. Γ0 � rinv r s̄′ refl = (̄t2; refl) : Γ(ē : ū ≡Δ v̄) for some t̄2 : Γ.

4. Γ0 � isLinv r s̄ refl = refl : linv r (r s̄ refl) ≡Γ(ē:ū≡Δ v̄) (̄s; refl).

5. Γ0 � isRinv r s̄′ refl = refl : r (rinv r s̄′ refl) ≡Γ′(ē′:ū′≡Δ′ v̄′) (̄s′; refl).

The trivial equivalence id : Γ(ē : ū ≡Δ v̄) � Γ(ē : ū ≡Δ v̄) is clearly a strong

unification rule, and we can compose strong unification rules:

Lemma 50. If r and r′ are strong unification rules, then r ◦ r′ is one as well.
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Proof. This follows directly from the definition of a strong unification rule and the

composition of two equivalences.

Most of the unification rules we have seen up until now are strong:

Lemma 51. solution and injectivityc are strong unification rules.

Proof. This follows directly from the construction of these rules (see Lemma 29 for

solution, and Lemma 81 for injectivityc.).

For the deletion rule (30), the computational behaviour depends on the type of the

equation being eliminated and the construction of the proof of K. In a theory with

a general K rule, the deletion rule is also a strong unification rule. However, if we

construct K for a specific datatype such as � from the basic eliminator, then the

resulting unification rule will not be strong as evaluation gets stuck in case the left-

and right-hand side of the equation are not of the form zero or suc m.

Lemma 52. ηvarR and ηeqR are strong unification rules.

Proof. For ηvarR, the first three properties are trivial as this rule does not involve

equations, and the last two properties holds as well since isLinv ηvarR r and

isRinv ηvarR r are equal to refl by definition.

For ηeqR, the functions ηeqR, ηeqR−1, isLinv ηeqR, and isRinv ηeqR all map

refl to refl by definition of cong and J, so it is also trivially a strong rule.

In the special case of a most general unifier, the telescope Δ′ on the right becomes

trivial so we can give a simpler definition of strongness. In particular, the first

property always holds so we may omit it, and for the second, third, and fifth

property, it is sufficient to require that they hold in the case that s̄′ is a list of

variables Γ′ (since there are no equations in Δ′ that should hold as a precondition).

This leads us to the following definition of a strong unifier:

Definition 53 (Strong unifier). A most general unifier f : Γ(ē : ū ≡Δ v̄) � Γ′ is strong

if it satisfies the following four properties:

1. Γ′ � linv f Γ′ = (̄t1; refl) : Γ(ē : ū ≡Δ v̄) for some t̄1.

2. Γ′ � rinv f Γ′ = (̄t2; refl) : Γ(ē : ū ≡Δ v̄) for some t̄2.

3. For any Γ0 and s̄ such that Γ0 � refl : ū[Γ �→ s̄] ≡Δ v̄[Γ �→ s̄], we have

Γ0 � isLinv f s̄ refl = refl : linv f (f s̄ refl) ≡Γ(ē:ū≡Δ v̄) (̄s; refl).

4. Γ′ � isRinv f Γ′ = refl : f (rinv f Γ′) ≡Γ′ Γ′.

From the first two properties, we deduce in particular that the equations ū ≡Δ v̄ are

indeed satisfied definitionally under the substitution embedded in the most general

unifier f.

Lemma 54. If f = r1 ◦ r2 ◦ . . . ◦ rn : Γ(ē : ū ≡Δ v̄) � Γ′ is composed of strong

unification rules r1, r2, . . . , rn, then f is a strong unifier.

Proof. Since a strong unifier is a special case of a strong unification rule, this follows

directly from Lemma 50.
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Lemma 55. If f : Γ(ē : ū ≡Δ v̄) � Γ′ is a strong unifier, then Γ′ � linv f Γ′ =

rinv f Γ′ : Γ.

Proof. By the second property of a strong unifier, we have s̄2 such that

Γ′ � rinv f Γ′ = (̄s2; refl) : Γ(ē : ū ≡Δ v̄) (47)

In particular, (̄s2; refl) has type Γ(ē : ū ≡Δ v̄), so we know that

Γ′ � refl : ū[Γ �→ s̄2] ≡Δ v̄[Γ �→ s̄2] (48)

By the third property of a strong unifier, this implies that

Γ′ � isLinv f s̄2 refl = refl : (̄s2; refl) ≡Γ(ē:ū≡Δ v̄) (̄s2; refl) (49)

Since the left- and right-hand side of a definitional equality always have definitionally

equal types, it follows in particular that the type of isLinv f s̄2 refl must be

definitionally equal to the type of refl, i.e.

Γ′ � linv f (f s̄2 refl) = (̄s2; refl) : Γ(ē : ū ≡Δ v̄) (50)

By similar reasoning, the fourth property gives us that the type of isRinv f Γ′ must

be definitionally equal to that of refl, so in particular

Γ′ � f (rinv f Γ′) = Γ′ : Γ′ (51)

But rinv f Γ′ = s̄2; refl, so we also have

Γ′ � f s̄2 refl = Γ′ : Γ′ (52)

Applying linv f to both sides of this equations gives us that

Γ′ � linv f (f s̄2 refl) = linv f Γ′ : Γ(ē : ū ≡Δ v̄) (53)

Putting this together with Equation (50) gives us that

Γ′ � linv f Γ′ = (̄s2; refl) : Γ(ē : ū ≡Δ v̄) (54)

Since rinv f Γ′ = (̄s2; refl), this gives us that Γ′ � linv f Γ′ = rinv f Γ′ : Γ, as

we wanted to prove.

This lemma implies that we can write f−1 for both linv f and rinv f when f is a

strong unifier.

When applying specialization by unification to construct a function m : (x̄ : Γ) →
(ē : ū ≡Δ v̄) → T x̄ ē from the subgoal ms : (x̄′ : Γ′) → T (linv f x̄′), we expect m

to have ‘the same’ computational behaviour as ms in case the equations ū ≡Δ v̄ are

actually satisfied. This is the content of the following lemma.

Lemma 56. If f is a strong unifier (Definition 53), then the function m constructed

through specialization by unification (Definition 27) satisfies the definitional equality

m (f−1 x̄′) = ms x̄′ for any x̄′ : Γ′.

Proof. Remember that for a strong unifier f, linv f and rinv f are definitionally

equal, so it is fine to write f−1 here. By the first property of a strong unifier,

we have f−1 x̄′ = s̄; refl for some s̄ : Γ. By the third property, this implies that
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isLinv f (f−1 x̄′) = refl. By the fourth property, we also have f (f−1 x̄′) = x̄′. So

we have

m (f−1 x̄′) = subst T (isLinv f (f−1 x̄′)) (ms (f (f−1 x̄′)))

= subst T refl (ms x̄′)

= ms x̄′
(55)

The fact that m (̄t refl) evaluates to ms (f t̄ refl) ensures that the computational

behaviour corresponds to the clause written by the user in the translation of pattern

matching to eliminators.

Discussion about the definition of a strong unifier. There are other possible definitions

of a strong unifier. In particular, to guarantee the good computational properties

of functions constructed through specialization by unification (Lemma 56), we only

need properties 1, 3, and a weaker version of property 4. In our previous work

(Cockx et al., 2016a), we used an even weaker definition of a strong unifier:

Definition 57 (DEPRECATED, version from Cockx et al. (2016a)). A most general

unifier f : Γ(ē : ū ≡Δ v̄) � Γ′ is strong if for any x̄′ : Γ′, it satisfies the following two

properties:

• f (f−1 x̄′) = x̄′.
• isLinv f (f−1 x̄′) = refl.

This definition ensures exactly the properties needed for Lemma 56 to hold.

However, we require another property in order to preserve clauses as definitional

equalities in the translation of dependent pattern matching to eliminators (Cockx,

2017), namely that f−1 x̄′ must be definitionally equal to something of the form

s̄; refl. Additionally, in various places, we relied implicitly on the fact that linv f

and rinv f should be definitionally equal. These discoveries lead to our current

definition of a strong unifier.

6 Higher dimensional unification

When constructing the indexed versions of the injectivity, conflict, and cycle rules

(Section 4.2), we required that the telescope of the equations on the left-hand side

should be exactly D = (ū : Ξ)(x : D ū). This means these rules can only be applied to

an equation where the type is fully general, i.e. a datatype applied to distinct equality

proofs for its indices. This is convenient when the equations we start with are of this

form because it allows us to simplify all equations at the same time.

The main question posed in this section is what we can do if we encounter an

equation of the form c ū ≡D v̄ c v̄ but the indices v̄ are not fully general.

Example 58. Suppose the unification algorithm is trying to solve an equation

(e : cons n x xs ≡Vec A (suc n) cons n y ys) (56)

of type Vec A (suc n) where n is a regular variable rather than an equality proof. In

this case, it is not possible to apply the injectivitycons rule directly.
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There is no fundamental reason why unification should fail on this example. On

the other hand, always applying the injectivity rule even when the indices are not

fully general is unsound (Example 4). This is not just a theoretical problem either:

see, for example, issues #1411 and #1775 on the Agda bug tracker (Abel, 2015b;

Sicard-Ramı́rez, 2016).

In the previous work, we tried different approaches to solve this problem that

worked in some cases but were ultimately unsatisfactory. In Cockx et al. (2014), we

restricted all the unification rules to the homogeneous equations and additionally

imposed a self-unifiability criterion to the indices of the datatype when applying the

injectivity rule. In practice, this meant that the injectivity rule could only be applied

when the indices consisted of the closed constructor forms only (e.g. suc (suc zero),

but not suc n), a severe restriction to the applicability of the rule. In Cockx et al.

(2016a), we used the general (heterogeneous) version of the injectivity rule and relied

on the reverse unification to generalize the indices. This method had some potential

in theory, but turned out to be too difficult to implement in practice. Neither did

we take into account the type of the constructor in question, so we were unable to

include useful heuristics such as forced constructor arguments (Brady, McBride, and

McKinna, 2004).

In this section, we describe a general technique for solving equations between

constructors of indexed datatypes. First, we study why the problem is so difficult by

looking at the analogous problem for the conflict and cycle rules, and make a first

attempt at generalizing the injectivity rule (Section 6.1). We continue to show how

to generalize the equality proofs in the indices in the general case by introducing

new equations between equality proofs (Section 6.2). Borrowing terminology from

homotopy type theory, we call them higher dimensional equations. To solve these

higher dimensional equations, we show how to lift existing unification rules to

higher dimensions (Section 6.3).

6.1 Generalizing unification rules

Before we try to tackle the problem of how to apply the injectivity rule on an

equation when the indices are not fully general, we first consider the analogous

problem for the conflict and cycle rules. The reason to take on these rules first is

because they shed some light on why the problem is harder for the injectivity rule.

Lemma 59. Consider a unification problem of the form s̄1; c1 t̄1 ≡Φ(x:D v̄) s̄2; c2 t̄2,

where D : Ξ → Set� is a datatype and c1 : Δ1 → D ū1 and c2 : Δ2 → D ū2 are two

distinct constructors of D. Then we have an equivalence

conflict′
c1 ,c2 :

(
s̄1; c1 t̄1 ≡Φ(x:D v̄) s̄2; c2 t̄2

)
� ⊥ (57)

The indices v̄ are arbitrary, i.e. they do not have to be variables like in the standard

conflict rule (Lemma 37). However, the type of the final equation still has to be the

datatype D applied to these indices. In particular, it cannot be a variable itself, or

else we would run into the problem described in Example 41.
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Before we give the proof of this lemma, we first want to show how a naive proof

attempt fails. It goes as follows: to construct a function
(
s̄1; c1 t̄1 ≡Φ(x:D v̄) s̄2; c2 t̄2

)

→ ⊥, it suffices (by the J rule) to construct a function c1 t̄1 ≡D v̄ c2 t̄2 → ⊥. This

function is constructed by calling the indexed conflict rule (37) with refl for the

proof of ū1[Δ1 �→ t̄1] ≡Ξ ū2[Δ2 �→ t̄2]. Since any function to ⊥ is an equivalence, we

are done.

Think a moment about what is wrong with this proof. It uses the J rule to

eliminate the equations s̄1 ≡Φ s̄2, but there is no guarantee that s̄1 or s̄2 are in fact

variables. Moreover, their structure as a term may be important for satisfying the

assumptions of the lemma, so simply generalizing the statement of the lemma is

not possible. In other words, the error in this proof attempt stems from a confusion

about the status of s̄1 and s̄2 as variables at the metalevel, while they can be arbitrary

terms at the object level!

We work around this issue by using the following lemma:

Lemma 60. Let f : A → B, P : B → Set, e : s ≡A t, u : P (f s), and v : P (f t).

Then the types u ≡P (f e) v and u ≡P (cong f e) v are equivalent.

Proof. Notice the rather subtle difference between these two types: the first one

expands to

subst (P ◦ f) e u ≡P t v (58)

while the second one expands to

subst P (cong f e) u ≡P t v (59)

To prove that they are equivalent, it is sufficient to prove that subst (P ◦ f) e u ≡P t

subst P (cong f e) u. But this follows directly by eliminating e using J.

Construction of conflict′
c1 ,c2 . We start by expanding the definition of telescopic

equality: We have to derive an element of ⊥ from

(ē1 : s̄1 ≡Φ s̄2)(e2 : c1 t̄1 ≡D v̄[Φ�→ē1] c2 t̄2) (60)

By Lemma 60, the type of e2 is equivalent to c1 t̄1 ≡D (cong (λΦ. v̄) ē) c2 t̄2. So we call

the conflict rule (37) with arguments (cong (λΦ. v̄) ē1); e2 to get an element of type

⊥. Since any function to ⊥ is an equivalence, this finishes the proof.

Similarly, we can generalize the cycle rule:

Lemma 61. Consider a unification problem of the form s̄1; t1 ≡Φ(x:D v̄) s̄2; t2, where

D : Ξ → Set� is a datatype and t1 ≺ t2. Then we have an equivalence

cycle′
t1 ,t2 :

(
s̄1; t1 ≡Φ(x:D v̄) s̄2; t2

)
� ⊥ (61)

Construction of cycle′
t1 ,t2 . Analogously to the construction of conflict′

c1 ,c2 .

For injectivity, it is not as easy to generalize the rule to arbitrary indices like we

just did for conflict and cycle. The problem here is harder because we also have to

construct an inverse function and prove that it is indeed a left and right inverse,

while this was trivial for the two negative rules. In the special case where the index

telescope Ξ satisfies UIP, we can construct the generalization:
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Lemma 62 (Generalized injectivity). Consider a unification problem of the form

s̄1; c t̄1≡Φ(x:D v̄) s̄2; c t̄2 where D : Ξ → Set� is a datatype with (at least) one constructor

c : Δ → D ū, and assume Ξ satisfies UIP, i.e. we have deletionx̄ : (ē : x̄ ≡Ξ x̄) � ()

for all x̄ : Ξ. Then we have an equivalence

injectivity′
c :

(
s̄1; c t̄1 ≡Φ(x:D v̄) s̄2; c t̄2

)
� (̄s1; t̄1 ≡ΦΔ s̄2; t̄2) (62)

In case Φ is the empty telescope, this generalized injectivity rule is similar to the

specialized injectivity rule from Cockx et al. (2014), but here we ask that the types

of the indices Ξ satisfy UIP, instead of asking that the indices ū are self-unifiable.

Construction of injectivity′
c. As for the previous lemma, we expand the definition

of telescopic equality and apply Lemma 60 to get to

(ē1 : s̄1 ≡Φ s̄2)(e2 : c t̄1 ≡D (cong (λΦ. v̄) ē1) c t̄2) (63)

Since Ξ satisfies UIP, it follows that (e′
1 : v̄[Φ �→ s̄1] ≡Ξ v̄[Φ �→ s̄2]) is equivalent to

(). So the previous telescope is equivalent to

(ē1 : s̄1 ≡Φ s̄2)(ē
′
1 : v̄[Φ �→ s̄1] ≡Ξ v̄[Φ �→ s̄2])

(e2 : c t̄1 ≡D (cong (λΦ. v̄) ē1) c t̄2)
(64)

Again by UIP, we have that the proofs cong (λΦ. v̄) ē1 and ē′
1 of type v̄[Φ �→ s̄1] ≡Ξ

v̄[Φ �→ s̄2] are equal. This means the previous telescope is equivalent to

(ē1 : s̄1 ≡Φ s̄2)(ē
′
1 : v̄[Φ �→ s̄1] ≡Ξ v̄[Φ �→ s̄2])(e2 : c t̄1 ≡D ē′

1
c t̄2) (65)

Finally, we can apply the injectivity rule (36) to prove that the part of the telescope

containing ē′
1 and e2 is equivalent to t̄1 ≡Δ t̄2, so the previous telescope is equivalent

to

(ē1 : s̄1 ≡Φ s̄2)(ē2 : t̄1 ≡Δ t̄2) (66)

which is what we wanted to prove.

Like for the deletion rule, this generalized injectivity rule usually will not be a

strong rule because its computational behaviour depends on the construction of the

proof UIP for the index types.

6.2 A generalized injectivity rule

The generalized injectivity rule from the previous section is unsatisfactory because

it requires the index types of the datatype to satisfy UIP. This means we did not

actually solve the problem of depending on UIP yet, we only moved it to the indices.

However, the proof taught us something about how to solve the problem in general:

it introduced new equality proofs ē′
1 and used UIP to substitute these for the indices

of D, allowing us to apply the injectivity rule. In other words, it moved the problem

from talking about equalities between terms to equalities between equality proofs.

In this section, we show how to apply this idea in a more general way to remove

the dependency on UIP completely. We do this by applying—what else—unification

to the equations between the indices of the datatype. Since the indices in the type of
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an equation can depend on the equality proofs of the previous equations, this means

we have to solve not just the equalities between the terms but also the equalities

between other equality proofs, i.e. higher dimensional equations.

At first sight, it would seem that an entirely new set of unification rules is needed

to solve higher dimensional equations (except for the solution rule, which can be

used at any dimension). However, it is possible to reuse the existing unification rules

on higher dimensional problems. For example, the injectivitysuc rule can be used

not just to simplify equations of the form suc x ≡� suc y to x ≡� y, but also

cong suc e1 ≡suc x≡�suc y cong suc e2 to e1 ≡x≡�y e2.

In general, whenever the unification algorithm encounters a higher dimensional

unification problem ū ≡x̄≡Δȳ v̄, it lowers it by one dimension to the problem ū ≡Δ v̄

where the equation variables in ū and v̄ are treated as regular variables. If it manages

to find a solution to this one-dimensional problem, it can then lift this solution to

get a solution to the original problem. The technical result that makes this possible

is Lemma 72 in the next section.

Let us first take a look of how this works on an example.

Example 63. Consider the unification problem:

Γ(e : cons n x xs ≡Vec A (suc n) cons n y ys) (67)

where Γ = (n : �)(x y : A)(xs ys : Vec A n). The injectivitycons rule cannot be

applied, as the index suc n is not fully general (i.e. it is not an equation variable).

Instead, we solve this unification problem in three steps: in the first step, we generalize

over the indices in order to apply the injectivity rule, generating higher dimensional

equations in the process. In the second step, we bring down these equations by one

dimension so we can solve them by applying known unification rules. Finally, we lift

the one-dimensional unifier to the higher dimensional problem.

Step 1: Generalizing the indices. We generalize the problem by introducing an extra

equation e1 : suc n ≡� suc n to the telescope, together with a proof p that e1 is

equal to refl:

Γ(e : cons n x xs ≡Vec A (suc n) cons n y ys)

� Γ(e1 : suc n ≡� suc n)(e2 : cons n x xs ≡Vec A e1
cons n y ys)

(p : e1 ≡suc n≡�suc n refl)

(68)

This is nothing but an application of the solution rule in the reverse direction, as

applying solution to p would bring us back to the first equation.5

5 This is the exact same technique as used by McBride (1998b): To do a case split on a variable
x : Vec A m, where m is not fully general, he introduces a new variable n : � together with an equality
e : m ≡� n. This means that now x : Vec A m where m are just variables, so it is possible to perform
a case split on x. The only difference in our case is that we are working one dimension higher, i.e.
we work with equations between the elements of the datatype instead of the elements of the datatype
itself.

https://doi.org/10.1017/S095679681800014X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681800014X


Proof-relevant unification 33

Since the index in the type of e2 is now fully general, we are free to apply the

injectivitycons rule:

Γ(e1 : suc n ≡� suc n)(e2 : cons n x xs ≡Vec A e1
cons n y ys)

(p : e1 ≡suc n≡�suc n refl)

� Γ(e′
1 : n ≡� n)(e′

2 : x ≡A y)(e′
3 : xs ≡Vec A e′

1
ys)

(p : cong suc e′
1 ≡suc n≡�suc n refl)

(69)

Applying the injectivity rule to e2 has instantiated the variable e2 with cong suc e′
1.

This instantiation is determined by the computational behaviour of injectivitycons
(Lemma 31). As you can see, p is a non-trivial equation between equality proofs,

i.e. a higher dimensional equation.

Step 2: Lowering the dimension of equations. To solve the higher dimensional equa-

tion p, we first consider a one-dimensional version of this problem:

(w′
1 : �)(w′

2 : A)(w′
3 : Vec A w′

1)(p : suc w′
1 ≡� suc n) (70)

The equality proofs e′
1, e

′
2, and e′

3 from Equation (69) have been replaced by regular

variables w′
1, w

′
2, and w′

3. To reflect this change, cong suc e′
1 : suc n ≡� suc n has

been replaced by suc w′
1 and refl : suc n ≡� suc n by suc n.

Now this is a problem we know how to solve: We apply injectivitysuc and

solution to find an equivalence f between this telescope and (w′
2 : A)(w′

3 : Vec A n).

This solves the one-dimensional problem.

Step 3: Lifting unifiers to a higher dimension. How does this help us with the higher

dimensional problem? By Lemma 72 (Section 6.3), we can lift the equivalence f to

get a new equivalence f↑:

(e′
1 : n ≡� n)(e′

2 : x ≡A y)(e′
3 : xs ≡Vec A e′

1
ys)

(p : cong suc e′
1 ≡suc n≡�suc n refl)

� (e′′
2 : x ≡A y)(e′′

3 : xs ≡Vec A n ys)

(71)

This solves the higher dimensional equation p, as well as the reflexive equation e′
1,

without relying on the fact that � satisfies UIP!

Finally, we apply the solution rule twice to solve the equations e′′
2 and e′′

3 . So putting

everything together, we have found an equivalence between the original telescope (67)

and (n : �)(x : A)(xs : Vec A n), solving the unification problem.

Now that we have seen how to solve the problem in an example, let us try to

generalize the solution. The main result of this section is the following theorem.

Theorem 64. Let D : Ξ → Set� be a datatype and c : Δ → D ū be a constructor of D.

Consider a unification problem of the form

(ē : s̄1; c t̄1 ≡Φ(z:D v̄) s̄2; c t̄2) (72)

Suppose we have an equivalence f : ΦΔ(p̄ : ū ≡Ξ v̄) � Δ′ Then we also have an

equivalence injectivity′′f
c of type

(ē : s̄1; c t̄1 ≡Φ(z:D v̄) s̄2; c t̄2) � (ē′ : f s̄1 t̄1 refl ≡Δ′ f s̄2 t̄2 refl) (73)

Moreover, if f is a strong unification rule, then so is this new equivalence.
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The computational behaviour of the unifier f suddenly becomes relevant for the

type of the resulting unification problem! In particular, we need the behaviour of f

applied to refl to calculate the left- and right-hand sides of the new equations ē′.

Construction. We follow the same three steps as in Example 63, so if something is

unclear it may help to take a look at the corresponding step in the example.

Step 1: generalizing the indices. First, we unfold the telescopic equality in

Equation (72) and apply Lemma 60 to get an equivalence with (ē1 : s̄1 ≡Φ

s̄2)(e2 : c t̄1 ≡D v̄e c t̄2) where v̄e = cong (λΦ. v̄) ē1. The equality proofs v̄e have

type ū1 ≡Ξ ū2 where ū1 and ū2 stand for ū[Δ �→ t̄1] and ū[Δ �→ t̄2], respectively.

To generalize v̄e, we introduce new variables ı̄ : ū1 ≡Ξ ū2 together with equalities

p̄ : ı̄ ≡ū1≡Ξū2
v̄e:

(ē1 : s̄1 ≡Φ s̄2)(e2 : c t̄1 ≡D v̄e c t̄2)

� (ē1 : s̄1 ≡Φ s̄2)(̄ı : ū1 ≡Ξ ū2)(e2 : c t̄1 ≡D ı̄ c t̄2)

(p̄ : ı̄ ≡ū1≡Ξū2
v̄e)

(74)

Since ı̄ consists of distinct equation variables, it is now possible to apply

injectivityc to the equation e2. This gives us an equivalence:

(ē1 : s̄1 ≡Φ s̄2)(̄ı : ū1 ≡Ξ ū2)(e2 : c t̄1 ≡D ı̄ c t̄2)(p̄ : ı̄ ≡ū1≡Ξū2
v̄e)

� (ē1 : s̄1 ≡Φ s̄2)(ē
′
2 : t̄1 ≡Δ t̄2)(p̄ : ūe ≡ū1≡Ξū2

v̄e)
(75)

where ūe = cong (λΔ. ū) ē′
2.

Step 2: Lowering the dimension of equations. Consider the one-dimensional version

of this unification problem ΦΔ(p̄ : ū ≡Ξ v̄), where the equality proofs ūe and v̄e
have been replaced by their lower dimensional variants ū and v̄, respectively. Since

this is a one-dimensional unification problem, we can apply the known unification

rules from Figure 8 to solve it. By assumption of the theorem, unification succeeds

positively with most general unifier f as a result.

Step 3: Lifting unifiers to a higher dimension. Now we have to lift this solution back

to the higher dimensional problem. This lifting is explained in the next subsection.

Lemma 72 gives us a lifted equivalence f↑:

(ē1 : s̄1 ≡Φ s̄2)(ē
′
2 : t̄1 ≡Δ t̄2)(p̄ : ūe ≡ū1≡Ξū2

v̄e)

� (ē′ : f s̄1 t̄1 refl ≡Δ′ f s̄2 t̄2 refl)
(76)

This is exactly what we need to solve the problem in Equation (75).

Now we combine the equivalences in Equations (74)–(76) to get the final

equivalence (73).

To see why this is a strong unification rule, note that it is the composition of

four equivalences: Lemma 60, solution−1, injectivityc, and f↑. By Lemma 50,

it is sufficient to prove that these four equivalences are the strong unification rules

individually. The first two are strong by construction, and injectivityc is a strong

unification rule by Lemma 51. Finally, f↑ is strong too by Lemma 73.

This finishes the application of higher dimensional unification to the equation e.

We have solved the injectivity problem e, and there are no more higher dimensional
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unification problems in the resulting equations ē′
1, so we can continue unification on

the new problem as normal.

Having given the rule for higher dimensional unification, the presentation of

our full unification algorithm is finished. The rules are summarized in Figure 9,

including η-rules for record types (Lemmas 44 Lemma 46), generalized conflict and

cycle (Lemmas 59 Lemma 61) and higher dimensional unification (Theorem 64).

It is impossible for higher dimensional unification to end in a negative success, as

this would mean we are trying to solve an ill-typed equation. For example, we can

never encounter a higher dimensional conflict:

cong c1 ē1 ≡??? cong c2 ū
′ v̄′ ē2 (77)

because the left-hand side has a type of the form c1 ū ≡ c1 v̄ while the right-hand

side has type c2 ū′ ≡ c2 v̄′. Likewise, a higher dimensional cycle would be

e ≡??? cong c e (78)

where the left-hand side has some type u ≡ v, but the right-hand side has type

c ū′ ≡ c v̄′, where u and v occur in ū′ and v̄′, respectively.

To see how higher dimensional unification can be applied in a concrete situation,

we now show a more limited but still very useful corollary of Theorem 64. In

particular, this corollary formally justifies the notion of a forced constructor argument

(Brady et al., 2004).

Definition 65 (Forced constructor argument). A variable x occurs rigidly in a term t

if either t = x or t is of the form c t1 . . . tn, where x occurs rigidly in one of the ti
and ti is not a forced argument of c.

An argument of a constructor c : Δ → D ū is forced if it occurs rigidly in one of

the indices ū.

As an example, the argument (n : �) is a forced argument of cons : (n : �)(x :

A)(xs : Vec A n) → Vec A (suc n). The concept of a forced constructor argument

was introduced by Brady et al. (2004) for efficiently compiling dependently typed

programs. We use it here to describe when it is safe to apply the injectivity rule.

Definition 66 (Invertible constructor). A constructor c : Δ → D ū is invertible if

the indices ū consist only of invertible constructors and variables bound in Δ, and no

variable from Δ occurs more than once in a non-forced position in ū.

In particular, constructors of non-indexed datatypes such as � are always

invertible. Likewise, the constructor cons : (n : �)(x : A)(xs : Vec A n) →
Vec A (suc n) is invertible. In contrast, refl : u ≡A u is not an invertible constructor

unless u consists itself completely of invertible constructors: refl : zero ≡� zero

is invertible, but refl : n ≡� n for variable n : � is not.

Now we can justify why forced constructor arguments (of invertible constructors)

can be skipped during unification.

Corollary 67. Let c : Δ → D ū be an invertible constructor (Definition 66) of the

datatype D : Ξ → Set� and t̄1, t̄2 : Δ. Then we have an equivalence

(e : c t̄1 ≡D v̄ c t̄2) � (ē′ : t̄1|Δ′ ≡Δ′ t̄2|Δ′ ) (79)
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where v̄ = ū[Δ �→ t̄1] = ū[Δ �→ t̄2], Δ′ is the telescope of non-forced arguments of c

with the forced arguments filled in with the corresponding values from t̄1, and t̄|Δ′ is

the sublist of t̄ corresponding to the variables occurring in Δ′.

From the well-formedness of the type c t̄1 ≡D v̄ c t̄2, it follows that the forced

arguments of t̄1 and t̄2 are equal, so it does not matter from which side we take

them.

Construction. By definition of an invertible constructor, applying unification to the

unification problem Δ(p̄ : ū ≡Ξ v̄) ends in a positive success with result f : Δ(p̄ : ū ≡Ξ

v̄) � Δ′ where the computational behaviour of f is to select the non-forced arguments

of c from Δ. Applying Theorem 64 to f gives us the desired equivalence.

In particular, when applying injectivity to an equation c s̄ = c t̄, this corollary tells

us that it is safe to skip unification of the forced arguments of c. This allows us to

avoid some situations where unification would otherwise require the deletion rule.

Example 68. Let Fin : � → Set be the following datatype:

data Fin : � → Set where

fzero : (n : �) → Fin (suc n)

fsuc : (n : �) → Fin n → Fin (suc n)

(80)

We apply Corollary 67 to solve the equation fsuc n x ≡Fin (suc n) fsuc n y. Since the

first argument of the constructor fsuc is forced, the corresponding equation n = n can

be skipped. So we get an equivalence of type fsuc n x ≡Fin (suc n) fsuc n y � x ≡Fin n y

In particular, we do not need to solve the (forced) equation n ≡� n.

6.3 Lifting unifiers to higher dimensions

We have seen how to apply higher dimensional unification to make the injectivity

rule more generally applicable. In this section, we dive into the heart of the problem.

Our core result that makes higher dimensional unification work is Lemma 72, telling

us exactly how to update the left- and right-hand sides of the equations when lifting

a unifier.

Suppose we have a unifier that we want to lift to a higher dimension. As a first

attempt, we try to apply the following theorem from The Univalent Foundations

Program (2013):

Theorem 69. If a function f : A → B is an equivalence and x, y : A, then cong f :

x ≡A y → f x ≡B f y is also an equivalence.

Construction. This is Theorem 2.11.1 from The Univalent Foundations Program

(2013).

Applying this theorem to a unifier f : Γ(p̄ : ā ≡Δ b̄) � Γ′ results in an equivalence

cong f : (ē : ū; r̄ ≡Γ(p̄:ā≡Δb̄)
v̄; s̄) � (ē′ : f ū r̄ ≡Γ′ f v̄ s̄), or expanding the definition

of telescopic equality:

cong f : (ē : ū ≡Γ v̄)(q̄ : r̄ ≡āe≡Δe b̄e
s̄) � (ē′ : f ū r̄ ≡Γ′ f v̄ s̄) (81)
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Fig. 10. The Square type represents the possible ways to fill a square defined by four

equality proofs. (a) Horizontal filling, (b) vertical filling.

where ū, v̄ : Γ, r̄ : āu ≡Δu
b̄u, s̄ : āv ≡Δv

b̄v , and ·x is shorthand for ·[Γ �→ x̄]. This is

already almost what we need for higher dimensional unification, but not quite.

To better visualize the problem, we make use of the concept of a square, also

called a 2-path by The Univalent Foundations Program (2013):

Definition 70 (Square). Let A : Set�, w, x, y, z : A, t : w ≡A x, b : y ≡A z, l : w ≡A y,

and r : x ≡A z. The square type Square t b l r is defined to be the dependent equality

type l ≡t≡Ab r.

The type l ≡t≡Ab r can be written a little more explicitly as l ≡t;b
≡A

r, or even

more explicitly as subst ( ≡A ) (t; b) l ≡x≡Az r. If we imagine a square with top

side t, bottom side b, left side l, and right side r, then Square t b l r can be thought

of as the type of identity proofs that fill this square horizontally as visualized in

Figure 10(a).

There is a second way to construct a square type from four given points w, x, y, z :

A and equality proofs t : w ≡A x, b : y ≡A z, l : w ≡A y: We can ‘flip’ the square

around its w–z axis, as illustrated by Figure 10(b). To get to our desired result, we

need to rely on the fact that both square types are in fact equivalent:

Lemma 71 (Flipping squares). Let A : Set, w, x, y, z : A, t : w ≡A x, b : y ≡A z,

l : w ≡A y, and r : x ≡A z. Then we have an equivalence flip t b l r : Square t b l r �
Square l r t b.

Proof. The proof of this lemma consists completely of repeated applications of J.

We start by constructing the function flip t b l r : Square t b l r → Square l r t b.

First, by J on t and b, we can assume that w = x, y = z and both t and b are refl,

so we are left with the goal l ≡w≡Ay r → refl ≡l≡Ar refl. The identity type in the

function argument has become homogeneous, so we again apply J, giving us that

l = r and leaving us with the goal refl ≡l≡al refl. Finally, one more application of

J on l : w ≡A y leaves us with the goal refl ≡w≡Aw refl, which we solve with refl.

For the construction of the left and right inverse of flip, we just change the

order of t, b, l, and r in the construction of flip. For the proofs that they are in fact

inverses, the same sequence of applications of J as used in the construction of flip

suffices.
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Fig. 11. To construct the equivalence in Lemma 72, we apply Lemma 71 to transform the

horizontal filling p̄ into a vertical one q̄. (a) Horizontal filling p̄, (b) vertical filling q̄.

Now we prove the main lemma. When we applied this lemma in the last section,

we only used it for r̄ = refl and s̄ = refl, but the fully general version is not

harder to prove so that is what we present here.

Lemma 72 (Lifting of unifiers). Suppose we have a unifier f : Γ(p̄ : ā ≡Δ b̄) � Γ′ and

ū, v̄ : Γ, r̄ : āu ≡Δu
b̄u, and s̄ : āv ≡Δv

b̄v .
6 Then we have a lifted unifier

f↑ : (ē : ū ≡Γ v̄)(p̄ : cong (λΓ.ā) ē ≡r̄≡Δe s̄
cong (λΓ.b̄) ē)

� (ē′ : f ū r̄ ≡Γ′ f v̄ s̄)
(82)

Construction. By Theorem 69, we already have the equivalence in Equation (81). By

Lemma 60, the type of q̄ is equivalent to r̄ ≡cong (λΓ.ā) ē≡Δecong (λΓ.b̄) ē s̄. If we think of

this type as a square type, then Lemma 71 gives us that this type is equivalent to

cong (λΓ.ā) ē ≡r̄≡Δe s̄
cong (λΓ.b̄) ē. This is illustrated in Figure 11. Composing this

equivalence with cong f gives us the desired equivalence f↑.

Lemma 73. If f : Γ(p̄ : ā ≡Δ b̄) � Γ′ is a strong unifier, then so is f↑.

Proof. f↑ is constructed as a composition of the equivalences cong f (Theorem 69),

Lemma 60, and flip (Lemma 71). By Lemma 50, we just have to verify that each

of these equivalences is a strong unification rule. But this can be verified by looking

at their construction (in the case of cong f also using the fact that f is a strong

unifier).

7 Translation to eliminators

In this section, we translate the injectivity, conflict, and cycle rules from Section 4

to the ‘bare metal’ of type theory: datatype eliminators. These eliminators encode

6 We again write ·x for ·[Γ �→ x̄].
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the basic induction principles associated to each datatype. By translating definitions

by pattern matching to eliminators, we can be confident that they do not add any

extra assumptions to the core theory.

For the rest of this section, let D : Ξ → Seti be an inductive family (where Ξ is

the telescope of the indices) with constructors c1, . . . , ck. Without loss of generality,

we assume that the non-recursive constructor arguments come before the recursive

ones, so ci has type

ci : Δi → (Φi,1 → D v̄i,1) → . . . → (Φi,ni → D v̄i,ni ) → D ūi (83)

We consider D to be already applied to its parameters, if it has any.

Definition 74. The standard datatype eliminator elimD for D has type

elimD : (P : D → Seti)(m1 : M1) . . . (mk : Mk)

→ (x̄ : D) → P x̄
(84)

where the methods m1, . . . , mk have type

Mi = (̄t : Δi)(x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni)

→ (h1 : (̄s1 : Φi,1) → P v̄i,1 (x1 s̄1)) → . . .

→ (hni : (̄sni : Φi,ni) → P v̄i,ni (xni s̄ni))

→ P ūi (ci t̄ x1 . . . xni )

(85)

The evaluation behaviour of the standard datatype eliminator is given by the

following rule for i = 1, . . . , k:

elimD P m1 . . . mk ūi (ci t̄ x1 . . . xni ) =

mi t̄ x1 . . . xni
(λs̄1. elimD P m1 . . . mk v̄i,1 (x1 s̄1))

. . .

(λs̄ni . elimD P m1 . . . mk v̄i,ni (xni s̄ni ))

(86)

Example 75. Following the pedagogy of McBride, Goguen, and McKinna (2006),

we take binary trees as our example datatype. This type Tree is defined by the two

constructors leaf : Tree and node : Tree → Tree → Tree. The eliminator for Tree

is

elimTree : (P : Tree → Seti)(mleaf : P leaf)

→ (mnode : (l r : Tree) → P l → P r → P (node l r))

→ (x : Tree) → P x

(87)

The evaluation rules are

elimTree P mleaf mnode leaf = mleaf (88)

and

elimTree P mleaf mnode (node l r) =

mnode l r (elimTree P mleaf mnode l) (elimTree P mleaf mnode r)
(89)

Case analysis caseD is a weakened version of the standard eliminator without the

inductive hypotheses.

https://doi.org/10.1017/S095679681800014X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681800014X


40 J. Cockx and D. Devriese

Lemma 76. We have a function caseD of type

caseD : (P : D → Seti)(m1 : M1) . . . (mk : Mk)

→ (x̄ : D) → P x̄
(90)

where

Mi : (̄t : Δi) → (x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni)

→ P ūi (ci t̄ x1 . . . xni )
(91)

for i = 1, . . . k.

Example 77. For the Tree type, we have

caseTree : (P : Tree → Seti) → P leaf

→ ((l r : Tree) → P (node l r)) → (x : Tree) → P x

caseTree P mleaf mnode t = elimTree P mleaf (λl r hl hr. mnode l r) t

(92)

Example 78. For the type m � n, we have

case� : (P : (m : �)(n : �)(x : m � n) → Seti)

→ (mlz : (m : �) → P zero m (lz m))

→ (mls : (m : �)(n : �)(x : m � n) → P (suc m) (suc n) (ls m n x))

→ (m : �)(n : �)(x : m � n) → P m n x

(93)

Construction of caseD.

caseD P m1 . . . mk = elimD P (λ̄t x̄ h̄. m1 t̄ x̄) . . . (λ̄t x̄ h̄. mk t̄ x̄) (94)

7.1 No confusion

Two of the unification rules, injectivity and conflict, are instances of a more general

principle known as ‘no confusion’. In this section, we construct this principle

internally as an equivalence noConfD.

We first define an auxiliary type in order to give a general type to noConfD.

Lemma 79. We have a type NoConfusionD : D → D → Setd such that

NoConfusionD (ū; ci s̄) (v̄; ci t̄) = s̄ ≡Δi
t̄

NoConfusionD (ū; ci s̄) (v̄; cj t̄) = ⊥ (when i �= j)
(95)

On the diagonal (where we have two times the same constructor), NoConfusionD
only requires s̄ ≡Δc

t̄. From this, it follows that ū ≡Ξ v̄ as well, since the indices are

determined by the choice of constructor and its arguments.

Example 80. For the Tree datatype, NoConfusion t1 t2 is defined as follows:

NoConfusion : Tree → Tree → Set

NoConfusion leaf leaf = �
NoConfusion leaf (node l r) = ⊥
NoConfusion (node l r) leaf = ⊥
NoConfusion (node l1 r1) (node l2 r2) = (l1 ≡Tree l2) × (r1 ≡Tree r2)

(96)
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Construction of NoConfusionD. We apply caseD with the motive λ . D → Seti. For

each method mi x̄, we apply caseD again with motive λ → Set. This gives us k2

methods mi,j to fill in, one for each pair of constructors. On the diagonal (where

i = j), we define mii = λx̄; x̄′. x̄ ≡Δi
x̄′, and if i �= j, we give mi,j = λx̄; x̄′. ⊥.

Lemma 81. We have an equivalence

noConfD : (x̄ ȳ : D) → (x̄ ≡D ȳ) � NoConfusionD x̄ ȳ (97)

Moreover, for any constructor c : Δ → D ū and s̄, s̄′ : Δ, this equivalence satisfies

noConfD−1 (ū[Δ �→ s̄]; c s̄) (ū[Δ �→ s̄′]; c s̄′) = dcong (λx̄.ū; c x̄).

Example 82. For Tree, the function noConfTree gives for any two trees s and t that

are equal a proof of NoConfusionTree s t:

noConfTree : (s t : Tree) → (s ≡Tree t) � NoConfusionTree s t (98)

If s and t are of the form node l1 r1 and node l2 r2, respectively, then this gives us the

injectivity rule (node l1 r1 ≡Tree node l2 r2) � (l1 ≡Tree l2 × r1 ≡Tree r2). On the other

hand, if s is of the form leaf and t is of the form node l r, then we get the conflict

rule (leaf ≡Tree node l r) � ⊥.

Construction of noConfD. First, we define the left-to-right function noConfD ā b̄. To

do this, we apply telescopic substitution subst with motive NoConfusionD ā. This

reduces the problem to finding a function of type

(ā : D) → NoConfusionD ā ā (99)

But this can be done using caseD with motive λ ā. NoConfusionD ā ā, filling in refl

for each method mi x̄.

For the inverse noConfD−1 ā b̄, we need to do a little more work. First, we apply

caseD twice as in the definition of NoConfusionD. Now we are left to give methods

mi,j : NoConfusionD (ūi; ci x̄) (ū′
j; cj x̄

′) → ūi (ci x̄) ≡D ū
′
j (cj x̄

′) (100)

When i �= j, this is easy: we get an element of type ⊥ from NoConfusionD, from

which we can conclude anything. On the diagonal (where i = j), we get a proof of

x̄ ≡Δi
x̄′. Applying dcong to this equality gives us ūi; (ci x̄) ≡D ū′

i; (ci x̄′), which is

what we need.

Next, we prove that this is a left inverse by constructing a function of type

(ā b̄ : D)(ē : ā ≡D b̄) → noConfD
−1 ā b̄ (noConfD ā b̄ ē) ≡ā≡Db̄

ē (101)

By J, it is sufficient to give a function of type

(ā : D) → noConfD
−1 ā ā (noConfD ā ā refl) ≡ā≡Dā refl (102)

But this we can do by applying caseD with methods mi x̄ = refl.

All that is left to do is to prove that it is a right inverse as well. To construct the

proof isRinv that

(ā b̄ : D)(e : NoConfusionD ā b̄) → noConf ā b̄ (noConf−1 ā b̄ e) ≡NoConfusionD ā b̄ e

(103)
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we first apply case analysis on ā and b̄. In the cases where we have two distinct

constructors ci and ck, we have e : ⊥ so we can conclude by elim⊥. In the diagonal

cases, we have e : s̄ ≡Δi
t̄. Eliminating these equations with J leaves us with the goal

refl ≡s̄≡Δi
s̄ refl, which we solve by giving refl.

7.2 Acyclicity

The other property of datatypes we need is acyclicity: a term can never be structurally

smaller than itself. This property is used for implementing the cycle detection rule

of the unification algorithm. Internally, it is represented by the term noCycleD. To

express its type, we first define what it means for a term to (not) be structurally

smaller than some other term.

We first define the auxiliary type BelowD: BelowD P ū x is defined as a tuple type

that is inhabited whenever P v̄ y holds for all y : D v̄ that are structurally smaller

than x : D ū.

Lemma 83. Let P : D → Seti. For any x : D ū, we have a type BelowD P ū x such

that for any y ≺ x we have a projection π : BelowD P ū x → P v̄ y.

Example 84. The type BelowTree P x expresses that the property P : Tree → Set

holds for any subtree of x : Tree. In other words, we have

BelowTree P leaf = �
BelowTree P (node l r) = (BelowTree P l × P l) × (BelowTree P r × P r)

(104)

Construction of BelowD P . We apply the eliminator elimD to the motive Φ =

λ . Seti. For the method mi corresponding to the constructor ci, we give the

following:

mi = λ̄t; x1; . . . ; xni ; h1; . . . ; hni .

((̄s1 : Φi,1) → h1 s̄1 × P v̄i,1 (x1 s̄1)) ×
· · · × ((̄sni : Φi,ni) → hni s̄ni × P v̄i,ni (xni s̄ni ))

(105)

To construct the projection π, consider x : D ū and any structurally smaller term

y : D v̄. If y is (an application of) a direct subterm of x, say x = c t̄ x1 . . . xn with

y = xi w̄, then we return the second component of the ith component of BelowD P x,

i.e. we define

π H = π2 (πi H w̄) : BelowD P ū x → P v̄ y (106)

Otherwise, y is a subterm of some direct subterm xi of x = c t̄ x1 . . . xn. In

particular, by induction, we have some π′ : BelowD P v̄i xi → P v̄ y. This allows us

to define π as follows:

π H = π′ (π1 (πi H)) : BelowD P ū x → P v̄ y (107)

Lemma 85. We have a type �<D : D → D → Setd such that for any x : D ū and

y : D v̄ with x ≺ y, we have x �<D y → ⊥. We also define ā ��D b̄ := ā �<D b̄ × ā �≡D b̄.
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If x : D ū and y : D v̄, then we often leave the indices implicit and write x �<D y

and x ��D y instead of ū; x �<D v̄; y and ū; x ��D v̄; y.

Example 86. The type x �<Tree t expresses that x is not a subtree of t. In particular,

we have the following equalities:

x �<Tree leaf = �
x �<Tree (node l r) = ((x �<Tree l) × (x �≡Tree l)) × ((x �<Tree r) × (x �≡Tree r))

(108)

Construction of �<D. We define �<D in terms of BelowD:

ā �<D b̄ := BelowD (λb̄′. ā �≡ b̄′) b̄ (109)

By definition of BelowD, we have a projection π : ū; x �<D v̄; y → ū; x �≡D ū; x,

whenever x ≺ y. Filling in refl for the proof of ū; x �≡D ū; x gives us the desired

proof of x �<D y → ⊥.

Now we can state the property that no term can be structurally smaller than itself.

Lemma 87. We have a function noCycleD : (ā b̄ : D) → ā ≡D b̄ → ā �<D b̄.

Example 88. noCycleTree is the proof that no tree can ever be a subtree of itself, i.e.

every well-typed tree is well-founded.

Construction of noCycleD. Note that

x �<D ci t̄ x1 . . . xni = ((̄s1 : Φi,1) → x ��D x1 s̄1) × . . .

× ((̄sni : Φi,ni) → x ��D xni s̄ni)
(110)

by definition of BelowD and ��D. Now to construct noCycleD, we start by eliminating

the equation ā ≡D b̄ using J, which leaves us the goal (ā : D) → ā �<D ā. Next,

we apply caseD with motive λā. ā �<D ā, producing for each constructor ci : Δi →
(Φi,1 → D v̄i,1) → . . . → (Φi,ni → D v̄i,ni) → D ūi the subgoal

(̄t : Δi)(x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni ) →
(h1 : (̄s1 : Φi,1) → x1 s̄1 �<D x1 s̄1) . . .

(hni : (̄sni : Φi,ni) → xni s̄ni �<D xni s̄ni ) →
ci t̄ x1 . . . xni �<D ci t̄ x1 . . . xni

(111)

To continue, we define the auxiliary types Stepi,j for i = 1, . . . , k and j = 1, . . . , ni
as follows:

Stepi,j : (̄t : Δi)(x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni ) →
(̄s : Φi,j)(ā : D) → Setd

Stepi,j t̄ x1 . . . xni s̄ (ū; b) = (xj s̄) �<D b → (ci t̄ x1 . . . xni ) ��D b

(112)

In what follows, we will construct

stepi,j : (̄t : Δi)(x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni ) →
(̄s : Φi,j)(ā : D) → Stepi,j t̄ x1 . . . xni Φi,j ā

(113)

Once this is done, we solve the subgoal (111) by filling in

λ̄t; x1; . . . ; xni ; h1; . . . ; hni .

(λs̄1. stepi,1 t̄ x̄ s̄1 (v̄i,1; (x1 s̄1)) (h1 s̄1)), . . . ,

(λs̄ni . stepi,ni t̄ x̄ s̄ni (v̄i,ni; (xni s̄ni )) (hni s̄ni))

(114)
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So we only need to construct stepi,j.

The construction of stepi,j t̄ x1 . . . xni s̄ : (ā : D) → Stepi,j t̄ x1 . . . xni s̄ ā

proceeds by applying elimD with the motive Stepi,j t̄ x1 . . . xni s̄. The new subgoals

are of the form

(̄t′ : Δp)(x
′
1 : Φp,1 → D v̄′

p,1) . . . (x′
np

: Φp,np → D v̄′
p,np

) →
(h′

1 : (̄s′
1 : Φp,1) → Stepi,j t̄ x1 . . . xni s̄ v̄

′
p,1 (x′

1 s̄
′
1)) . . .

(h′
np

: (̄s′
np

: Φp,np) → Stepi,j t̄ x1 . . . xni s̄ v̄
′
p,np

(x′
np
s̄′
np

)) →
Stepi,j t̄ x1 . . . xni s̄ ū

′
p (cp t̄′ x′

1 . . . x′
np

)

(115)

We solve them by giving

λ̄t′; x′
1; . . . ; x

′
np

; h′
1; . . . ; h

′
np

;H. α, β (116)

where we still have to construct

α : ūi; (ci t̄ x1 . . . xni ) �<D ū
′
p; (cp t̄

′ x′
1 . . . x′

np
) (117)

and

β : ūi; (ci t̄ x1 . . . xni ) �≡D ū
′
p; (cp t̄

′ x′
1 . . . x′

np
) (118)

We have H : xj s̄ �<D cp Δ′
p x′

1 . . . x′
np

or, by definition of �<D, H = (H1, . . . , Hnp ),

where Hq : (̄s′ : Φ′
pq) → xj s̄ ��D x′

q s̄′. The construction of α reduces to the

construction of components αq : (̄s′ : Φ′
p,q) → ci t̄ x1 . . . xni ��D x′

q s̄′. But these we

can give as αq = λs̄′. h′
q s̄

′ (π1 (Hp s̄
′)).

For constructing β, we assume ūi; (ci t̄ x1 . . . xni ) ≡D ū′
p; (cp t̄′ x′

1 . . . x′
np

) and

derive an element of ⊥. By noConfD, it suffices to consider the case where i = p

and t̄; x1; . . . ; xni = t̄′; x′
1, . . . , x

′
np

. But then we have Hj s̄ : xj s̄ ��D xj s̄, hence

π2 (Hj s̄) refl : ⊥. This finishes the construction of noCycleD.

8 Implementation

Using our framework for proof-relevant unification described in this paper, we

reimplemented the unification algorithm used by Agda for checking definitions by

dependent pattern matching. As a result, we were able to replace previous ad-hoc

restrictions with formally verified unification rules, fixing a number of bugs in the

process. It also enabled us to add new unification rules dealing with η-equality for

record types, as well as higher dimensional unification for solving equations between

constructors of indexed datatypes. Another advantage of our approach is that the

implementation is now much cleaner than before, allowing it to be extended easily

in the future. In this section, we take a look at our implementation from the point

of view of an Agda user (Section 8.1) and an Agda developer (Section 8.2).

8.1 Impact on the Agda user

From the point of view of a user of Agda, unification happens behind the scenes

while checking definitions by pattern matching, so a different algorithm does not

impact the syntax of the language directly. Instead, the main criterion a user of Agda

should judge the unification algorithm by is that it accepts the definitions that should
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be accepted, and rejects the definitions that should be rejected. The latter can be

seen from the fact that our implementation directly resulted in a fix for issue #1408

(Example 41), dealing with an incompatibility between heterogeneous equations

and the—without-K option (Vezzosi, 2015). Equally important, our implementation

provides a much more principled solution to issues #292 (Danielsson, 2010, see also

Example 41), #1071 (Danielsson, 2014), #1406 (Abel, 2015a, see also Example 40),

#1411 (Abel, 2015b), and #1427 (Abel, 2015c, see also Example 40). All these issues

are fixed without introducing special cases in the code and without limiting the

power of the unification algorithm in any significant way, as can be seen from the

fact that Agda’s test suite and standard library are still typechecked correctly. This

is in contrast to the previous ad-hoc fixes to some of these issues, which broke the

unification algorithm in some cases, for example, in issue #1435 (Danielsson, 2015).

The addition of the new unification rules for η-equality of record values also

significantly improved the way Agda handles records. Before these unification rule

were added to Agda, all variables of record type had to be fully eta-expanded

before calling the unifier, for example, in issue #473 (Danielsson, 2011). This caused

a substantial overhead when dealing with deeply nested records, see issue #635

(Peebles, 2012). This also caused problems in combination with Agda’s instance

search mechanism, see, for example, issue #1613 (Abel, 2015d). In contrast, by

using this unification rule, we only eta-expand a variable when it is useful for the

unification to proceed, thus eliminating this overhead.

We also implemented higher dimensional unification (Section 6). This addition

allows Agda to typecheck more definitions, such as the example given in issue #1775

(Sicard-Ramı́rez, 2016).

8.2 Impact on the Agda codebase

For the further development of Agda, it is important that the unification machinery

is robust and easily extensible with further rules. For this reason, we separated it into

two logical parts: a unification strategy and the unification engine. Both parts make

use of the same data structures for representing the unification state and unification

rules, as shown in Figure 12. The unification strategy takes a unification state as an

argument and produces a lazy monadic list of unification rules to try (Figure 13),

while the unification engine tries to apply these rules one by one until one succeeds

(Figure 14).

A big difference between our implementation and Agda’s previous unification

algorithm is that our version explicitly manipulates telescopes of free variables

(varTel) and equations (eqTel) as well as explicit substitutions between these

telescopes, while previously these had to be reconstructed after unification was

finished. This change resulted in a significant simplification of the code for checking

left-hand sides and coverage of definitions by pattern matching (the parts of Agda

that use the unification algorithm).

An important choice when constructing a unification strategy is whether to start

on the leftmost or the rightmost equation. It seems sensible to start on the left to

avoid heterogeneous equations as much as possible, and this was also the preferred
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Fig. 12. The datatypes used for representing unification states and unification rules closely

follow the theory. In addition to the unification rules presented in this paper, Agda also has

unification rules for dealing with literals, sized types (Abel, 2012), and irrelevant equations

(Abel, 2011), features not discussed in this paper. There is also a rule for injective type

constructors that is only used when this is enabled explicitly by the user.

Fig. 13. A unification strategy takes a unification state and produces a list of unification

steps to try in order. For constructing unification strategies, we provide a number of basic

strategies that can be combined in any order.

method for the old algorithm. However, our unification rules for indexed datatypes

actually benefit from having unsolved equations in the telescope, so a unification

strategy that starts from the right provides more opportunities to apply these rules.

For this reason, our current implementation uses a right-to-left strategy, although

plugging in a different strategy would be trivial.

Our implementation of higher dimensional unification closely follows the steps in

Section 6.2. In particular, when applying the injectivity rule to a unification problem

of the form (ē1 : s̄1 ≡Φ s̄2)(e2 : c t̄1 ≡D v̄e t̄2), the unification algorithm constructs

the new unification problem ΦΔ(p̄ : ū ≡Ξ v̄) and recursively calls itself on this new

problem.

One noteworthy fact about the implementation is how the left- and right-hand

sides f s̄1 t̄1 refl and f s̄2 t̄2 refl of the new unification problem in Equation (73)
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Fig. 14. The unification engine consists of an auxiliary function unifyStep that tries to apply

one unification step, resulting in either a new state, an absurdity (e.g. for the conflict and

cycle rules), or a failure, and the main function unify that tries all steps suggested by a

given strategy, and continues until either the unification problem is solved (i.e. the equation

telescope is empty) or there are no more rules left to try.

are computed. The implementation does not have an explicit representation of the

function f, so it is not possible to calculate them directly. Instead, the recursive

call produces a substitution ρ of type Δ′ → ΦΔ. This allows us to calculate f−1 :

Δ′ → (x̄ : Φ)(ȳ : Δ)(p̄ : ū ≡Ξ v̄) as λx̄′. x̄′ρ; refl, but does not give us a direct

way to compute f. To go in the opposite direction, we note that ρ is a pattern

with free variables Δ′. So we can match the values from ΦΔ against this pattern.

The proofs of ū ≡Ξ v̄ (assumed to be refl in our implementation, since all the

unifiers we compute are strong unifiers) ensure that this matching cannot fail, so

this allows us to recover the values of the variables in Δ′, thus computing the

function f : ΦΔ(p̄ : ū ≡Ξ v̄) → Δ′.

9 Related work

Unification is a large area of research that we cannot hope to cover here in full.

We refer the interested reader to Jouannaud and Kirchner (1991) and Baader and

Snyder (2001) for a general overview of the subject. Most extensions to unification

that are studied, such as higher order unification and E-unification, are orthogonal

to the work in this paper, although it would be interesting to see how they fit within

our framework.

Type checkers of dependently typed languages typically have some facility for

metavariables that are solved by higher order pattern unification (Reed, 2009;

Abel and Pientka, 2011). This is not directly related to the work in this paper

as the requirements on the unification algorithm are different. For example, these

unification algorithms suppose all rigid symbols (including type constructors) to

be ‘injective’ for the purpose of unification. Some algorithms even consider defined

functions to be rigid (Ziliani and Sozeau, 2015) or make use of user-provided

hints to choose one solution over the other (Asperti, Ricciotti, Sacerdoti Coen,

and Tassi, 2009), thereby giving up on finding most general unifiers in favour of

finding solutions more often. In this case, the only problem is that the solution to

the metavariable may not be what the user intended. In contrast, our algorithm

produces evidence of unification internal to the theory we are working in, and it is

actually important that the unifier found by the algorithm is indeed the most general

one (otherwise we might lose e.g. coverage of functions by pattern matching). Still,

it would be interesting to further investigate the similarities and differences between

these two unification algorithms.
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Goguen (1989) takes a categorical view on unification, representing most general

unifiers as equalizers in a category of types and substitutions. It should not be

surprising that many of the category-theoretic notions are analogous to the type-

theoretic ones presented in this paper. For example, giving an explicit type to

the domain of substitutions helps to avoid problems with non-uniqueness in the

definition of a most general unifier in other presentations. Compared to the category-

theoretical presentation of unification, our work adds support for indexed datatypes,

and it also differs in the fact that type theory allows an internal representation of

equations as (telescopic) equality types.

The idea to represent unification problems at the object level by using the identity

type stems from McBride (1998b). In McBride’s paper, the types of equations are

limited to simple (non-dependent) types, and the injectivity rule is likewise limited

to simple datatypes. Later, he solves this by introducing a heterogeneous identity

type (McBride, 2002). However, UIP is needed to turn heterogeneous equalities back

into homogeneous ones. Additionally, postponing equations is not supported, as

heterogeneous equations can only be turned into homogeneous ones if the types

are equal. In our previous work, we solved the problem of requiring UIP, but the

unification rules still only worked on the first equation in a telescope (Cockx et al.,

2014). As a consequence, we had to limit the injectivity, conflict, and cycle rules to

work only in homogeneous situations, while here we can use them in their fully

general form.

Our approach to unification is closely related to the notion of inversion of an

inductive hypothesis (Cornes and Terrasse, 1996; Monin, 2010). The usual approach

to inversion works by crafting a diagonalizer that is used as the motive for an

eliminator. Unification can also be as an alternative method for proving inversion

lemmas (McBride, 1998b). One advantage of the diagonalizer approach is that it

moves most of the work to the type level, potentially improving performance of the

resulting function. The process of constructing diagonalizers has recently also been

automated (Braibant, 2013). However, it requires that the indices of the inductive

hypothesis we are inverting can be written as a pattern, which is not always the case

(e.g. they may be non-linear), so the approach based on unification seems to be more

general. It would be interesting to try to implement an inversion tactic based on the

unification algorithm in this paper to compare the power of the two approaches.

The idea to view equality proofs themselves as the subjects of unification is inspired

by cubical type theory, where equality proofs are terms viewed ‘one level up’ (Cohen

et al., 2016). In fact, if we were working in a cubical type theory, there would be

no difference between regular unification and higher dimensional unification, so

the work in this paper could be seen as ‘backporting’ some of the power of cubical

type theory back to the (currently) better-understood world of standard intuitionistic

type theory.

Compared to our reverse unification rules from Cockx et al. (2016a), higher

dimensional unification takes information into account from the types of the

constructors as well as the types of the equation. This difference is similar to the

inversion of an inductive hypothesis by using a diagonalizer (Cornes and Terrasse,

1996) versus using unification for the problem (McBride, 1998b).
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10 Discussion and future work

In this paper, we present a proof-relevant unification algorithm for use in dependent

type theory, where unification rules are represented as terms internal to the type

theory. Thus, the type system itself enforces the soundness of these unification rules.

Moreover, this lets us extend the unification algorithm with new principles in a safe

and modular way. For example, we showed how to add two new unification rules

for η-equality of record types. As another example, higher dimensional unification

augments the power of the injectivity rule by allowing us to skip unification of forced

arguments, yet would be impossible to even formulate for an untyped unification

algorithm.

Having an elegant theoretical framework for unification also helped us a lot when

implementing it in practice. As a result, the implementation of our algorithm for

Agda has become cleaner, more robust, and more easily extensible. We hope this

will also be the case for implementers of other dependently typed languages, as it

has already been for the Lean theorem prover and the Equations package for Coq.

Other applications of proof-relevant unification. In this work, we focus on one

application of proof-relevant unification, namely specialization by unification and its

role in the compilation of dependent pattern matching. However, we believe firmly

that it could also be applied elsewhere, for example, for metaprogramming or tactic

systems.

More unification rules. It would be interesting to further explore the correspondence

between unification rules and new features of type theory. For example, it seems

that E-unification (unification modulo a set of equations) could correspond to

new unification rules for higher inductive types from HoTT. As another example,

higher order (pattern) unification could correspond to functional extensionality as

a unification rule. And since the univalence axiom is itself an equivalence, maybe it

could be seen as a unification rule as well?

Custom unification rules. We can put the power of unification in the hands of the

user by allowing them to define custom unification rules in the form of hints (Asperti

et al., 2009). For example, if the user provides a proof of (f x ≡B f y) � (x ≡A y) for

some function f : A → B, then this could be used as an injectivity rule for f by the

unifier. One obstacle is that these rules might not be strong unification rules, so we

either have to give up on some computational properties of unifiers or implement a

check of strongness of a given unification rule.

Unification with higher inductive types. HoTT introduces the concept of higher

inductive types, which can have non-trivial identity proofs between their constructors.

This implies that in general they do not satisfy the injectivity, disjointness, or

acyclicity properties. So to adapt our unification algorithm to a context with higher

inductive types, we should start by limiting the unification algorithm further, for

example, by cutting out the ‘no confusion’ and ‘cycle’ properties for types to which

they do not apply.

https://doi.org/10.1017/S095679681800014X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681800014X


50 J. Cockx and D. Devriese

As a second step, these principles can be replaced by type-specific solvers that

exploit any extra structure that may be available.

Example 89. The interval I is a higher inductive type with two point constructors 0 : I

and 1 : I and one path constructor line : 0 ≡I 1. We have the following equivalence:

contract : (e : 0 ≡I 1) � () (119)

By definition, we have contract−1 () = line, so if we use this equivalence as a

unification rule, we will not get a strong unification rule as a result. Maybe it is

possible to weaken this requirement a bit by not requiring refl as such, but merely

some canonical form. But this means that we also need computation rules for functions

applied to higher constructors, which is still an open problem. So for now, we have to

settle for a weaker kind of unification rules that do not have the proper definitional

behaviour, but still produce an equivalence of the correct type.

More generally, the ‘no confusion’ principle is similar to the encode/decode

technique used by Licata and Shulman (2013) and McKinna and Forsberg (2015)

to calculate the fundamental group of the circle. In particular, they also construct

an equivalence between an equality/path type and a type of codes taking the role

of our NoConfusion type. So it may be possible to construct a new unification rule

for the circle type based on this equivalence. However, be aware that these custom

unification rules can introduce additional variables, for example, the rule for the

circle introduces a variable of type �!

Unification in cubical type theory. Our unification algorithm is developed for an

Agda-like theory based on standard MLTT. In such a theory, principles such as

functional extensionality or univalence can be postulated but they do not get any

computational behaviour. On the other hand, a new and promising theory called

cubical type theory gives a constructive interpretation to the univalence axiom, and

hence also functional extensionality (Bezem, Coquand, and Huber, 2014; Cohen et

al., 2016). In the future, we would like to adapt the work in this paper to this setting,

so it would become usable in languages based on cubical type theory as well.

One obstacle for this adaptation is the fact that the representation of datatypes in

our theory (and also that of Agda, Coq, Idris, . . . ) is computationally incompatible

with functional extensionality. We give an example to illustrate the problem.7

Example 90. Let Favourite : (� → �) → Set be a datatype with one constructor

favourite : Favourite (λx. 0+x). We can give a proof p of (x : �) → 0+x ≡ x+0,

so we have funext p : λx. 0 + x ≡ λx. x + 0 and thence

subst Favourite (funext p) favourite : Favourite (λx. x + 0) (120)

However, there is no closed canonical form of type Favourite (λx. x+0), so this term

does not reduce to a canonical form. This cannot be fixed by taking the constructor

itself to be the canonical form (i.e. by letting favourite : Favourite (λx. x + 0)),

7 Thanks to Conor McBride for pointing out the problem and giving this example.
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as this would require the typechecker to check whether two functions are extensionally

equal, which is undecidable in general.

This incompatibility could be solved by disallowing indexed datatypes and instead

having each constructor carry explicit proofs of the constraints it imposes on the

former indices. For example, favourite would have the internal type (e : f ≡
(λx. 0 + x)) → Favourite f. The surface-level constructor is then represented

as favourite refl, while subst Favourite (funext p) favourite computes to

favourite (funext p). With this representation of datatypes, the work done in

this paper is just as necessary as before, since we still need unification to solve the

(telescopic) equations embedded in the constructors, as well as equations between

these embedded equality proofs.

Example 91. We illustrate this by working out Example 63 again for a version of the

Vec datatype with embedded equality proofs instead of indices. Suppose Vec A n is

defined with constructors nil : n ≡� zero → Vec A n and cons : (m : �)(x : A)(xs :

Vec A m) → n ≡� suc m → Vec A n and consider the unification problem:

(e : cons n x xs refl ≡Vec A (suc n) cons n y ys refl) (121)

Since this version of the Vec datatype does not have an index, we can apply the

injectivitycons rule to simplify this equation to

(e1 : n ≡� n)(e2 : x ≡A y)(e3 : xs ≡Vec A e1
ys)

(e4 : refl ≡suc n≡�suc e1
refl)

(122)

Now, e4 is an equation between equality proofs, much like the one we obtained in

(69), except that the equality (p : suc e1 ≡suc n≡�suc n suc n) is replaced with an

equality (e4 : refl ≡suc n≡�suc e1
refl). Lemma 71 shows that these two types are

in fact equivalent. So higher dimensional unification problems also occur in languages

without indexed datatypes, and hence that a general way to solve this kind of equations

is equally useful in these languages.
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Appendix A. Incompatibility of Injective Type Constructors with Univalence and

Excluded Middle

The proofs of these two theorems are not essential for the understanding of the

work in this paper. However, to our knowledge, there is no easy reference for them

and we think they are interesting enough to mention here.

Theorem 92. MLTT extended with univalence and injective type constructors is

inconsistent.

Proof. Let D : Set → Set be an inductive family with no constructors. Then,

D � � ⊥ � D ⊥, so D � ≡Set D ⊥ by univalence. But if D is injective, this means that

� ≡Set ⊥, which is clearly a contradiction.
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Theorem 93. MLTT extended with the excluded middle and injective type constructors

is inconsistent.

Proof. This proof is based on the proof given by Hur (2010).

Assume the datatype D : (Set → Set) → Set is injective (it does not matter

what the constructors of D are). We define a right inverse E of D as follows: if

A is equal to D F for some F : Set → Set, then E A is defined to be that F ,

otherwise it is λ .⊥. Formally, E is defined by case analysis on excluded-middle

applied to (Image D A), where Image D is a datatype with a single constructor

image : (F : Set → Set) → Image (D F).

We have

E (D F) ≡Set→Set F (A.1)

for any F: because D F is certainly in the image of D, E (D F) must be equal to G for

some G with D G ≡Set D F , but then this G must be equal to F by injectivity of D.

Now we construct by diagonalization a C : Set → Set that is not in the image of E,

thus leading to a contradiction. C A is defined by case analysis on excluded-middle

applied to (E A A ≡Set ⊥): If E A A is equal to ⊥, then C A = �, otherwise C A = ⊥.

To come to the contradiction, consider the term B = E (D C) (D C). By (A.1), we

have B ≡Set C (D C). Is B equal to ⊥ or not? By the excluded middle, there are two

cases:

B ≡Set ⊥: Then we have B ≡Set C (D C) ≡Set � by definition of C, but this is a

contradiction with B ≡Set ⊥.

(B ≡Set ⊥) → ⊥: Then we have B ≡Set C (D C) ≡Set ⊥ again by definition of C, but

this is a contradiction with (B ≡Set ⊥) → ⊥.

We have constructed an element of ⊥ in the empty context, so we conclude

that MLTT extended with the excluded middle and injective type constructors

is inconsistent.
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