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Abstract

In this paper we consider discrete-time multidimensional Markov chains having a block
transition probability matrix which is the sum of a matrix with repeating block rows and
a matrix of upper-Hessenberg, quasi-Toeplitz structure. We derive sufficient conditions
for the existence of the stationary distribution, and outline two algorithms for calculating
the stationary distribution.
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1. Problem formulation and motivation

Multidimensional Markov chains having one denumerable and several finite-state com-
ponents arise as natural mathematical models of many real-life processes; hence, they have
received much attention in the literature. Several special cases of such multidimensional
Markov chains having a special structure to the block transition probability matrix are effectively
analyzed. Three such cases, namely skip-free to the left, skip-free to the right, and quasi-birth-
and-death processes, have been extensively studied by Neuts. Chains having the skip-free to
the left property were studied as M/G/1-type Markov chains in [15]. Chains having the skip-
free to the right property are referred to as G/M/1-type Markov chains and were investigated
in [14]. Quasi-birth-and-death processes are the Markov chains having both these properties
simultaneously. We refer the reader to [18] for an excellent overview of these types of Markov
chains as well as for an overview of some future research work. In addition to the skip-free
to the left property or skip-free to the right property, the transition probability matrices of
M/G/1-type and G/M/1-type Markov chains have a Toeplitz-like structure. This means that the
matrix blocks located on the diagonals of the transition probability matrix are identical, except
possibly for some boundary rows or columns. In [11] a skip-free to the left Markov chain was
considered where the Toeplitz-like structure exhibits only as a limiting case. The corresponding
chain is called an asymptotically quasi-Toeplitz Markov chain.
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212 A. DUDIN ET AL.

A common feature of transition probability matrices for all the abovementioned Markov
chains is that all blocks under the first subdiagonal (for skip-free to the left Markov chains) or
over the first off-diagonal (for skip-free to the right Markov chains) are equal to 0. Furthermore,
the requirement of having such a sparse structure was avoided in several works; for example,
Neuts [16] considered the Markov chain whose transitions to the right were almost the same
as in the case of M/G/1-type Markov chains, while transitions to the left were possible to all
states with equal probability. In [19] and [20] the authors considered the so-called G/G/1-type
Markov chains, which possess a Toeplitz-like structure while not necessarily having zero blocks
under the first subdiagonal or above the first off-diagonal. Bini et al. [1] provided a systematic
treatment of the theory and algorithms for important families of structured Markov chains, and
included a good overview of the current literature.

In this paper we will focus on the class of multidimensional Markov chains with possibly
all nonzero blocks in the transition probability matrix.

Let ξn = {in, jn}, n ≥ 1, be an irreducible, aperiodic, homogeneous Markov chain with
in ∈ {0, 1, 2, . . . }. When in = i, the process jn will take values in a finite set Ji of finite-
dimensional vectors. Note that vectors belonging to the set Ji can have different dimensions.
But there exists a nonnegative integer N, N ≥ 0, and a set J of finite-dimensional vectors such
that Ji = J for i > N . Thus, the phase space S of the Markov chain ξn, n ≥ 1, has the form

S = {(i, j), j ∈ Ji , i = 0, 1, . . . , N; (i, j), j ∈ J, i > N}.
In what follows we denote the number of vectors in the sets Ji by Ji, i ≥ 0, and denote by J

the number of vectors in the set J.
Enumerate the states of the chain ξn, n ≥ 1, as follows. Set the states (i, j) in ascending

order of component i and then, for fixed i, arrange the states (i, j), j ∈ Ji , in any suitable
manner, i ≥ 0. Below, without loss of generality, we assume that the states (i, j), j ∈ Ji , are
arranged in lexicographic order.

Let Pi,l be the Ji × Jl matrices formed by the transition probabilities

p(i,j),(l,ν) = P{in+1 = l, jn+1 = ν | in = i, jn = j}, j ∈ Ji , ν ∈ Jl , i, l ≥ 0.

Let the blocking matrix P = (Pi,l)i,l≥0 have the following structure:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0,0 B0,1 · · · B0,N−1 B0,N B0,N+1 B0,N+2 · · ·
...

...
. . .

...
...

...
...

. . .

BN,0 BN,1 · · · BN,N−1 BN,N BN,N+1 BN,N+2 · · ·
A0 A1 · · · AN−1 AN + Y0 AN+1 + Y1 AN+2 + Y2 · · ·
A0 A1 · · · AN−1 AN AN+1 + Y0 AN+2 + Y1 · · ·
A0 A1 · · · AN−1 AN AN+1 AN+2 + Y0 · · ·
...

...
. . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where the matrices Yl , l ≥ 0, are nonnegative.
Let

A(z) =
∞∑

j=0

Aj z
j , Y (z) =

∞∑
j=0

Yj z
j , |z| ≤ 1.

The matrix P can be represented as a sum of two matrices. One matrix has the same
structure as the transition probability matrix of the M/G/1-type Markov chain. The second
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matrix has, except possibly for several boundary states, identical block rows. These kinds of
matrices appear in the investigation by Chakravarthy [2] of queueing systems (the MAP/G/1-
type system in particular) with group service. In these systems service is provided only to groups
with the fixed minimal size. All customers present in the system at the service beginning epoch
are served simultaneously, and the service time does not depend on the size of a group. This
explains why the block rows of the transition probability matrix, except for several boundary
rows, are identical. A P matrix of the form (1) describes the transitions of the embedded Markov
chain for generalization of the model [2] to the case where, at any service beginning epoch, with
some probability, all customers are sent to the service simultaneously or, with supplementary
probability, only one customer is picked up for the service. A P matrix of the form (1) also
arises as a transition probability matrix of the embedded, at service beginning epochs, Markov
chain for the BMAP/SM/1 queue with disasters in the case of noninstantaneous recovery of the
server and customer accumulation during the recovery time.

The special case of the Markov chain, which is the subject of our paper, was considered
in [4] and [5], where the BMAP/SM/1 queue with a Markovian arrival process of disasters was
under study. In this case all matrices Al , l ≥ 1, are equal to 0. Only the A0 matrix is nonzero.

Contributions of analysis presented in our paper comparing to [4] and [5] consist of the
following.

(i) In contrast to [4] and [5] we do not assume in advance any explicit form for the blocks
Pi,j . Thus, the problem of establishing conditions for ergodicity of the considered
Markov chain arises. Such a problem was not considered in [4] and [5] because it was
intuitively clear that specifics of the Markov chain always guaranteed ergodicity. In
the general case considered in this paper, the solution of this problem is not trivial and
assumes an analysis of several possible structures for the matrices A(1) and Y (1).

(ii) While extension of the algorithm based on the transform approach, which was described
in [4], to the case of the considered Markov chain looks straightforward, elaboration of a
numerically stable algorithm similar to the one considered in [5] is not simple. Derivation
of the algorithm in [5] essentially followed the approach introduced by Ramaswami [17]
and exploited the fact that the denumerable component of the Markov chain can reach
any level m, m ≥ 1, starting from level k, k > m, via only the levels k − 1, . . . , m + 1.
The Markov chain ξn, n ≥ 1, considered in this paper does not possess such a property.
So, in the present paper the derivation of the algorithm, which is similar to the algorithm
used in [5] and [17], is performed by means of preliminary consideration of an auxiliary
Markov chain and by further applying the censoring technique.

The remainder of the paper is organized as follows. In Section 2 sufficient conditions for
ergodicity of the Markov chain ξn, n ≥ 1, are derived. In Section 3 two algorithms used to
calculate the stationary distribution of this Markov chain are outlined.

2. Stability condition

To obtain the ergodicity condition, we will use the mean drift approach. To this end, we
formulate the vector analog of Moustafa’s well-known theorem [13].
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Proposition 1. Suppose that there exist ε > 0, a positive integer i0, and a set of nonnegative
vectors Xi , i ≥ 0 (vector test function), such that the following inequalities are valid:

∞∑
j=0

Pi,jXj − Xi < −εe, i > i0, (2)

∞∑
j=0

Pi,jXj < ∞, i = 0, i0, (3)

where e is a column vector consisting of 1s and 0, i0 means i = 0, 1, . . . , i0. Then the Markov
chain ξn, n ≥ 1, is ergodic.

We distinguish between the cases of an irreducible and a reducible matrix Y (1). Note that
in the latter case the matrix generating function Y (z) is also a reducible matrix and has the
same structure as Y (1). Without loss of generality, we assume that the matrix Y (z) is already
presented in a normal form (for a definition, see [7] and [15]), i.e. it has the following structure:

Y (z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y (1)(z) 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · Y (m)(z) 0 · · · 0
Y (m+1,1)(z) Y (m+1,2)(z) · · · Y (m+1,m)(z) Y (m+1)(z) · · · 0

...
...

. . .
...

...
. . .

...

Y (s,1)(z) Y (s,2)(z) · · · Y (s,m)(z) Y (s,m+1)(z) · · · Y (s)(z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4)
where Y (1)(z), . . . ,Y (s)(z) are irreducible square matrices of size d1, . . . , ds , respectively, and
there is at least one nonzero matrix in each row Y (n,1)(z), . . . , Y (n,n−1)(z), n = m + 1, . . . , s.

Lemma 1. The following statements are true.

1. Let Y (1) be an irreducible, substochastic matrix. Then there exists an integer L0, L0 ≥
N such that the matrices �L = ∑∞

l=L Al + Y (1), L ≥ L0, are also irreducible,
substochastic matrices.

2. Let Y (1) be a reducible matrix of the form (4), and let Y (1)(1), . . . , Y (m)(1) be sub-
stochastic matrices. Then there exists an integer L0, L0 ≥ N , such that, for all L ≥ L0,
either

(i) the matrices �L are irreducible and substochastic; or

(ii) the matrices �L are reducible matrices with normal form

�L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�L
(1) 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · �L
(k) 0 · · · 0

�L
(k+1,1) �L

(k+1,2) · · · �L
(k+1,k) �L

(k+1) · · · 0
...

...
. . .

...
...

. . .
...

�L
(t,1) �L

(t+1,1) · · · �L
(t,k) �L

(t,k+1) · · · �L
(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5)
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where 2 ≤ t ≤ s, 0 ≤ k ≤ m, and the matrices �L
(n), n = 1, t , are irreducible

and substochastic.

3. Let Y (1) be a reducible matrix of the form (4), where the matrices Y (r)(1), r = 1, R, R ≤
m, are stochastic. Then there exists an integer L0 ≥ N such that, for any L ≥ L0, the
matrices �L are of the form (5), where k ≥ R, the matrices �L

(r), r = 1, R, are
stochastic, and the matrices �L

(r), r = R + 1, t , are substochastic.

The proof of Lemma 1 is based on a careful analysis of the structure of the matrices Y (1)

and �L. It is straightforward and so is omitted here.

Theorem 1. Let

∞∑
k=1

kBi,i+k−1e < ∞, i = 0, N, Y ′(1) < ∞, A′(1) < ∞. (6)

(i) If the matrix Y (1) satisfies condition 1 or condition 2 of Lemma 1 then the Markov chain
ξn, n ≥ 1, is ergodic.

(ii) If Y (1) is an irreducible, stochastic matrix then a sufficient condition for the ergodicity
of the Markov chain ξn, n ≥ 1, is that the inequality

[det(zI − Y (z))]′z=1 > 0,

where I denotes the identity matrix, be fulfilled.

(iii) If Y (1) is a reducible matrix of the form (4) and if there exists a set of indices

{n1, n2, . . . , nR} ⊂ {1, 2, . . . , m}
such that the matrices Y (nr )(1), r = 1, R, R ≤ m, are stochastic, then the sufficient
condition for the ergodicity of the Markov chain ξn, n ≥ 1, is that the inequalities

[det(zI − Y (nr )(z))]′z=1 > 0, r = 1, R, (7)

be fulfilled.

Proof. Denote the left-hand side of inequality (2) by �i ,

�i =
∞∑

j=0

Pi,jXj − Xi , i > i0. (8)

Note that �i can be considered as a vector of mean drifts of the chain in the states having the
value i of the denumerable component.

Take the vector test function Xi , i ≥ 0, of the form

Xi =
{

0, i ≤ L − 1,

(i + 1)e + α, i > L − 1,
(9)

where α is a real-valued column vector which will be defined below, and L is some integer
such that L > L0, where the quantity L0 is as defined in Lemma 1.
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Setting i0 = L and substituting Xi , i ≥ 0, of the form (9) into (8), we derive the following
expression for the vectors �i :

�i =
∞∑

j=L

Aj (j + 1)e + (Y (z) − zI )′|z=1e + (�L − I )α, i > L. (10)

The vectors (10) do not depend on i. So, in what follows we set �i = −�, i > L.
Let the matrix Y (1) satisfy condition (i) of Theorem 1. Fix the value L > L0. Let us show

that there exists a positive vector α such that � > 0.
Let

β =
∞∑

j=L

Aj (j + 1)e + (Y (z) − zI )′|z=1e + �,

and choose � to be a positive vector whose entries are greater than the corresponding entries
of the vector (Y (z) − zI )′|z=1e in modulus. This implies that β > 0.

Consider the following system of linear algebraic equations for the components of a vector α:

(I − �L)α = β. (11)

By Lemma 1, the matrix �L is either an irreducible, substochastic matrix or a reducible,
substochastic matrix of the form (5), where the diagonal blocks �L

(n), n = 1, t , are irreducible,
substochastic matrices. So, the matrix (I − �L)−1 exists and is nonnegative. This and the
inequality β > 0 imply that system (11) has the unique nonnegative solutionα = (I − �L)−1β.
Substituting this solution into (9), we define the test function satisfying Moustafa’s theorem and
guaranteeing the satisfaction of the relations �i = −�, i > L, where � is a positive vector.
This means that (2) is satisfied.

It is easy to show that the constructed test function also guarantees the satisfaction of (3).
So, the chain ξn, n ≥ 1, is ergodic.

If the matrix Y (1) satisfies condition (ii) of Theorem 1 then the chain ξn, n ≥ 1, is of M/G/1
type and the statement of the theorem follows from the corresponding theory; see, e.g. [6]
and [11].

Now let us assume that matrix Y (1) satisfies condition (iii) of Theorem 1.
Let us show that there exists a positive vector � such that the following system has a

solution α:

(I − �L)α =
∞∑

j=L

Aj (j + 1)e + (Y (z) − zI )′|z=1e + �. (12)

Without loss of generality, we will assume that nr = r, r = 1, R. Then matrix Y (1)

satisfies condition 3 of Lemma 1. Therefore, the matrix �L is of the form (5), where k ≥ R, the
matrices �L

(r), r = 1, R, are stochastic, and the matrices �L
(r), r = R + 1, t , are irreducible

and substochastic.
Let us partition the vector α as α = (α(1)�, . . . , α(R)�, α(R+1)�)�, where α(r) is a col-

umn vector of dimension dr , r = 1, R. Correspondingly, partition the vector � as � =
(�(1)�, . . . ,�(R)�, �(R+1)�)�. Then system (12) is decomposed as follows:

(I − Y (r)(1))α(r) = (Y (r)(z) − zI )′|z=1e + �(r), r = 1, R, (13)

(Î − �̂L)α = (�̂L(z) − zÎ )′|z=1e + �(R+1), (14)
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where �̂L, �̂L(z), and Î are rectangular matrices formed by the last J − ∑R
r=1 dr rows of the

matrices �L,
∑∞

j=L Aj z
j+1 + Y (z), and IJ , respectively.

From Lemma 1 of [11] it follows that, under condition (7) and the assumption that nr =
r, r = 1, R, there exist positive column vectors �(r) = �0

(r), r = 1, R, such that each system
in (13) has an infinite set of solutions. Let α0

(r), r = 1, R, be some solution of (13). Let us
substitute this solution into (9) and fix the value L > L0, providing the nonnegativity of the
corresponding entries of the vectors Xi , i ≥ L. Substituting α(r) = α0

(r), r = 1, R, into (14)
we obtain the following system of linear algebraic equations for the components of the vector
α(R+1):

(I − �̂
(1)
L )α(R+1) = �̂

(2)
L (α

(1)�
0 , . . . ,α

(R)�
0 )� + (�̂L(z) − zÎ )′|z=1e + �(R+1), (15)

where the matrix �̂
(1)
L is formed by the last J − ∑R

r=1 dr columns of the matrix �̂L, and the
matrix �̂

(2)
L is formed by the first

∑R
r=1 dr columns of the matrix �̂L − Î .

By construction, the matrix �̂
(1)
L is either an irreducible, substochastic matrix or a reducible,

substochastic matrix having only substochastic matrices as irreducible diagonal blocks. Then
the inverse (I − �̂L)−1 exists and is nonnegative. Substitute �(R+1) = �0

(R+1) into (15),
where the vector �0

(R+1) is chosen as a positive vector with entries providing a positivity of
the right-hand side of (15). Then (15) has the unique nonnegative solution α

(R+1)
0 . Substituting

α = α0 into (9), we define the test function satisfying Moustafa’s theorem and guaranteeing
the satisfaction of the relations �i = −�0, i > L, where �0 is a positive vector. This means
that (2) is satisfied.

It is easy to show that the constructed test function also guarantees the satisfaction of (3).
So, the chain ξn, n ≥ 1, is ergodic.

Corollary 1. Let the inequalities
∑∞

k=1 kBi,i+k−1e < ∞, i = 0, N , and A′(1) < ∞ be
satisfied. If Y (1) = 0 then the Markov chain ξn, n ≥ 1, is ergodic.

Corollary 2. If the vector A(1)e is positive and inequalities (6) are satisfied then the Markov
chain ξn, n ≥ 1, is ergodic.

3. Algorithms for calculating the stationary distribution

For the sake of simplifying the presentation, we will further assume that the parameter N

in (1) is equal to 0, i.e. the Markov chain ξn, n ≥ 1, has irregular behavior only when the
state of the denumerable component in, n ≥ 1, is equal to 0, and suppose that the matrices
B0,l , l ≥ 0, can be presented in the form B0,l = Al +Vl , l ≥ 0, where the matrices Vl , l ≥ 0,
are nonnegative.

Thus, in the sequel we assume that matrix (1) has the form

P =

⎛
⎜⎜⎜⎜⎜⎝

A0 + V0 A1 + V1 A2 + V2 A3 + V3 A4 + V4 · · ·
A0 + Y0 A1 + Y1 A2 + Y2 A3 + Y3 A4 + Y4 · · ·

A0 A1 + Y0 A2 + Y1 A3 + Y2 A4 + Y3 · · ·
A0 A1 A2 + Y0 A3 + Y1 A4 + Y2 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ . (16)

The state space S of the chain ξn, n ≥ 1, is S = {(i, j), i ≥ 0, j ∈ J}.
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In what follows we assume that the stability conditions defined by Theorem 1 are satisfied
and introduce the stationary state probabilities

π(i, j) = lim
n→∞ P{in = i, jn = j}, i ≥ 0, j ∈ J,

and the vectors πi that consist of stationary state probabilities corresponding to the value
i, i ≥ 0, of the first component of the chain enumerated in lexicographic order.

The Chapman–Kolmogorov equations for these vectors are evidently given by

πj = π0Vj +
∞∑
i=0

πiAj +
j+1∑
i=1

πiYj−i+1, j ≥ 0. (17)

For the case in which Y (1) = 0, the matrix A(1) should be stochastic, so the matrix
V (1) = 0. Because the Markov chain ξn, n ≥ 1, is assumed to be irreducible, the relation
Y (1) = V (1) = 0 implies that the matrix A(1) is irreducible. Then the stationary probability
vectors πj , j ≥ 0, are computed trivially as

πj = ρAj , j ≥ 0,

where the vector ρ is the solution to the system ρ = ρA(1), ρe = 1.
For the case in which A(1) = 0, the Markov chain ξn, n ≥ 1, is of M/G/1 type, so the

vectors πj , j ≥ 0, can be computed by means of the well-known transform approach (see,
e.g. [3] and [6]) or by the matrix analytic approach of Neuts [15].

Now let us assume that A(1) 
= 0 and Y (1) 
= 0. Below we develop both approaches for
calculating the stationary distribution of the considered Markov chain ξn, n ≥ 1.

3.1. Algorithm based on the transform approach

Let

�(z) =
∞∑
i=0

πiz
i ,

�̂(z) =
∞∑
i=1

πiz
i ,

V (z) =
∞∑
i=0

Viz
i ,

for |z| ≤ 1, and

S = A(1) + Y (1).

First, consider the case in which the matrix S is irreducible.

Theorem 2. The vector generating function �(z) of the stationary distribution of the Markov
chain ξn, n ≥ 1, is the unique solution to the matrix functional equation

�(z)(zI − Y (z)) = ρA(z)z + π0((V (1) − Y (1))T A(z)z + zV (z) − Y (z)), (18)

which is analytical in the region |z| < 1, continuous on the circle |z| = 1, and satisfies the
normalization condition �(1)e = 1, where T = (I −S +eρ)−1 and ρ is the left stochastic row
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vector of the matrix S : ρ = ρS, ρe = 1. The vector π0 is the unique solution to the following
system of linear algebraic equations:

dn

dzn
((ρA(z)z + π0((V (1) − Y (1))T A(z)z + zV (z) − Y (z)))adj(zI − Y (z)))|z=zk

= 0, n = 0, nk − 1,

(19)

where zk is a root of multiplicity nk of the equation

det(zI − Y (z)) = 0 (20)

in the disc |z| ≤ 1, adj(zI − Y (z)) denotes the adjoint matrix of (zI − Y (z)), and
∑

nk = J .

Proof. By multiplying (17) by the corresponding degrees of z and summing, we obtain the
matrix functional equation

�(z)(zI − Y (z)) = �(1)A(z)z + π0(zV (z) − Y (z)). (21)

Uniqueness of the solution to (21), which is analytical in the region |z| < 1, continuous on
its boundary, and satisfies the normalization condition �(1)e = 1, follows from the following
reasonings. Let there exist another vector function P (z) which satisfies (21), is analytical
in the region |z| < 1, continuous on its boundary, and satisfies the normalization condition
P (1)e = 1. Coefficients pi , i ≥ 0, of the expansion P (z) = ∑∞

i=0 piz
i should satisfy

the equilibrium equations, (17). However, it is well known that under the satisfaction of the
ergodicity condition, system (17) has a unique solution satisfying the normalization condition.
So πi = pi , i ≥ 0, which implies that �(z) = P (z).

Taking z = 1 in (21), we obtain the relation

�(1)(I − S) = π0(V (1) − Y (1)). (22)

Matrix S is stochastic, so the matrix I − S is singular and it is not possible to eliminate the
vector �(1) from (22) directly. However, it is known that if the matrix S is irreducible then the
matrix I − S + eρ is nonsingular. So, the relation

�(1) = ρ + π0(V (1) − Y (1))T (23)

follows directly from (22). By substituting (23) into (21) we obtain (18).
System (19) has a solution because otherwise the vector generating function �(z) is

unbounded at the points zk . This contradicts the analyticity of this function in the region
|z| < 1 and its continuity on the boundary |z| = 1. The existence of more than one solution
to system (19) contradicts the uniqueness of the stationary distribution defined by system (17).
This completes the proof.

The existence of J roots of (20) in the region |z| ≤ 1 can be proved by analogy with [3],
[6], and [10].

Now, let us consider the case in which the matrix S is reducible but the matrix Ŝ = A(1) +
V (1) is irreducible.

Theorem 3. The vector generating function �̂(z) of the stationary distribution of the Markov
chain ξn, n ≥ 1, is the unique solution to the matrix functional equation

�̂(z)(zI −Y (z)) = ρ̂z(A(z)+V (z)−I )+z�̂(1)(A(z)− (I −S +eρ̂)T̂ (A(z)+V (z)−I )),

where T̂ = (I − Ŝ + eρ̂)−1 and ρ̂ is the left stochastic row vector of the matrix Ŝ : ρ̂ =
ρ̂S, ρ̂e = 1.
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The vector �̂(1) is the unique solution to the following system of linear algebraic equations:

dn

dzn
z((ρ̂(A(z) + V (z) − I ) + �̂(1)(A(z) − (I − S + eρ̂)T̂ (A(z) + V (z) − I )))

× adj(zI − Y (z)))|z=zk
= 0, n = 0, nk − 1,

where zk is a root of multiplicity nk of (20) in the disc |z| ≤ 1 and
∑

nk = J .
The vector π0 is computed using π0 = ρ̂ − �̂(1)(I − S + eρ̂)T̂ , and the vector �(1) is

computed using �(1) = �̂(1) + π0.

The proof of Theorem 3 is analogous to the proof of Theorem 2.
Once the vectors π0 and �(1) have been computed, the rest of the vectors can be computed

recursively using

πj+1 =
(

πj − π0Vj − �(1)Aj −
j∑

i=1

πiYj−i+1

)
Y−1

0 , j ≥ 0, (24)

conditional on the matrix Y0 being nonsingular.

3.2. Algorithm based on the censoring technique

The algorithm described in Subsection 3.1 has several known disadvantages. Theoretically,
the trivial problem of finding the known number of roots of (20) in the unit disc of the complex
plane and their multiplicities becomes difficult computationally, especially if they are close
roots and the dimension J of the vector π0 is high. Calculation of the derivatives in (19) can
require additional difficult analytical work. Selection of the linearly independent equations in
system (19) is also a nontrivial task.

If the vector π0 is found from system (19) then the factorial moments of the distribution
πi , i ≥ 0, can be computed based on (18). However, if the probabilities πi , i > 0, are
of interest, recursive calculation by (24) requires the nonsingularity of matrix Y0, which is
not always true. In addition, recursion (24) is not always numerically stable, owing to the
presence of multiple subtraction operations. Thus, an alternative algorithm for computing the
probabilities πi , i ≥ 0, which is based on probabilistic reasonings and can be traced back to the
algorithm offered for M/G/1-type Markov chains in [17], will be developed in this subsection.

Direct translation of Ramaswami’s recursion to the considered class of Markov chains is not
possible because they do not possess the skip-free to the left property. All blocks of the transition
probability matrix can be nonzero. To overcome this difficulty to some extent, let us introduce
the auxiliary multidimensional Markov chain ηn, n ≥ 1, having a transition probability matrix
of almost M/G/1-type structure, except for the presence of the first nonzero block column
and an additional boundary block row. This Markov chain has state space {∗, 0, 1, 2, . . .} of
denumerable component and block transition probability matrix of the form

P ∗ = (P ∗
i,l)i,l∈{∗,0,1,2,...} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Â0 Â1 Â2 Â3 Â4 · · ·
Â V0 V1 V2 V3 V4 · · ·
Â Y0 Y1 Y2 Y3 Y4 · · ·
Â 0 Y0 Y1 Y2 Y3 · · ·
Â 0 0 Y0 Y1 Y2 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

https://doi.org/10.1239/jap/1208358963 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1208358963


Markov chains with hybrid structure of the transition matrix 221

where the nonegative matrices Yl and Vl , l ≥ 0, are defined as above and the matrices Â and
Âl , l ≥ 0, are defined as follows.

Consider the diagonal matrix Ā = diag{A(1)e} with diagonal entries defined by the entries
of the vector A(1)e. The matrix Â is obtained from the matrix Ā by deleting the columns, if
any, with all zero entries. The matrix Âl is obtained from the matrix Al , l ≥ 0, by deleting
the rows consisting of all zero entries and by dividing the entries of the remaining rows by the
corresponding diagonal entry of the matrix Ã.

It can be verified that the Markov chain ηn, n ≥ 1, is irreducible and aperiodic and that
the matrix P ∗ is of the form (1), where N = 1, B0,0 = 0, B0,j = Âj , j ≥ 1; B1,0 = Â,
B1,j+1 = Vj , j ≥ 0; and A0 = Â, Aj = 0, j ≥ 1. From this matching, it is easy to see
that the sufficient ergodicity conditions given in Theorem 1 for the auxiliary Markov chain
ηn, n ≥ 1, coincide with the sufficient ergodicity conditions for the original Markov chain
ξn, n ≥ 1.

Let us consider the censored Markov chain ζn, n ≥ 1, which is obtained from the Markov
chain ηn, n ≥ 1, by eliminating the states having value ∗ of denumerable component. It has
transition probability matrix P of the form (16). It can be verified that the censored Markov
chain ζn, n ≥ 1, has the same state space and transition probability matrix as the Markov chain
ξn, n ≥ 1, which is currently under study. So, their stationary distributions coincide.

There exists a well-known relation (see, e.g. [8] and [9]) between the stationary probability
vectors of the censored Markov chains and the original Markov chains. So, if we find the
stationary distribution of the Markov chain ηn, n ≥ 1, we will be able to compute the stationary
distribution of the censored Markov chain ζn, n ≥ 1, with respect to it, and then we will be
able to compute the stationary distribution of the original Markov chain ξn, n ≥ 1.

This explains the motivation for introducing the auxiliary Markov chain ηn, n ≥ 1: to reduce
the investigation of the Markov chain ξn, n ≥ 1, with potentially a fully populated transition
probability matrix of the form (16), to the consideration of the Markov chain with a more sparse
transition probability matrix P ∗.

Let us denote by G the matrix which is the minimal nonnegative solution to the equation

G =
∞∑
l=0

YlG
l . (25)

The entries of the matrix G, which is the straightforward analog of the G matrix introduced by
Neuts [15] for M/G/1-type Markov chains, characterize the transition probability of component
jn of the Markov chain ηn, n ≥ 1, in the time interval during which component in, starting from
the state k + 1, reaches state k, k ≥ 0, for the first time, without visiting state ∗. It is easy to
verify that matrix G does not depend on the value k, k ≥ 0, and satisfies matrix equation (25).
For more details about the existence of the solution to (25) and for some algorithms for solving
equations of such type, see, e.g. [15].

The following assertion gives a constructive algorithmic way for computing the stationary
distribution of the Markov chain ηn, n ≥ 1.

Theorem 4. If Y (1) is an irreducible, substochastic matrix or if Y (1) is a reducible matrix of the
form (4) and Y (1)(1), . . . ,Y (m)(1) are substochastic matrices, then the stationary distribution
pi , i ∈ {∗, 0, 1, 2, . . . }, of the Markov chain ηn, n ≥ 1, can be computed in the following
algorithmic way.
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• Calculate the matrices H and H0 using the following formulae:

H = (I − G)(I − Y (1))−1Â, (26)

H0 = (I − V (G))−1
(

Â +
∞∑
l=0

Vl

l−1∑
i=0

GiH

)
. (27)

• Calculate the matrices P̂l,k, l, k ∈ {∗, 0, 1, 2, . . . }, using

P̂0,k =
∞∑
i=0

Vk+iG
i , k ≥ 0, (28)

P̂n,k =
∞∑
i=0

Yk+i−n+1G
i , n = 1, k, k ≥ 1, (29)

P̂∗,k =
∞∑
i=0

Âk+iG
i , k ≥ 0, (30)

P̂∗,∗ =
∞∑
l=0

Âl

(
GlH0 +

l−1∑
i=0

GiH

)
. (31)

• Calculate the matrices 	l , l ≥ 0, from the recursion

	l =
(

P̂∗,l +
l−1∑
n=0

	nP̂n,l

)
(I − P̂l,l)

−1, l ≥ 0. (32)

• Calculate the vector p∗ as the unique solution to the system

p∗(I − P̂∗,∗) = 0, p∗
(

e +
∞∑
l=0

	le

)
= 1. (33)

• Calculate the vectors pi , i ≥ 0, using

pi = p∗	i , i ≥ 0. (34)

Proof. The entries of matrix H characterize the transition probability of component jn of
the Markov chain ηn, n ≥ 1, in the time interval during which component in of this Markov
chain, starting from state k, reaches state ∗ without visiting state k − 1, k ≥ 1. This matrix
does not depend on k and is defined by the equation

H = Â +
∞∑
l=0

Yl+1

l∑
i=0

GiH ,

from which (26) evidently follows.
The entries of matrix H0 characterize the transition probability of component jn of the

Markov chain ηn, n ≥ 1, in the time interval during which component in of this Markov chain,
starting from state 0, reaches state ∗ for the first time. This matrix is defined by the equation

H0 = Â +
∞∑
l=0

Vl

( l−1∑
i=0

GiH + GlH0

)
,

from which (27) evidently follows.

https://doi.org/10.1239/jap/1208358963 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1208358963


Markov chains with hybrid structure of the transition matrix 223

Matrices P̂m,k, m = ∗, 1, 2, . . . , given by formulae (28)–(31) define the transition prob-
abilities of the censored Markov chain η

(k)
n , n ≥ 1, which is obtained from the Markov

chain ηn, n ≥ 1, by censoring on level k, i.e. considering its transitions only in the set
{∗, 0, 1, 2, . . . , k}, k = ∗, 1, 2, . . . . It is well known that (see, e.g. [8] and [9]) the stationary
probability vector of this censored Markov chain is the stationary probability vector of the
Markov chain ηn, n ≥ 1, restricted to the states {∗, 0, 1, . . . , k} and normalized to have sum 1.
Thus, the stationary probability vectors pi , i ∈ {∗, 0, 1, 2, . . . }, of the Markov chain ηn, n ≥ 1,
satisfy the system

pk = p∗P̂∗,k +
k∑

n=0

pnP̂n,k, k ≥ 0, p∗ = p∗P̂∗,∗. (35)

Now relations (32)–(34) evidently stem from (35) and the normalization condition. This
completes the proof.

Remark 1. We could avoid presenting the vectors pi , i ≥ 0, in multiplicative form, (34), and
use the recursion

pl =
(

p∗P̂∗,l +
l−1∑
n=0

pnP̂n,l

)
(I − P̂l,l)

−1, l ≥ 0,

for these vectors instead of recursion (32) for the matrices 	i , i ≥ 0. This may reduce the
computational cost to some extent; see [12]. However, we prefer to use the multiplicative
form, (34), because this essentially simplifies the derivation of the inhomogeneous equation in
system (33) for the entries of the vector p∗.

Now let us consider the case in which Y (1) is a reducible matrix of the form (4), and let
some of the matrices Y (1)(1), . . . ,Y (m)(1) be stochastic. Without loss of generality, let us
assume that the matrices Y (r)(1), r = 1, R, R ≤ m, are stochastic. Let us denote by d the total
number of rows in these matrices. Above we denoted by J the phase space of component jn

of the Markov chain ξn, n ≥ 1, and agreed to enumerate the states of this vector component
in lexicographic order. Let us denote by J̃ the subset of the first d vectors in the set J. In this
case the matrix (I − Y (1))−1 in (26) used for calculating matrix H does not exist. So, we
have to derive another formula for calculating matrix H . Since in the considered case the first
d rows of the matrix Y (1) have row sum equal to 1, correspondingly, the first d rows of the
matrix Â consist of zero entries. This implies that, starting in state (k, j), k ≥ 1, j ∈ J̃, the
Markov chain under consideration cannot reach the state with value ∗ for the first component
of the Markov chain without visiting the states with value k − 1 for this component. Thus, we
conclude that the first d rows of matrix H consist of zero entries and that this matrix has the
following structure:

H =
(

0
H̃

)
, (36)

where 0 is the zero matrix of size d × â, H̃ is the matrix of size (J − d) × â, and â is the
number of columns in matrix Â.

Let us calculate the unknown matrix H̃ . To this end, we introduce the following notation.
Let G̃, Ỹk, k ≥ 0, and Ỹ (1) be matrices formed by the last J − d rows and columns of the G,
Yk, k ≥ 0, and Y (1) matrices, respectively, and let Ã be the matrix formed by the last J − d
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rows of matrix Â. Using probabilistic reasonings, we derive the following equation for the
matrix H̃ :

H̃ = Ã +
∞∑
l=0

Ỹl+1

l∑
i=0

G̃iH̃ . (37)

By construction, the matrix Ỹ (1) is either an irreducible, substochastic matrix or a reducible
matrix without stochastic blocks. So, the matrix I −Ỹ (1) is nonsingular and the solution to (37)
is given by

H̃ = (I − G̃)(I − Ỹ (1))−1Ã. (38)

Thus, the following statement holds true.

Theorem 5. Let Y (1) be a reducible matrix of the form (4), and let some of the matrices
Y (1)(1), . . . ,Y (m)(1) be stochastic. Then the stationary distribution pi , i ∈ {∗, 0, 1, 2, . . . },
of the Markov chain ηn, n ≥ 1, can be computed in the same way as is given in Theorem 4 with
the only modification being that matrix H is computed using (36) and (38) instead of (26).

Note that the inverse matrices in (27) and (32) exist. Otherwise, it can be shown that the
Markov chain ηn, n ≥ 1, is reducible. In addition, these matrices are nonnegative. Thus, the
algorithms for calculating the vectors pi , i ∈ {∗, 0, 1, 2, . . . , }, given by Theorems 4 and 5 do
not include subtraction operations and so they are numerically stable.

Corollary 3. The stationary distribution πi , i ≥ 0, of the Markov chain ξn, n ≥ 1, is computed
using

πi = pi

1 − p∗e
, i ≥ 0.

The proof follows from the abovementioned relation between the stationary distributions of
the auxiliary Markov chain ηn, n ≥ 1, the censored Markov chain ζn, n ≥ 1, with respect to
it, and the Markov chain ξn, n ≥ 1, under study.

4. Conclusion

In this paper a new class of structured multidimensional Markov chains has been introduced
and investigated. This class includes as partial cases well-known M/G/1-type Markov chains
and Markov chains having a transition probability matrix consisting of identical block rows.
Such Markov chains arise, for example, in the description of queueing systems with exhaustive
group service, and technical and biological systems with disasters and mass migration. The
ergodicity condition has been derived for different structures for the blocks of the transition
probability matrix. Two algorithms for the computation of the steady state distribution have
been derived.
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