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SOME REMARKS ON VARIATIONAL-LIKE
AND QUASIVARIATIONAL-LIKE INEQUALITIES

NGuYEN Huu DIEN

In this paper we study the variational-like inequalities, which generalise some re-
sults of Parida, Sahoo and Kumar, and we also investigate the quasivariational-like
inequalities. We establish some existence theorems of a solution for the above prob-
lem.

I. FORMULATION

We denote the inner product and norm on R™ by (-,-) and ||-||, respectively. Let
C be a convex and closed set in R™. Given 1 : C — R, ¥(z) is differentiable function.
In recent years, many research works were published for a certain class of differentiable
functions, now known as invex functions. We recall this definition given in [2]. Let
¥ : C — R be differentiable. Then v is 7-convex on K if there exists a continuous map
7:C x C — R"™ such that

¢(y) - ¢(z) 2 (Vﬂb(z)ﬂl(y:‘f)), for all z,y € Ca

where 4(z) is a gradient of 1 at x.
It is known that if #(y,z) =y — =, then 3 is convex function on C.

Suppose that f is n-convex over C for some continuous map 7: C x C — R™. We
consider the minimisation problem

(1.1) min f(z) subjectto z€C

where C is a convex and closed set in R™ and f is also continuously differentiable with
Vf(z) := F(z).
From {12] we know that if 7 € K satisfies

(1.2) (F(Z),n(=,Z)) 20 forall z€C

then ¥ is the solution of the problem (1.1).
By the above fact, we study the following generalised problem :
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P; : Find Z € C such that
(F(z),n(2,Z)) +o(z)-9(Z) 20 forall z€C,

where F:C - R™ n:CxC —>R"and ¢ :C — R.

We call it a generalised variational-like inequality problem.

If o(z) = 0, then P; is called a variational-like inequality problem in [12]. If
¢ =0, n(z,Z) = ¢ — T, then P; reduces to a variational inequality problem in [7]. If
¢ =0, n(2,7) =« — g(z) where g: C — C, then P, was considered in [10], ... .

In the formulation of the problem P;, the underlying convex set C does not depend
upon the solution. In many applications, the convex set also depends implicity on the
solution 7 itself. In this case, for 7(2,%) = z -7, p(z) = 0. The problem P; is known
as the quasi-variational inequality problem, originally studied by Bonsoussan and Lions
[3] in impluse control. To be more specific, we introduce an extension of P; as follows.

Let C be a convex and closed set in R™, and 2¢ will denote the family of all
nonempty subsets of C. Given a multivalued map E : C — 2¢ and two continuous
maps F: C - R™ and 5: C x C — R™ and a function ¢ : C — R™, we consider the
problem:

P, : Find 7 € C such that T € E(z) and

(F(@),n(,Z)) +e(z)—¢(z) >0 forall =zec E(z).

We call this a generalised quasi-variational-like inequality problem. If ¢(z) =
0, 7(z,Z) = g9(z) — 9(z) and E(z) = m(z) + C, then P, is equivalent to the general
quasi complementarity problem in [11] and [9].

In this paper, we shall establish some existence theorems for the problems P; and
P, under some different conditions on the subset C and the maps E,F,n and the
function ¢.

II. LEMMA AND DEFINITION

We must use following definitions.
The map F: C — R™ is said to be p-monotone on C if there exists a continuous
map 77 : C x C = R™ such that

(2.1) (F(z),n(y,2)) + (F(y),n(y,z)) <0 forall =z,y€C.

F is said to be strictly #-monotone over C if the equality holds in (2.1) only when

z=1y.
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The function ¢ : ¢ — RU {+oo} is said to be lower semicontinuous if for every
T € R the set {z € C : p(z) < r} is closed in C for every r € R. This is equivalent to
saying that the epigraph of ¢

epi(p) = {(z,7) € C xR: 1 > p(z)}

is closed in C x R.
The following basic theorem can be found in [6, Theorem 1, p.1].

LEMMA 1. Let X be a compact topological space and ¢ : X — RU{+oo} a lower
semicontinuous function. Then ¢ is bounded below and the infimum of ¢ is achieved
at zg € X.

Let E:C — 2% E is said to be upper semicontinuous, u.s.c. for short, at z; if
for every open set V O Ez, there exists a neighborhood U of z¢ such that Ex C V
forall c € U4.

E is said to be closed if for each z, € C, z, converging to x, and {y.}, with
Yn € E(zn), yn converging to y, implies yo € E(zo).

We say that E is u.s.c. (closed) at C if E is u.s.c. (closed) at every zo € C.

We denote

graf E={(z,y) € R" x R" :y € E(z)}.

It can be verified that [4], (i) E is closed if and only if graph E is also a closed set; (ii)
if E is closed and E(C) is a compact set C R™, then E is u.s.c. on C; (iii) if E is u.s.c.
and E(z) is closed set for all z € C, then E is closed; (iv) if E is u.s.c. and E(z) is a
compact set for each z € C', then E(C) is a compact set and the following theorem is

proved in [1].
LEMMA 2. Let E,G: C C R® — 2% be such that E(z) N G(z) # 0 for each

z € C. Suppose that E is u.s.c. at zg € C, E(z¢) is a compact subset and the graph
of G is closed. Then the map (EN G)(z) = E(z) N G(z) is also u.s.c. at zy.

The notion of measures of noncompactness was introduced by Kuratowski [8] and
for applying this measure of noncompactness we can see [5]. We introduce the gener-
alised measure of noncompactness as follows .

The function @ : 2% — R"™ = [0,00) is said to be a generalised measure of
noncompactness if the following conditions are satisfied

(1) a(B) =0 if and only if B is compact, where B € 2%" .
(2) a(CoeB) = a(B), where CoB is the convex hull of B.
(3) a(AU B)=max{a(A4),a(B)}.

Let E: C — 2%, E is said to be a condensing multivalued map if and only if

a(E(B)) < a( B) whenever a(B) > 0.
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11I. GENERALISED VARIATIONAL-LIKE INEQUALITIES

We shall first prove the following generalised variational inequalities.

THEOREM 1. Let C be a compact and convex set in R™ and let F : C — R™
and n : C x C —» R™ be two continuous maps, and ¢ : C — RU {+o00} be a lower
semicontinuous convex function. Suppose that

(F(z),n((z)z)) 20 foreach z€C

and for each fixed € C, the function (F(z),n(y,z)) is quasi convexin y € C.
Then P; has a solution.

PROOF: As in [12], for each z € C, define
S(z) ={s € C: (F(=),n(s,2)) +¢(s) = inf {{F(2),n(v,2)) +¢(v)}.

Since C is compact and v —» (F(z),n(v,z)} +¢(v) is lower semicontinuous quasi-
convex in v, Lemma 1 shows that S(z) # @, closed and convex subset of C. And one
can see that the multivalued map § : C — 2€ is upper semicontinuous. By Kakutani’s
fixed point theorem [13], there exists T € C such that = € S(z). Consequently, for all

zeC
(F(Z),n(2,7)) +¢(2) 2 (F(2),1(z,7)) +¢(2)
We get
(F(2),n(2,7)) +¢(2)-p(z) >0 forall zeC.
This completes the proof of the theorem. 0

REMARK 1. If (F(z),n(z,z)) = 0 for each z € C and p(z) = 0 then Theorem 1 is
Theorem 3.1 of [12]. The following example shows that there exist F and 7, that the
above equality is not satisfied and there exists a solution to P;. Given C = [-1,1}, 7:
C—-R,7:CxC—-Rby F(z) ==, 5(y,z) = z.y*, then

(F(z),n(z,z)) =2*=0&z=0

and (F(z),n(z,z)) > 0 for every z # 0; it is easy to see that T = 0 is the solution to
P
Now, from the above fact we make the following hypothesis.

CoNDITION 1. Let C be a convex and closed set in R™. Let F: C - R”® n:CxC —
R™ be two continuous maps such that

(1) (F(z),n(z,2)) >0 forall z € C and
(2) for each fixed z € C, the function (F(z),n(y,z)) is convexin y € C.

https://doi.org/10.1017/5S0004972700011941 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700011941

(5] Variational-like inequalities 339

We are now going to study the generalised variational-like inequality problem P,
for a noncompact set C as in [7] and [12]. For a real number » > 0 we shall denote
K.={z:z€C and || <r}. We always assume that there always exists an
7o > 0 such that K, is nonempty, whenever r > ro. We notice that K, is compact
and convex. Let F and n be such that Condition 1 is satisfied; then by Theorem 1,
there exists at least one z, € K, such that

(31) (F(z+),1(z,2:)) +p(2) —p(2s) >0 forall =, €K,

where ¢ is a lower semicontinuous function on C.

By an argument analogous to that used for the proof in [12], we also get some
theorems and their proofs are thus omitted.

PrROPOSITION 1. Let C,F,¢,n be a such that Condition 1 is satisfied. A nec-
essary and sufficient condition that there exists a solution to P, is that there exists an
r > 0 such that a solution z, € K, of (3.1) satisfies the estimate ||z,| <r.

PrROPOSITION 2. Let C,F,n and ¢ be such that Condition 1 is satisfied. Then
the generalised variational-like inequality problem P, has a solution under each of the
following conditions :

(1) Thereis a u € C and a scalar v > ||z|| such that
(F(z),m(u,z)) +¢p(u)~¢(z) <0 forall =z with |z||=r.

(2) For some constant r > 0, and for each z € C with ||z|| = r, there is a
u € C with ||u||r and

(F(z)sn(uw,2)) +¢(u) - ¢(e) <O.

(3) There exists a nonempty, compact and convex subset K of C such that
for every z € C'\ K, there exists a u € C such that

(F(z),n(u,z)) +p(u)—e(z) <0.

We also have the following theorem for a unique solution to the generalised
variational-like inequality problem P,

THEOREM 2. Let C be a closed and convex set and F : C - R™, 5:C x C —
R", ¢ : C — RU{+4o00}. If Fis strictly -monotone over C, then there exists a unique
solution to P; .

Proor: If T and z are two distinct solutions to P;, then we have

(Ve € C) (F(@),1(2,2)) +¢(=) - 9(Z) 0.
(Vs € C) (F(Z),n(2,7)) +p(=) - ¢(z) > 0.
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Setting ¢ = Z in the first inequality, and £ = T in the second and adding the two, we
obtain

(F(z),n(z,%)) +F((2),n(z,z)) 20.
Which implies that T =z by the strict n-monotonicity of F. 0

IV. GENERALISED QUASIVARIATIONAL-LIKE INEQUALITIES

THEOREM 3. Let C be a compact and convex set in R™, suppose that

(1) E:C — 29 is u.s.c. such that for each =z € C, E(z) is a compact convex
subset of C.

(2) ¢:C — RU{+oo} is a lower semicontinuous and convex function.

(3) F:C —-R™andn:C xC — R™ are such that Condition 1 is satisfies.

Then Problem P, has a solution
PROOF: For each =z € C define

5(z) = {s € E(z): (F(z),n(s,2)) +¢(<)} = Lo UE(2),n(v,2)) + p(v)}-

Since E(z) is a compact convex set and we have the conditions of the theorem, by
Lemma 1, this implies that §(x) is a nonempty, convex and closed subset of E(z) C C.
Since E is u.s.c. and the map s — (F(=2),7(s,2)) + ¢(s) is lower semi-continuous on
C, we conclude that the graph of S is closed in C x C. Therefore, by Lemma 2, S is

u.s.c., too. Since S(z) C E(z) C C for each z € C, by Kakutani’s fixed point theorem
[13], there exists T € C such that T € S(z), that is € E(Z) and

(F(®),n(2,%)) +¢(z) 2 (F(Z),1(z,7)) + ()
By Condition 1, we obtain

(F(2),n(=,7)) +¢(z) - ¢(®) >0 forall o e E(z).

This completes the proof. 1]

The result below is an extension of Theorem 3 to noncompact sets, but with the
assumption that the multivalued map E is condensing.

THEOREM 4. Let C be a closed convex subset C R™, and a be a generalised
measure of noncompactness on or" Suppose

(1) E:C — 2° is a condensing upper semicontinuous map such that E(z)
is a compact convex subset in C for each z € C;

(2) ¢:C — RU{+o0} is a lower semicontinuous convex function;

(3) F and 7 are such that Condition 1 is satisfied.
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Then P, has a solution.

PRrOOF: Let v be a point in C and define
M={DcCC:D+#0, D closed, convex and containing v and E(D) C D}.
Since C € M, we have M # 0. For each D € M set
9(D) =5 (E(D) U {v}).
Therefore, g(D) is a closed convex subset, which contains v in D. We have
E(g(D)) C E(D) C o (E(D) U {v}) = (D).

Thus g(D) € M. Now we define a partial ordering (<) on M as follows : D; < D,
if D; C D,. Then M give us a partially ordered set. Let {D,} be a chain net in M.
Setting D = ND, , we have v € D (since v € D, for each v). Hence it is easy to see
that D is a closed convex subset and E(D) C D, that is D € M. Then Zorn’s lemma
gives us a minimal element Dy of M. From the above proof, g(Dy) is also in M with
g(Dg) = o (E(Do) U {v}). Thus, we get g(Dy) = Do. In view of the definition for a

measure of noncompactness, we have

a(Do) = a(# B(D) U {v}) = max{a(E(Dy)), a{v}}
< a E(Dy)).

On the other hand, by the definition of condensing map, if a(Dy) > 0, then
a(E(Dg)) < a(Dq); we thus arrive at a contradiction. Consequently, a(D,) = 0 and
hence this implies that Dy is compact. We consider problem P, with all maps E, F,¢,7
on Dg. Notice that E, F,p,7 satisfy all the conditions given in Theorem 3. Therefore,
the generalised quasi-variation-like inequality problem P, has a solution on Dy and it
is also a solution on D. This completes the proof of the theorem. 0
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