Bull. Aust. Math. Soc. **84** (2011), 49–**52** doi:10.1017/S0004972711002152

CORRIGENDUM

LINEAR RELATIONS ON HEREDITARILY INDECOMPOSABLE NORMED SPACES – CORRIGENDUM

TERESA ÁLVAREZ

doi:10.1017/S0004972700035723, Published by The Australian Mathematical Society, 17 April 2009

The purpose of this note is to correct the proof of [1, Proposition 12] concerning the existence of nonempty essential spectra of a linear relation on a complex normed space.

Our notation is the same as in [1]. Let $T \in LR(X)$ where X is a complex normed space. The essential resolvents, $\rho_{e+}(T)$ and $\rho_e(T)$, are defined by

$$\rho_{e+}(T) := \{\lambda \in \mathbb{C} : \lambda - T \in F_+\}$$

and

$$\rho_e(T) := \{\lambda \in \mathbb{C} : \lambda - T \in F_+ \cap F_- \text{ and } \overline{k}(\lambda - T) = 0\}.$$

Applying properties of Fredholm relations, we may equivalently define the above essential resolvents as follows:

$$\rho_{e+}(T) := \{\lambda \in \mathbb{C} : \lambda - T \in \phi_+\}$$

and

$$\rho_e(T) := \{\lambda \in \mathbb{C} : \lambda - \widetilde{T} \in \phi_+ \cap \phi_- \text{ and } k(\lambda - \widetilde{T}) = 0\}.$$

The essential spectra, $\sigma_{e+}(T)$ and $\sigma_e(T)$, are the respective complements of the essential resolvents: $\sigma_{e+}(T) := \mathbb{C} \setminus \rho_{e+}(T)$ and $\sigma_e(T) := \mathbb{C} \setminus \rho_e(T)$.

Recall that the spectrum of T is defined in [2, Section VI.1(4)] as $\sigma(T) := \mathbb{C} \setminus \rho(T)$ where

 $\rho(T) := \{\lambda \in \mathbb{C} : T_{\lambda} := (\lambda - \widetilde{T})^{-1} \text{ is everywhere defined and single-valued} \}.$

It is clear from the closed graph theorem that $\rho(T)$ consists of all $\lambda \in \mathbb{C}$ for which $\lambda - T$ is injective, open and has dense range.

We now consider the essential spectrum, $\sigma_{e^-}(T)$, defined by $\sigma_{e^-}(T) := \mathbb{C} \setminus \rho_{e^-}(T)$ where $\rho_{e^-}(T) := \{\lambda \in \mathbb{C} : \lambda - T \in F_-\}$ which coincides with the set $\{\lambda \in \mathbb{C} : \lambda - \widetilde{T} \in \phi_-\}$.

^{© 2011} Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

The proof of [1, Proposition 12] relies on the following statement:

If T is a partially continuous linear relation with dense domain then T'' is bounded single-valued.

This, however, need not be satisfied.

REMARK 1. If the linear relation T is partially continuous and densely defined, but not single-valued, then \widetilde{T} and T'' are bounded but both linear relations are not singlevalued.

PROOF. We first show that:

(1) if $S \in LR(E, F)$ where E and F are normed spaces, then S'' single-valued implies \widetilde{S} single-valued, which implies S single-valued.

We note that from [2, Proposition III.1.4(d)] we have $D(\widetilde{S}') \subset (D(\widetilde{S}')^{\top})^{\perp} = \widetilde{S}(0)^{\perp}$ and then from [2, Proposition III.1.4(b)] we have $\widetilde{S}(0)^{\perp \perp} \subset D(\widetilde{S}')^{\perp} = D(S')^{\perp} =$ S''(0). Hence $\widetilde{S}(0)^{\perp \perp} \subset S''(0)$. This last property together with the fact that S is single-valued if and only if $S(0) = \{0\}$ (see [2, Corollary I.2.9]) implies that \widetilde{S} (and hence S) is single-valued whenever S'' is single-valued.

We now prove that:

(2) $T \in LR(X)$ partially continuous implies that \widetilde{T} , T' and T'' are continuous.

This is immediate from the following chain of implications:

T partially continuous \Rightarrow T' continuous (by [2, Corollary V.9.6]) \Leftrightarrow \widetilde{T} continuous (by [2, Proposition III.4.9]) and T' continuous \Rightarrow T'' continuous (by [2, Corollary III.1.13]).

(3) *T* partially continuous with dense domain implies that \tilde{T} and T'' are bounded.

By virtue of (2), to establish assertion (3) it only remains to prove that \widetilde{T} and T''are everywhere defined.

Since \widetilde{T} is continuous if and only if $D(\widetilde{T})$ is closed [2, Theorem III.4.2], we have that $D(\widetilde{T}) = (D(\widetilde{T})^{\perp})^{\top} = \widetilde{T}'(0)^{\top} = T'(0)^{\top} = (D(T)^{\perp})^{\top}$ [2, Proposition III.1.4(b)] $= \widetilde{X}$ (as T has dense domain). Hence $D(\widetilde{T}) = \widetilde{X}$.

That D(T'') = X'' follows from the observation that T' is continuous if and only if $T'(0)^{\perp} = D(T'') = D(T)^{\perp \perp} = X''$. The first equality follows from [2, Proposition III.4.6(a)], the second from [2, Proposition III.1.4(b)] and the third from $\overline{D(T)} = X.$

The following lemma is elementary but is used several times in the proof of Proposition 3. Note that R(T) := T(D(T)) denotes the range of T and N(T) := $T^{-1}(0)$ denotes the null space of T.

LEMMA 2. Let $T \in LR(X)$ such that \widetilde{T} is everywhere defined and let $\eta \in \rho(T)$. Then for all $\lambda \neq \eta$ we have:

- (i) $\lambda \widetilde{T} = S(\eta \widetilde{T});$ (i) $R(\lambda - \widetilde{T}) = R(S);$ (ii) $N(\lambda - \widetilde{T}) = N(S),$

where $S := (\eta - \lambda)((\eta - \lambda)^{-1} - T_n)$.

PROOF. (i) Since $\eta - \tilde{T}$ is injective and $D(\eta - \tilde{T}) = D(\tilde{T}) = \tilde{X}$ it follows from [2, Section I.1.3(9)] that

$$S(\eta - \widetilde{T}) = (I - (\eta - \lambda)T_{\eta})(\eta - \widetilde{T})$$

= $((\eta - \widetilde{T})^{-1}(\eta - \widetilde{T}) - (\eta - \lambda)(\eta - \widetilde{T})^{-1})(\eta - \widetilde{T}).$

Then, since $D((\eta - \tilde{T})^{-1}) = R(\eta - \tilde{T}) = \tilde{X}$, it follows from [2, Proposition I.4.2(e)] that

$$S(\eta - \widetilde{T}) = ((\eta - \widetilde{T})^{-1}(\eta - \widetilde{T} - (\eta - \lambda)))(\eta - \widetilde{T})$$

and thus, by [2, Proposition VI.5.1],

[3]

$$S(\eta - \widetilde{T}) = (\eta - \widetilde{T})^{-1}(\lambda - \widetilde{T})(\eta - \widetilde{T}) = (\eta - \widetilde{T})^{-1}(\eta - \widetilde{T})(\lambda - \widetilde{T}) = \lambda - \widetilde{T}.$$

(ii) Follows immediately from (i) upon noting that $R(\eta - \widetilde{T}) = \widetilde{X}$. (iii) Let $x \in \widetilde{X} \setminus \{0\}$. Then, using the fact that $\eta \in \rho(\widetilde{T}) = \rho(T)$,

$$\begin{aligned} x \in N(\lambda - \widetilde{T}) \Leftrightarrow (\lambda - \widetilde{T})x &= (\lambda - \widetilde{T})(0) \\ \Leftrightarrow (\eta - \widetilde{T})x &= (\lambda - \widetilde{T})x + (\eta - \lambda)x \\ &= (\eta - \lambda)x + \widetilde{T}(0) = (\eta - \lambda)x + (\eta - \widetilde{T})(0) \\ \Leftrightarrow x &= (\eta - \lambda)T_{\eta}x + T_{\eta}(\eta - \widetilde{T})(0) = (\eta - \lambda)T_{\eta}x \\ \Leftrightarrow 0 &= (I - (\eta - \lambda)T_{\eta})x \\ \Leftrightarrow x \in N(S). \end{aligned}$$

We proceed now to give a correct proof of [1, Proposition 12].

PROPOSITION 3. Let X be a complex normed space and let $T \in LR(X)$ be partially continuous such that $\overline{D(T)} = X$ and $\rho(T) \neq \emptyset$. Then the sets $\sigma(T)$, $\sigma_{e+}(T)$, $\sigma_{e-}(T)$ and $\sigma_e(T)$ are nonempty.

PROOF. $\sigma(T) \neq \emptyset$. By (3) of Remark 1 we have that \widetilde{T} is bounded and thus it follows from [2, Theorem VI.3.3] that the spectrum of \widetilde{T} is nonempty. The assertion now follows upon noting that $\sigma(T) = \sigma(\widetilde{T})$.

In order to prove that the essential spectra of T are nonempty subsets of \mathbb{C} let us consider two cases for T.

Case 1. T is bounded single-valued and X is complete.

It is well known that in this case, $\sigma_e(T)$ coincides with the spectrum of the image of *T* in the Calkin algebra B(X)/K(X) where B(X) and K(X) denote the class of all bounded operators and bounded compact operators on *X* respectively (see, for example, [3]), so that $\sigma_e(T)$ is nonempty. This property, together with the fact that $\sigma_e(T)$ is closed [1, Proposition 11], implies that the boundary of $\sigma_e(T)$, denoted $\sigma_e(T)^b$, is also a nonempty set.

Furthermore, by the stability of the index of a bounded semi-Fredholm operator under small perturbation (see, for example [4, 2.c.9]) we deduce that the boundary

T. Álvarez

of $\sigma_e(T)$ is contained both in $\sigma_{e+}(T)$ and in $\sigma_{e-}(T)$. Therefore $\sigma_{e+}(T)$ and $\sigma_{e-}(T)$ are nonempty sets.

Case 2. T is partially continuous with dense domain and has a nonempty resolvent set.

Let $\eta \in \rho(T)$. Then by the open mapping theorem for linear relations [2, Theorem III.4.2], T_{η} is a bounded single-valued linear relation. Moreover, it is clear that $N(T_{\eta}) = (\eta - \tilde{T})(0) = \tilde{T}(0)$ and $R(T_{\eta}) := R((\eta - \tilde{T})^{-1}) = D(\eta - \tilde{T}) =$ $D(\tilde{T}) = \tilde{X}$ (by (3)). Consequently $0 \in \rho_{e^-}(T_{\eta})$ and since $\sigma_{e^-}(T_{\eta})$ is nonempty by Case 1, we conclude from Lemma 2 that there exists $\lambda \neq \eta$ such that $\lambda \in \sigma_{e^-}(T)$. Hence $\sigma_{e^-}(T) \neq \emptyset$ and since $\sigma_{e^-}(T) \subset \sigma_e(T)$ we have that $\sigma_e(T)$ is also a nonempty set.

It only remains to prove that $\sigma_{e+}(T) \neq \emptyset$. To this end, let us consider two possibilities for $\widetilde{T}(0)$:

- (a) dim $\widetilde{T}(0) < \infty$. In this case $0 \in \rho_{e+}(T_{\eta})$ and then it follows from Case 1 and Lemma 2 that $\sigma_{e+}(T) \neq \emptyset$;
- (b) dim $\widetilde{T}(0) = \infty$. Then $0 \in \sigma_{e+}(T_{\eta})$ since clearly $N(T_{\eta}) = \widetilde{T}(0)$. Now, as $\emptyset \neq \sigma_{e}(T_{\eta})^{b} \subset \sigma_{e+}(T_{\eta}) \cap \sigma_{e-}(T_{\eta})$ (see the proof of Case 1) and $0 \in \rho_{e-}(T_{\eta})$ we obtain that $\sigma_{e+}(T_{\eta})$ contains nonzero elements, and thus from Lemma 2 we deduce that $\sigma_{e+}(T) \neq \emptyset$, as desired.

References

- T. Álvarez, 'Linear relations on hereditarily indecomposable normed spaces', *Bull. Aust. Math. Soc.* 74 (2006), 289–300.
- [2] R. W. Cross, Multivalued Linear Operators (Marcel Dekker, New York, 1998).
- [3] H. G. Heuser, Functional Analysis (Wiley, Chichester, 1982).
- [4] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I. Sequence Spaces* (Springer, Berlin, 1977).