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SOME REMARKS ON VARIATIONAL-LIKE
AND QUASIVARIATIONAL-LIKE INEQUALITIES

NGUYEN HUU DIEN

In this paper we study the variational-like inequalities, which generalise some re-
sults of Parida, Sahoo and Kumar, and we also investigate the quasivariational-like
inequalities. We establish some existence theorems of a solution for the above prob-
lem.

I. FORMULATION

We denote the inner product and norm on E " by (•,•) and ||-||, respectively. Let
C be a convex and closed set in Rn. Given ip : C —> R, ip(x) is difFerentiable function.
In recent years, many research works were published for a certain class of difFerentiable
functions, now known as invex functions. We recall this definition given in [2]. Let
•0 : C —> M. be difFerentiable. Then if) is 77-convex on K if there exists a continuous map
i | : C x C - > I " such that

i>{y) - V>(aO ̂  {Vl>{x)My,x)), f o r all z,i/ G C,

where ya/>(z) is a gradient of ifj at x.

It is known that if rj(y, x) = y — x, then ip is convex function on C.

Suppose that f is 77-convex over C for some continuous map r\ : C x C —• Rn . We
consider the minimisation problem

(1.1) min/(x) subject to x £ C

where C is a convex and closed set in Rn and f is also continuously difFerentiable with

From [12] we know that if x G K satisfies

(1.2) (F{x),rj(x,x)) ^ 0 for all z € C

then x is the solution of the problem (1.1).

By the above fact, we study the following generalised problem :
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Px : Find x eC such that

(F(x),ri(x,x)) + (p(x) - ip{x) ^ 0 for aU x 6 C,

where F : C -> Rn, T\ : C x C -> Rn and <p : C -> R.

We call it a generalised variational-like inequality problem.

If <p(x) = 0, then Pi is called a variational-like inequality problem in [12]. If
ip = 0, 7](x, x) = x — af, then Pi reduces to a variational inequality problem in [7]. If
tp = 0, ri(x,x) = x — g(x) where g : C —> C, then Pi was considered in [10], . . . .

In the formulation of the problem Pi, the underlying convex set C does not depend
upon the solution. In many applications, the convex set also depends implicity on the
solution x itself. In this case, for r}(x,x) = x — x, tp(x) = 0. The problem Pi is known
as the quasi-variational inequality problem, originally studied by Bonsoussan and Lions
[3] in impluse control. To be more specific, we introduce an extension of Pi as follows.

Let C be a convex and closed set in Rn, and 2° will denote the family of all
nonempty subsets of C. Given a multivalued map E : C —> 2° and two continuous
maps F : C —> Kn and 77 : C x C -> Kn and a function ip : C -* Rn, we consider the
problem:

P2 : Find x € C such that x £ E(x) and

(F{x),j](x,x)) + <p(x) - <p(x) >0 for all x £ E{x).

We call this a generalised quasi-variational-like inequality problem. If <p{x) —

0, T)(x,x) = g(x) — g{x) and E{x) = m(x) + C, then Pi is equivalent to the general
quasi complementarity problem in [11] and [9].

In this paper, we shall establish some existence theorems for the problems Pi and
P2 under some different conditions on the subset C and the maps E,F,rj and the
function <p.

II. LEMMA AND DEFINITION

We must use following definitions.

The map F : C —> Rn is said to be ?/-monotone on C if there exists a continuous
map 77 : C x C -> I " such that

(2.1) (F(x),r,{y,x)) + (F(y),v(y,x)) <0 for all x,y 6 C.

F is said to be strictly 77-monotone over C if the equality holds in (2.1) only when

x = y.
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The function ip : C —> R U {+00} is said to be lower semicontinuous if for every
r £ R the set {x £ C : <p(x) ^ r} is closed in C for every r £ R. This is equivalent to
saying that the epigraph of tp

epi{<p) = {{x,r) £ C x R : r > <p{x)}

is closed in C x R .
The following basic theorem can be found in [6, Theorem 1, p.l].

LEMMA 1 . Let X be a compact topological space and <p : X —> RU{+oo} a lower
semicontinuous function. Then <p is bounded below and the infimum of (p is achieved
at XQ £ X .

Let £ : C —> 2a , E is said to be upper semicontinuous, u.s.c. for short, at xo if
for every open set V D EXQ there exists a neighborhood U of xo such that Ex C V
for all x eU.

E is said to be closed if for each xn £ C, xn converging to x, and {yn}, with
yn £ E(xn), yn converging to y, imphes y0 £ E(x0).

We say that E is u.s.c. (closed) at C if E is u.s.c. (closed) at every xo £ C.
We denote

graf E = {{x,y) £ Kn x Rn : y £ E(x)}.

It can be verified that [4], (i) E is closed if and only if graph E is also a closed set; (ii)
if E is closed and E(C) is a compact set C Rn, then E is u.s.c. on C; (iii) if E is u.s.c.
and E(x) is closed set for all x £ C, then E is closed; (iv) if E is u.s.c. and E(x) is a
compact set for each x £ C, then E(C) is a compact set and the following theorem is
proved in [1].

LEMMA 2 . Let E, G : C C Rn -> 2E" be suci that E(x) R G(x) ^ 0 for each
x £ C. Suppose that E is u.s.c. at xo £ C, .E(xo) is a compact subset and the graph
of G is closed. Then the map (E D G)(x) = E(x) n G(x) is also u.s.c. at x0 .

The notion of measures of noncompactness was introduced by Kuratowski [8] and
for applying this measure of noncompactness we can see [5]. We introduce the gener-
alised measure of noncompactness as follows .

The function a : 2a —> Rn = [0, oo) is said to be a generalised measure of
noncompactness if the following conditions are satisfied

(1) a(B) - 0 if and only if I? is compact, where B £ 2a" .
(2) a(CoB) = a(B), where CoB is the convex hull of B.
(3) a{A U B) - max{o(4), a(B)}.

Let E : C —> 2a , E is said to be a condensing multivalued map if and only if
a(E(B)) < a(B) whenever a(B) > 0.
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III. GENERALISED VARIATIONAL-LIKE INEQUALITIES

We shall first prove the following generalised variational inequalities.

THEOREM 1 . Let C be a compact and convex set in Rn and let F : C -> Rn

and T] : C x C —» R n be two continuous maps, and tp : C —* R U {+00} be a lower
semicontinuous convex {unction. Suppose that

{F(x),T]((x)x)) 2 0 for each xEC

and for each fixed x E C, the function {F(x),Tj(y,x)) is quasi convex in y E C.

Then Pi has a solution.

PROOF: AS in [12], for each x E C, define

Since C is compact and v —» {F(x),T](v,x)} +(p(y) is lower semicontinuous quasi-
convex in v, Lemma 1 shows that S(x) ^ 0, closed and convex subset of C. And one
can see that the multivalued map S : C —* 1C is upper semicontinuous. By Kakutani's
fixed point theorem [13], there exists x 6 C such that x £ S(x). Consequently, for all
x G G

{F{x),r,{x,x)) +<p{x)> {F(x),V{x,x)) + <p{x).

We get
(F(X),TI(X,X)) + <p(x) - <p(x) > 0 for all x £ C.

This completes the proof of the theorem. D

REMARK 1. If (F(X),TJ(X,X)) = 0 for each x E C and tp(x) = 0 then Theorem 1 is
Theorem 3.1 of [12]. The following example shows that there exist F and 77, that the
above equality is not satisfied and there exists a solution to Pi . Given C = [—1,1], 7/ :
C -+ R, T):CxC ->Rby F(x) = x, T)(y, x) = x.y2, then

{F(x),r,{x,x)) =x*=Q<*x = Q

and (F(x),ri{x,x)) > 0 for every x ^ 0; it is easy to see that x = 0 is the solution to

Pi-
Now, from the above fact we make the following hypothesis.

CONDITION 1. Let C be a convex and closed set in Rn. Let F : C -> Rn, rj : C x C ->
R n be two continuous maps such that

(1) (F(x),T)(x,x)} ^ 0 for all x G C and

(2) for each fixed x E C, the function (F(x),r)(y, x)) is convex in y E C.
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We are now going to study the generalised variational-like inequality problem Pi
for a noncompact set C as in [7] and [12]. For a real number r > 0 we shall denote
KT = { i : x E C and ||x|| ̂  r } . We always assume that there always exists an
TQ > 0 such that Kr is nonempty, whenever r ^ ro. We notice that Kr is compact
and convex. Let F and 77 be such that Condition 1 is satisfied; then by Theorem 1,
there exists at least one xr £ Kr such that

(3.1) (F{xr),ri(x,xr)) + <p{x) - <p(xr) > 0 for all xr £ Kr

where ip is a lower semicontinuous function on C.

By an argument analogous to that used for the proof in [12], we also get some

theorems and their proofs are thus omitted.

PROPOSITION 1 . Let C,F,<p,ri be a such that Condition 1 is satisfied. A nec-
essary and sufficient condition that there exists a solution to Pi is that there exists an
r > 0 sucii that a soJution xr € Kr of (3.1) satisfies the estimate \\xr\\ < r.

PROPOSITION 2 . Let C,F,rj and ip be such that Condition 1 is satisfied. Then
the generalised variational-h'ke inequality proWem Pi has a solution under each of the
following conditions :

(1) There is a u £ C and a scalar r ^ ||x|| such that

(F(x),r)(u,x)) + <p(u) — <p(x) ^ 0 for all x with \\x\\ — r.

(2) For some constant r > 0, and for each x € C with \\x\\ — r, there is a
u £ C with ||it||r and

(F{X),T,{U,X)) +<p(u)-<p{x)^0.

(3) There exists a nonempty, compact and convex subset K of C such that

for every x 6 C \ K, there exists a u £ C such that

(F(x),r,{u,x)) + <p(u) - <p{x) < 0.

We also have the following theorem for a unique solution to the generalised
variational-like inequality problem Pi

THEOREM 2 . Let C be a closed and convex set and F : C -> Rn, -q : C X C ->
K", ^ : C - > i U {+°o} • If F l s strictly rj-monotone over C, then there exists a unique
solution to Pi .

PROOF: If x and z are two distinct solutions to Pi , then we have

(Vz 6 C) (F(X),T,(*,Z)) + V(*) - V(x) > 0.

(Vz € C) (F(-z),r,(x,x)) + <p(x) - <p(z) > 0.
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Setting x = ~z in the first inequality, and x = x in the second and adding the two, we
obtain

(F{x),r,{-z,x)) +F((z),r,(x,z)) £ 0.

Which implies that x = ~z by the strict jj-monotonicity of F. D

IV. GENERALISED QUASIVARIATIONAL-LIKE INEQUALITIES

THEOREM 3 . Let C be a compact and convex set in Rn, suppose that

(1) E : C —* 2° is u.s.c. such thai for each x £ C, E(x) is a compact convex
subset of C.

(2) ip : C —> R U {+00} is a lower semicontinuous and convex {unction.
(3) F : C -» E n and rf : C x C -> E n are such that Condition 1 is satis£es.

Then Problem P2 has a solution

PROOF: For each x £ C define

S(x) = {se E(x) : {F(z),r,{;*))+V{*)} = igf {(F{x),r,(v,x))+<p(v)}.

Since E(x) is a compact convex set and we have the conditions of the theorem, by
Lemma 1, this implies that S(x) is a nonempty, convex and closed subset of E(x) C C.
Since E is u.s.c. and the map s —> (F(x),rf(s, x)) + <p(s) is lower semi-continuous on
C, we conclude that the graph of S is closed in C x C. Therefore, by Lemma 2, S is
u.s.c, too. Since S(x) C E(x) C C for each x 6 C, by Kakutani's fixed point theorem
[13], there exists x £ C such that x £ S(x), that is x £ E(x) and

{F(x),r,(x,x)) +<p(x)> (F(z),»»(*,*)> +V(»)-
By Condition 1, we obtain

(F(x),r,(x,x)) + <p(x) - <p{x) >0 for all x £ E(x).

This completes the proof. D

The result below is an extension of Theorem 3 to noncompact sets, but with the
assumption that the multivalued map E is condensing.

THEOREM 4 . Let C be a dosed convex subset C Rn, and a be a generalised
measure of noncompactness on 2 . Suppose

(1) E : C —> 2C is a condensing upper semicontinuous map such that E(x)
is a compact convex subset in C for each x £ C;

(2) ^ : C - » R U {+°°} JS a lower semicontinuous convex function;
(3) F and 77 are such that Condition 1 is satisfied.
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Then Pi has a solution.

PROOF: Let v be a point in C and define

M = {D C C : D ^ 0, D closed, convex and containing v and E(D) C D}.

Since C e M . w e have M ^ 0. For each D £ M set

g(D) = co{E(D)U{v}).

Therefore, g{D) is a closed convex subset, which contains v in D. We have

E(g{D)) C E{D) C co {E{D) U {»}) = g{D).

Thus g(D) £ .M. Now we define a partial ordering (^) on M. as follows : D\ ^ £>2
if JDI C £)2. Then Ai give us a partially ordered set. Let {Dv} be a chain net in M.
Setting D = C\DV, we have v £ D (since v £ Dv for each v). Hence it is easy to see
that D is a closed convex subset and E{D) C D, that is D £ M.. Then Zorn's lemma
gives us a minimal element £>o of M.. From the above proof, g(Do) is also in M. with
g{D0) - co {E(D0) U {v}). Thus, we get g(D0) = Do. In view of the definition for a
measure of noncompactness, we have

a(D0) = a(co E{D) U {v}) = max{a(E(D0)),a{v}}

< a{E(D0)).

On the other hand, by the definition of condensing map, if a(Do) > 0, then
a(E(Do)) < a(.Do); we thus arrive at a contradiction. Consequently, a(Do) = 0 and
hence this implies that Do is compact. We consider problem P2 with all maps E, F, ip,ij
on Do • Notice that E,F,ip,r} satisfy all the conditions given in Theorem 3. Therefore,
the generalised quasi-variation-like inequality problem P2 has a solution on Do and it
is also a solution on D. This completes the proof of the theorem. U
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