ON THE PRODUCT $\prod_{n \geq 1}\left(1+q^{n} x+q^{2 n} x^{2}\right)$

KUNG-WEI YANG

(Received 15 April 1988; revised 15 March 1989)

Communicated by J. H. Loxton

Abstract

We study the coefficients A_{n} in the expansion of the infinite product $$
\prod_{n \geq 1}\left(1+q^{n} x+q^{2 n} x^{2}\right)=A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}+\cdots+A_{n} x^{n}+\cdots .
$$

We first derive a recurrence relation for A_{n} and from it we obtain an explicit expression of A_{n}. We then prove a convolution identity involving A_{n}.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 11 P 68.

1. Properties of A_{n}

First, we give some standard notation. Let

$$
(a ; q)_{\infty}=(1-a)(1-a q)\left(1-a q^{2}\right) \cdots
$$

and for any integer $n,(a ; q)_{n}=(a ; q)_{\infty} /\left(a q^{n} ; q\right)_{\infty}$. Note that $(a ; q)_{0}=1$, $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$, if n is a positive integer, and $1 /(q ; q)_{n}=0$, if n is a negative integer.

Theorem 1. Let

$$
G(x)=\prod_{n \geq 1}\left(1+q^{n} x+q^{2 n} x^{2}\right)=A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}+\cdots+A_{n} x^{n}+\cdots
$$

Then

$$
\begin{equation*}
A_{n} \text { is the generating function of the number of partitions into } \tag{1}
\end{equation*}
$$

n positive integers each occurring at most twice;
(2) $A_{0}=1, \quad A_{-1}=0, \quad$ and for $n \geq 1, \quad A_{n}=q^{n}\left(1-q^{n}\right)^{-1}\left(A_{n-1}+A_{n-2}\right)$;

$$
\begin{equation*}
A_{n}=\left((q ; q)_{n}\right)^{-1} \sum_{q^{i} q^{i-1} \mapsto q^{i}\left(1-q^{i-1}\right)} q^{n} q^{n-1 \ldots} q^{2} q^{1} \tag{3}
\end{equation*}
$$

where the summation is over all products (including $q^{n} q^{n-1} \cdots q^{2} q^{1}$) obtained from substitution of consecutive pairs $q^{i} q^{i-1}$ by $q^{i}\left(1-q^{i-1}\right)$.
(For instance,

$$
\left.\begin{array}{rl}
A_{4}= & \left((q ; q)_{4}\right)^{-1} \sum_{q^{i} q^{i-1} \mapsto q^{i}\left(1-q^{i-1}\right)} q^{4} q^{3} q^{2} q^{1} \\
= & \left((q ; q)_{4}\right)^{-1}\left[q^{4} q^{3} q^{2} q^{1}\right.
\end{array} \quad+q^{4}\left(1-q^{3}\right) q^{2} q^{1}+q^{4} q^{3}\left(1-q^{2}\right) q^{1}\right)
$$

Proof. (1) is obvious.
(2) Since $G(q x)=\prod_{n \geq 1}\left(1+q^{n+1} x+q^{2 n+2} x^{2}\right)$, we have $G(x)=$ $\left(1+q x+q^{2} x^{2}\right) G(q x)$. Comparing the coefficient of x^{n}, we see that $A_{n}=$ $q^{n}\left(A_{n}+A_{n-1}+A_{n-2}\right)$. Hence $A_{n}=q^{n}\left(1-q^{n}\right)^{-1}\left(A_{n-1}+A_{n-2}\right)$.
(3) We show the formula by induction, using the recurrence relation in (2). Clearly the formula holds for $n=2$, and

$$
\begin{aligned}
A_{n}= & q^{n}\left(1-q^{n}\right)^{-1}\left(A_{n-1}+A_{n-2}\right) \\
= & q^{n}\left(1-q^{n}\right)^{-1}\left[\left((q ; q)_{n-1}\right)^{-1} \sum_{q^{i} q^{i-1} \mapsto q^{i}\left(1-q^{i-1}\right)} q^{n-1} q^{n-2 \ldots} q^{2} q^{1}\right. \\
& \left.+\left((q ; q)_{n-2}\right)^{-1} \sum_{q^{i} q^{i-1} \mapsto q^{i}\left(1-q^{i-1}\right)} q^{n-2} q^{n-3 \ldots} q^{2} q^{1}\right] \\
= & \left((q ; q)_{n}\right)^{-1}\left[q^{n} \sum_{q^{i} q^{i-1} \sum_{\mapsto q^{i}\left(1-q^{i-1}\right)} q^{n-1} q^{n-2 \ldots} q^{2} q^{1}}\right. \\
& \left.+q^{n}\left(1-q^{n-1}\right) \sum_{q^{i} q^{i-1} \mapsto q^{i}\left(1-q^{i-1}\right)} q^{n-2} q^{n-3 \ldots} q^{2} q^{1}\right] \\
= & \left((q ; q)_{n}\right)^{-1} \sum_{q^{i} q^{i-1} \mapsto q^{i}\left(1-q^{i-1}\right)} q^{n} q^{n-1 \ldots} q^{2} q^{1} .
\end{aligned}
$$

2. Convolution identity

In Andrews [1, p. 454] it was shown that

$$
\begin{aligned}
& \prod_{n \geq 1}\left(1-\alpha q^{n} x\right)\left(1-\beta q^{n} x\right)\left(1-\alpha^{-1} q^{n-1} x^{-1}\right)\left(1-\beta^{-1} q^{n-1} x^{-1}\right) \\
& \quad=B_{0} \sum_{-\infty}^{\infty} \alpha^{n} \beta^{n} q^{n(n+1)} x^{2 n}-B_{1} \sum_{-\infty}^{\infty} \alpha^{n} \beta^{n} q^{n^{2}} x^{2 n-1}
\end{aligned}
$$

where

$$
B_{0}=\prod_{n \geq 1}\left(1+\alpha \beta^{-1} q^{2 n-1}\right)\left(1+\alpha^{-1} \beta q^{2 n-1}\right)\left(1-q^{2 n}\right)\left(1-q^{n}\right)^{-2}
$$

and

$$
B_{1}=\beta^{-1} \prod_{n \geq 1}\left(1+\alpha \beta^{-1} q^{2 n}\right)\left(1+\alpha^{-1} \beta q^{2 n-2}\right)\left(1-q^{2 n}\right)\left(1-q^{n}\right)^{-2}
$$

With $\alpha=\omega^{2}, \beta=\omega$ (where $\omega=e^{2 \pi i / 3}$), this becomes

$$
\begin{aligned}
& \left(\sum A_{n} x^{n}\right)\left(\sum q^{-n} A_{n} x^{-n}\right) \\
& \quad=\prod_{n \geq 1}\left(1+q^{n} x+q^{2 n} x^{2}\right)\left(1+q^{n-1} x^{-1}+q^{2(n-1)} x^{-2}\right) \\
& \quad=\left[\left(-q^{3} ; q^{6}\right)_{\infty}\left(-q^{2} ; q^{2}\right)_{\infty} /(q ; q)_{\infty}\right] \sum_{-\infty}^{\infty} q^{n(n+1)} x^{2 n} \\
& \quad+\left[\left(-q^{6} ; q^{6}\right)_{\infty}\left(-q ; q^{2}\right)_{\infty} /(q ; q)_{\infty}\right] \sum_{-\infty}^{\infty} q^{n^{2}} x^{2 n-1}
\end{aligned}
$$

Thus, if we define $A_{n}=0$ for $n<0$, then we have
Theorem 2 (convolution identity).

$$
\begin{aligned}
\sum_{-\infty}^{\infty} q^{-n} A_{n} A_{2 m+n} & =q^{m(m+1)}\left(-q^{3} ; q^{6}\right)_{\infty}\left(-q^{2} ; q^{2}\right)_{\infty} /(q ; q)_{\infty} \\
\sum_{-\infty}^{\infty} q^{-n} A_{n} A_{2 m-1+n} & =q^{m^{2}}\left(-q^{6} ; q^{6}\right)_{\infty}\left(-q ; q^{2}\right)_{\infty} /(q ; q)_{\infty}
\end{aligned}
$$

This is the analogue of the convolution identity [2, p. 22]

$$
\sum_{-\infty}^{\infty} q^{-n} C_{n} c_{m+n}=q^{m(m+1) / 2}(q ; q)_{\infty}
$$

for the coefficients C_{n} defined by $\prod_{n \geq 1}\left(1+q^{n} x\right)=\sum_{-\infty}^{\infty} C_{n} x^{n}$.

I thank the referee for his very helpful suggestions.

References

[1] G. E. Andrews, 'Hecke modular forms and the Kac-Peterson identities', Trans. Amer. Math. Soc. 283 (1984), 451-458.
[2] G. E. Andrews, 'Generalized Frobenius partitions', Mem. Amer. Math. Soc. 49 (1984), No. 301.

Department of Mathematics and Statistics Western Michigan University Kalamazoo, Michigan 49008 U.S.A.

