SOME REMARKS ON VARIATIONAL-LIKE AND QUASIVARIATIONAL-LIKE INEQUALITIES

NGUYEN HUU DIEN

In this paper we study the variational-like inequalities, which generalise some results of Parida, Sahoo and Kumar, and we also investigate the quasivariational-like inequalities. We establish some existence theorems of a solution for the above problem.

I. FORMULATION

We denote the inner product and norm on \mathbb{R}^n by (\cdot, \cdot) and $\|\cdot\|$, respectively. Let C be a convex and closed set in \mathbb{R}^n . Given $\psi: C \to \mathbb{R}$, $\psi(x)$ is differentiable function. In recent years, many research works were published for a certain class of differentiable functions, now known as invex functions. We recall this definition given in [2]. Let $\psi: C \to \mathbb{R}$ be differentiable. Then ψ is η -convex on K if there exists a continuous map $\eta: C \times C \to \mathbb{R}^n$ such that

$$\langle \psi(y) - \psi(x) \geqslant \langle \bigtriangledown \psi(x), \eta(y,x)
angle, ext{ for all } x,y \in C,$$

where $\nabla \psi(x)$ is a gradient of ψ at x.

It is known that if $\eta(y, x) = y - x$, then ψ is convex function on C.

Suppose that f is η -convex over C for some continuous map $\eta: C \times C \to \mathbb{R}^n$. We consider the minimisation problem

(1.1)
$$\min f(x)$$
 subject to $x \in C$

where C is a convex and closed set in \mathbb{R}^n and f is also continuously differentiable with $\nabla f(x) := F(x)$.

From [12] we know that if $\overline{x} \in K$ satisfies

(1.2)
$$\langle F(\overline{x}), \eta(x, \overline{x}) \rangle \ge 0$$
 for all $x \in C$

then \overline{x} is the solution of the problem (1.1).

By the above fact, we study the following generalised problem :

Received 9th October, 1991

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

 P_1 : Find $\overline{x} \in C$ such that

$$\langle F(\overline{x}),\eta(x,\overline{x})
angle \ + arphi(x) - arphi(\overline{x}) \geqslant 0 \quad ext{ for all } \quad x\in C,$$

where $F: C \to \mathbb{R}^n$, $\eta: C \times C \to \mathbb{R}^n$ and $\varphi: C \to R$.

We call it a generalised variational-like inequality problem.

If $\varphi(\mathbf{x}) \equiv 0$, then P_1 is called a variational-like inequality problem in [12]. If $\varphi \equiv 0$, $\eta(\mathbf{x}, \overline{\mathbf{x}}) = \mathbf{x} - \overline{\mathbf{x}}$, then P_1 reduces to a variational inequality problem in [7]. If $\varphi \equiv 0$, $\eta(\mathbf{x}, \overline{\mathbf{x}}) = \mathbf{x} - g(\overline{\mathbf{x}})$ where $g: C \to C$, then P_1 was considered in [10], ...

In the formulation of the problem P_1 , the underlying convex set C does not depend upon the solution. In many applications, the convex set also depends implicity on the solution \overline{x} itself. In this case, for $\eta(x,\overline{x}) = x - \overline{x}$, $\varphi(x) = 0$. The problem P_1 is known as the quasi-variational inequality problem, originally studied by Bonsoussan and Lions [3] in impluse control. To be more specific, we introduce an extension of P_1 as follows.

Let C be a convex and closed set in \mathbb{R}^n , and 2^C will denote the family of all nonempty subsets of C. Given a multivalued map $E: C \to 2^C$ and two continuous maps $F: C \to \mathbb{R}^n$ and $\eta: C \times C \to \mathbb{R}^n$ and a function $\varphi: C \to \mathbb{R}^n$, we consider the problem:

 P_2 : Find $\overline{x} \in C$ such that $\overline{x} \in E(\overline{x})$ and

$$\langle F(\overline{oldsymbol{x}}),\eta(oldsymbol{x},\overline{oldsymbol{x}})
angle \ + arphi(oldsymbol{x}) - arphi(\overline{oldsymbol{x}}) \geqslant 0 \quad ext{ for all } \quad oldsymbol{x} \in E(\overline{oldsymbol{x}}).$$

We call this a generalised quasi-variational-like inequality problem. If $\varphi(x) = 0$, $\eta(x, \overline{x}) = g(x) - g(\overline{x})$ and E(x) = m(x) + C, then P_2 is equivalent to the general quasi complementarity problem in [11] and [9].

In this paper, we shall establish some existence theorems for the problems P_1 and P_2 under some different conditions on the subset C and the maps E, F, η and the function φ .

II. LEMMA AND DEFINITION

We must use following definitions.

The map $F: C \to \mathbb{R}^n$ is said to be η -monotone on C if there exists a continuous map $\eta: C \times C \to \mathbb{R}^n$ such that

$$(2.1) \qquad \langle F(x), \eta(y, x) \rangle + \langle F(y), \eta(y, x) \rangle \leq 0 \quad \text{for all} \quad x, y \in C.$$

F is said to be strictly η -monotone over C if the equality holds in (2.1) only when x = y.

The function $\varphi: C \to \mathbb{R} \cup \{+\infty\}$ is said to be lower semicontinuous if for every $r \in \mathbb{R}$ the set $\{x \in C : \varphi(x) \leq r\}$ is closed in C for every $r \in \mathbb{R}$. This is equivalent to saying that the epigraph of φ

$$epi(arphi) = \{(x,r) \in C imes \mathbb{R} : r \geqslant arphi(x)\}$$

is closed in $C \times \mathbb{R}$.

The following basic theorem can be found in [6, Theorem 1, p.1].

LEMMA 1. Let X be a compact topological space and $\varphi : X \to \mathbb{R} \cup \{+\infty\}$ a lower semicontinuous function. Then φ is bounded below and the infimum of φ is achieved at $x_0 \in X$.

Let $E: C \to 2^{\mathbb{R}^n}$, E is said to be upper semicontinuous, u.s.c. for short, at x_0 if for every open set $V \supset Ex_0$ there exists a neighborhood \mathcal{U} of x_0 such that $Ex \subset V$ for all $x \in \mathcal{U}$.

E is said to be closed if for each $x_n \in C$, x_n converging to x, and $\{y_n\}$, with $y_n \in E(x_n)$, y_n converging to y, implies $y_0 \in E(x_0)$.

We say that E is u.s.c. (closed) at C if E is u.s.c. (closed) at every $x_0 \in C$. We denote

graf
$$E = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : y \in E(x)\}.$$

It can be verified that [4], (i) E is closed if and only if graph E is also a closed set; (ii) if E is closed and $\overline{E(C)}$ is a compact set $\subset \mathbb{R}^n$, then E is u.s.c. on C; (iii) if E is u.s.c. and E(x) is closed set for all $x \in C$, then E is closed; (iv) if E is u.s.c. and E(x) is a compact set for each $x \in C$, then E(C) is a compact set and the following theorem is proved in [1].

LEMMA 2. Let $E, G : C \subset \mathbb{R}^n \to 2^{\mathbb{R}^n}$ be such that $E(x) \cap G(x) \neq \emptyset$ for each $x \in C$. Suppose that E is u.s.c. at $x_0 \in C$, $E(x_0)$ is a compact subset and the graph of G is closed. Then the map $(E \cap G)(x) = E(x) \cap G(x)$ is also u.s.c. at x_0 .

The notion of measures of noncompactness was introduced by Kuratowski [8] and for applying this measure of noncompactness we can see [5]. We introduce the generalised measure of noncompactness as follows.

The function $\alpha : 2^{\mathbb{R}^n} \to \mathbb{R}^n = [0, \infty)$ is said to be a generalised measure of noncompactness if the following conditions are satisfied

- (1) $\alpha(B) = 0$ if and only if \overline{B} is compact, where $B \in 2^{\mathbb{R}^n}$.
- (2) $\alpha(CoB) = \alpha(B)$, where CoB is the convex hull of B.
- (3) $\alpha(A \cup B) = \max\{\alpha(A), \alpha(B)\}.$

Let $E: C \to 2^{\mathbb{R}^n}$, E is said to be a condensing multivalued map if and only if $\alpha(E(B)) < \alpha(B)$ whenever $\alpha(B) > 0$.

III. GENERALISED VARIATIONAL-LIKE INEQUALITIES

We shall first prove the following generalised variational inequalities.

THEOREM 1. Let C be a compact and convex set in \mathbb{R}^n and let $F: C \to \mathbb{R}^n$ and $\eta: C \times C \to \mathbb{R}^n$ be two continuous maps, and $\varphi: C \to \mathbb{R} \cup \{+\infty\}$ be a lower semicontinuous convex function. Suppose that

$$\langle F(x), \eta((x)x)
angle \geqslant 0$$
 for each $x \in C$

and for each fixed $x \in C$, the function $\langle F(x), \eta(y, x) \rangle$ is quasi convex in $y \in C$.

Then P_1 has a solution.

PROOF: As in [12], for each $x \in C$, define

$$S(x) = \{s \in C : \langle F(x), \eta(s, x) \rangle + \varphi(s) = \inf_{v \in C} \{\langle F(x), \eta(v, x) \rangle + \varphi(v) \}.$$

Since C is compact and $v \to \langle F(x), \eta(v, x) \rangle + \varphi(v)$ is lower semicontinuous quasiconvex in v, Lemma 1 shows that $S(x) \neq \emptyset$, closed and convex subset of C. And one can see that the multivalued map $S: C \to 2^C$ is upper semicontinuous. By Kakutani's fixed point theorem [13], there exists $\overline{x} \in C$ such that $\overline{x} \in S(\overline{x})$. Consequently, for all $x \in C$

$$\langle F(\overline{x}),\eta(x,\overline{x})
angle \ + arphi(x) \geqslant \ \langle F(\overline{x}),\eta(\overline{x},\overline{x})
angle \ + arphi(\overline{x}).$$

We get

$$\langle F(\overline{x}),\eta(x,\overline{x})
angle \ + arphi(x) - arphi(\overline{x}) \geqslant 0 \quad ext{ for all } \quad x \in C.$$

This completes the proof of the theorem.

REMARK 1. If $\langle F(x), \eta(x, x) \rangle = 0$ for each $x \in C$ and $\varphi(x) \equiv 0$ then Theorem 1 is Theorem 3.1 of [12]. The following example shows that there exist F and η , that the above equality is not satisfied and there exists a solution to P_1 . Given $C = [-1, 1], \eta :$ $C \to \mathbb{R}, \eta : C \times C \to \mathbb{R}$ by $F(x) = x, \eta(y, x) = x \cdot y^2$, then

$$\langle F(x), \eta(x, x) \rangle = x^4 = 0 \Leftrightarrow x = 0$$

and $\langle F(x), \eta(x,x) \rangle > 0$ for every $x \neq 0$; it is easy to see that $\overline{x} = 0$ is the solution to P_1 .

Now, from the above fact we make the following hypothesis.

CONDITION 1. Let C be a convex and closed set in \mathbb{R}^n . Let $F: C \to \mathbb{R}^n$, $\eta: C \times C \to \mathbb{R}^n$ be two continuous maps such that

- (1) $\langle F(x), \eta(x, x) \rangle \ge 0$ for all $x \in C$ and
- (2) for each fixed $x \in C$, the function $\langle F(x), \eta(y, x) \rangle$ is convex in $y \in C$.

338

Π

We are now going to study the generalised variational-like inequality problem P_1 for a noncompact set C as in [7] and [12]. For a real number r > 0 we shall denote $K_r = \{x : x \in C \text{ and } ||x|| \leq r\}$. We always assume that there always exists an $r_0 > 0$ such that K_r is nonempty, whenever $r \geq r_0$. We notice that K_r is compact and convex. Let F and η be such that Condition 1 is satisfied; then by Theorem 1, there exists at least one $x_r \in K_r$ such that

$$(3.1) \qquad \langle F(x_r), \eta(x, x_r) \rangle + \varphi(x) - \varphi(x_r) \ge 0 \quad \text{for all} \quad x_r \in K_r$$

where φ is a lower semicontinuous function on C.

By an argument analogous to that used for the proof in [12], we also get some theorems and their proofs are thus omitted.

PROPOSITION 1. Let C, F, φ, η be a such that Condition 1 is satisfied. A necessary and sufficient condition that there exists a solution to P_1 is that there exists an r > 0 such that a solution $x_r \in K_r$ of (3.1) satisfies the estimate $||x_r|| < r$.

PROPOSITION 2. Let C, F, η and φ be such that Condition 1 is satisfied. Then the generalised variational-like inequality problem P_1 has a solution under each of the following conditions :

(1) There is a $u \in C$ and a scalar $r \ge ||x||$ such that

$$\langle F(x),\eta(u,x)
angle + arphi(u) - arphi(x) \leqslant 0 \quad ext{for all} \quad x \quad ext{with} \quad \|x\| = r$$

(2) For some constant r > 0, and for each $x \in C$ with ||x|| = r, there is a $u \in C$ with ||u|| r and

$$\langle F(x),\eta(u,x)
angle \ + arphi(u) - arphi(x) \leqslant 0.$$

(3) There exists a nonempty, compact and convex subset K of C such that for every $x \in C \setminus K$, there exists a $u \in C$ such that

$$\langle F(x),\eta(u,x)
angle \ +arphi(u)-arphi(x)<0.$$

We also have the following theorem for a unique solution to the generalised variational-like inequality problem P_1

THEOREM 2. Let C be a closed and convex set and $F: C \to \mathbb{R}^n$, $\eta: C \times C \to \mathbb{R}^n$, $\varphi: C \to \mathbb{R} \cup \{+\infty\}$. If F is strictly η -monotone over C, then there exists a unique solution to P_1 .

PROOF: If \overline{x} and \overline{z} are two distinct solutions to P_1 , then we have

$$egin{aligned} & (orall x \in C) \ \langle F(\overline{x}), \eta(x, \overline{z})
angle \ + \varphi(x) - \varphi(\overline{x}) \geqslant 0. \ & (orall x \in C) \ \langle F(\overline{z}), \eta(x, \overline{x})
angle \ + \varphi(x) - \varphi(\overline{z}) \geqslant 0. \end{aligned}$$

Setting $x = \overline{z}$ in the first inequality, and $x = \overline{x}$ in the second and adding the two, we obtain

$$\langle F(\overline{x}), \eta(\overline{z}, \overline{x}) \rangle + F \langle (\overline{z}), \eta(\overline{x}, \overline{z}) \rangle \ge 0.$$

Which implies that $\overline{x} = \overline{z}$ by the strict η -monotonicity of F.

IV. GENERALISED QUASIVARIATIONAL-LIKE INEQUALITIES

THEOREM 3. Let C be a compact and convex set in \mathbb{R}^n , suppose that

- (1) $E: C \to 2^C$ is u.s.c. such that for each $x \in C$, E(x) is a compact convex subset of C.
- (2) $\varphi: C \to \mathbb{R} \cup \{+\infty\}$ is a lower semicontinuous and convex function.
- (3) $F: C \to \mathbb{R}^n$ and $\eta: C \times C \to \mathbb{R}^n$ are such that Condition 1 is satisfies.

Then Problem P_2 has a solution

PROOF: For each $x \in C$ define

$$S(x) = \{s \in E(x): \langle F(x), \eta(s, x)
angle + arphi(x) \} = \inf_{v \in E(x)} \{\langle F(x), \eta(v, x)
angle + arphi(v) \}$$

Since E(x) is a compact convex set and we have the conditions of the theorem, by Lemma 1, this implies that S(x) is a nonempty, convex and closed subset of $E(x) \subset C$. Since E is u.s.c. and the map $s \to \langle F(x), \eta(s, x) \rangle + \varphi(s)$ is lower semi-continuous on C, we conclude that the graph of S is closed in $C \times C$. Therefore, by Lemma 2, S is u.s.c., too. Since $S(x) \subset E(x) \subset C$ for each $x \in C$, by Kakutani's fixed point theorem [13], there exists $\overline{x} \in C$ such that $\overline{x} \in S(\overline{x})$, that is $\overline{x} \in E(\overline{x})$ and

$$\langle F(\overline{x}),\eta(x,\overline{x})
angle \ + arphi(x) \geqslant \ \langle F(\overline{x}),\eta(\overline{x},\overline{x})
angle \ + arphi(\overline{x}).$$

By Condition 1, we obtain

$$\langle F(\overline{x}),\eta(x,\overline{x})
angle \ + arphi(x) - arphi(\overline{x}) \geqslant 0 \quad ext{ for all } \quad x\in E(\overline{x}).$$

This completes the proof.

The result below is an extension of Theorem 3 to noncompact sets, but with the assumption that the multivalued map E is condensing.

THEOREM 4. Let C be a closed convex subset $\subset \mathbb{R}^n$, and α be a generalised measure of noncompactness on $2^{\mathbb{R}^n}$. Suppose

- (1) $E: C \to 2^C$ is a condensing upper semicontinuous map such that E(x) is a compact convex subset in C for each $x \in C$;
- (2) $\varphi: C \to \mathbb{R} \cup \{+\infty\}$ is a lower semicontinuous convex function;
- (3) F and η are such that Condition 1 is satisfied.

0

0

[6]

Then P_2 has a solution.

PROOF: Let v be a point in C and define

 $\mathcal{M} = \{ D \subset C : D \neq \emptyset, \quad D \text{ closed, convex and containing } v \text{ and } E(D) \subset D \}.$

Since $C \in \mathcal{M}$, we have $\mathcal{M} \neq \emptyset$. For each $D \in \mathcal{M}$ set

$$g(D) = \overline{co} (E(D) \cup \{v\}).$$

Therefore, g(D) is a closed convex subset, which contains v in D. We have

$$E(g(D)) \subset E(D) \subset \overline{co} \ (E(D) \cup \{v\}) = g(D).$$

Thus $g(D) \in \mathcal{M}$. Now we define a partial ordering (\leq) on \mathcal{M} as follows : $D_1 \leq D_2$ if $D_1 \subseteq D_2$. Then \mathcal{M} give us a partially ordered set. Let $\{D_\nu\}$ be a chain net in \mathcal{M} . Setting $D = \cap D_\nu$, we have $v \in D$ (since $v \in D_\nu$ for each ν). Hence it is easy to see that D is a closed convex subset and $E(D) \subset D$, that is $D \in \mathcal{M}$. Then Zorn's lemma gives us a minimal element D_0 of \mathcal{M} . From the above proof, $g(D_0)$ is also in \mathcal{M} with $g(D_0) = \overline{co} (E(D_0) \cup \{v\})$. Thus, we get $g(D_0) = D_0$. In view of the definition for a measure of noncompactness, we have

$$egin{aligned} lpha(D_0) &= lpha(\overline{co}\; E(D) \cup \{v\}) = \max\{lpha(E(D_0)), lpha\{v\}\} \ &\leqslant lpha(E(D_0)). \end{aligned}$$

On the other hand, by the definition of condensing map, if $\alpha(D_0) > 0$, then $\alpha(E(D_0)) < \alpha(D_0)$; we thus arrive at a contradiction. Consequently, $\alpha(D_0) = 0$ and hence this implies that D_0 is compact. We consider problem P_2 with all maps E, F, φ, η on D_0 . Notice that E, F, φ, η satisfy all the conditions given in Theorem 3. Therefore, the generalised quasi-variation-like inequality problem P_2 has a solution on D_0 and it is also a solution on D. This completes the proof of the theorem.

References

- J.P. Aubin and A. Cellina, Differential inclusion (Springer-Verlag, Berlin, Heidelberg, New York, 1984).
- [2] A. Ben-Israel and B. Mond, 'What is invexity', J. Austral. Math. Soc. 28 (1986), 1-9.
- [3] A. Bensoussan and J. Lions, Applications des inequations variationelle en controle stochastique (Dunod, Paris, 1978).
- [4] C. Berge, Topological spaces (New York, 1963).
- [5] K. Deimling, Nonlinear functional analysis (Springer-Verlag, Berlin, Heidelberg, New York, 1985).

- [6] D.G. Defigueiredo, 'Lectures on the Ekeland variational principle with applications and detours', Tata Inst. Fund. Res. (1989).
- [7] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications (Academic Press, New York, 1980).
- [8] C. Kuratowski, Topologie I (Warsawa, 1950).
- [9] U. Mosco, Implicit variational problems and quasivariational inequalities: Lecture Notes in Mathematics 543 (Springer-Verlag, Berlin, Heidelberg, New York, 1976).
- [10] M.A. Noor, 'General variational inequalities', Appl. Math. Lett. I (1988), 119-122.
- [11] M.A. Noor, 'Iterative algorithms for semilinear quasi complementarity problems', J. Math. Anal. Appl. 145 (1990), 402-412.
- [12] J. Parida, M. Sahoo and A. Kumar, 'A variation-like inequality problem', Bull. Austral. Math. Soc. 39 (1989), 225-231.
- [13] D.R. Smart, Fixed point theorems, Second edition (Cambridge University Press, 1980).

Institute of Mathematics P.P. Box 631 Bo Ho 10000 Hanoi Vietnam