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Abstract

Regular-expression derivatives are an old, but elegant, technique for compiling regular expres-

sions to deterministic finite-state machines. It easily supports extending the regular-expression

operators with boolean operations, such as intersection and complement. Unfortunately, this

technique has been lost in the sands of time and few computer scientists are aware of it.

In this paper, we reexamine regular-expression derivatives and report on our experiences in

the context of two different functional-language implementations. The basic implementation

is simple and we show how to extend it to handle large character sets (e.g., Unicode). We

also show that the derivatives approach leads to smaller state machines than the traditional

algorithm given by McNaughton and Yamada.

1 Introduction

The derivative of a set of strings S with respect to a symbol a is the set of strings

generated by stripping the leading a from the strings in S that start with a. For regular

sets of strings, i.e. sets defined by regular expressions (REs), the derivative is also

a regular set. In a 1964 paper, Janusz Brzozowski presented an elegant method for

directly constructing a recogniser from an RE based on RE derivatives (Brzozowski,

1964). His approach is elegant and easily supports extended REs, i.e. REs extended

with Boolean operations such as complement. Unfortunately, RE derivatives have

been lost in the sands of time, and few computer scientists are aware of them.1

Recently, we independently developed two scanner generators, one for PLT Scheme

and one for Standard ML, using RE derivatives. Our experiences with this approach

have been quite positive: the implementation techniques are simple; the generated

scanners are usually optimal in size; and the extended RE language allows for

1 A quick survey of several standard compiler texts does not turn up any description of them (Aho et al.,
1986; Fisher & LeBlanc, Jr., 1988; Appel, 1998). The only mention we found, in fact, is an exercise in
Aho and Ullman’s Theory of Parsing and Translation (Aho & Ullman, 1972).
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more compact scanner specifications. Of special interest is that the implementation

techniques are well suited to functional languages that provide good support for

symbolic term manipulation (e.g. inductive data types and pattern matching).

The purpose of this paper is largely educational. Our positive experience with

RE derivatives leads us to believe that they deserve the attention of the current

generation of functional programmers, especially those implementing RE recognisers.

We begin with a review of background material in Section 2, introducing the notation

and definitions of REs and their recognisers. Section 3 gives a fresh presentation of

Brzozowski’s work, including DFA construction with RE derivatives. In addition to

re-examining Brzozowski’s (1964) work, we also report on the key implementation

challenges we faced in Section 4, including new techniques for handling large

character sets such as Unicode (Unicode Consortium, 2003). Section 5 reports our

experience in general and includes an empirical comparison of the derivative-based

scanner generator for SML/NJ with the more traditional tool it replaces. We

conclude with a review of related work and a summary.

2 Preliminaries

We assume a finite alphabet Σ of symbols and use Σ∗ to denote the set of all finite

strings over Σ. We use a, b, c, etc. to represent symbols and u, v, w to represent

strings. The empty string is denoted by ε. A language of Σ is a (possibly infinite) set

of finite strings L ⊆ Σ∗.

2.1 REs

Our syntax for REs includes the usual operations: concatenation, Kleene-closure

and alternation. In addition, we include the empty set (∅) and the Boolean operations

‘and ’ and ‘complement.’2

Definition 2.1

The abstract syntax of an RE over an alphabet Σ is given by the following grammar:

r, s ::= ∅ empty set

| ε empty string

| a a ∈ Σ

| r · s concatenation

| r∗ Kleene-closure

| r + s logical or (alternation)

| r & s logical and

| ¬r complement

These expressions are often called extended REs, but since the extensions are

conservative – i.e. regular languages are closed under Boolean operations (Rabin &

Scott, 1959) – we refer to them as REs. Adding boolean operations to the syntax

2 Other logical operations, such as exclusive or, can also be added.
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of REs greatly enhances their expressiveness, as we demonstrate in Section 5.1. We

use juxtaposition for concatenation and add parentheses, as necessary, to resolve

ambiguities.

The regular languages are those languages that can be described by REs according

to the following definition:

Definition 2.2

The language of an RE r is a set of strings L[[r]] ⊆ Σ∗ generated by the following

rules:

L[[∅]] = ∅
L[[ε]] = {ε}
L[[a]] = {a}

L[[r · s]] = {u · v | u ∈ L[[r]] and v ∈ L[[s]]}
L[[r∗]] = {ε} ∪ L[[r · r∗]]

L[[r + s]] = L[[r]] ∪ L[[s]]

L[[r & s]] = L[[r]] ∩ L[[s]]

L[[¬r]] = Σ∗ \ L[[r]]

To avoid notational clutter, we often let an RE r denote its language L[[r]] and

refer to REs and their languages interchangeably.

2.2 Finite state machines

Finite state machines (or finite automata) provide a computational model for

implementing recognisers for regular languages. For this paper, we are interested in

deterministic automata, which are defined as follows:

Definition 2.3

A deterministic finite automaton (DFA) over an alphabet Σ is 4-tuple 〈Q, q0,F, δ〉,
where Q is a finite set of states; q0 ∈ Q is the distinguised start state; F ⊆ Q is a

set of final (or accepting) states; and δ : Q × Σ → Q is a partial function called the

state transition function.

We can extend the transition function δ to strings of symbols

δ̂(q, ε) = q

δ̂(q, au) = δ̂(q′, u) when q′ = δ(q, a) is defined

The language accepted by a DFA is defined to be the set of strings

{u | δ̂(q0, u) ∈ F}

3 RE derivatives

In this section, we introduce RE derivatives and show how they can be used to

construct DFAs directly from REs.
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3.1 Derivatives

The notion of a derivative applies to any language. Intuitively, the derivative of a

language L ⊆ Σ∗ with respect to a symbol a ∈ Σ is the language that includes only

those suffixes of strings with a leading symbol a in L.

Definition 3.1

The derivative of a language L ⊆ Σ∗ with respect to a string u ∈ Σ∗ is defined to be

∂u L = {v | u · v ∈ L}.

For example consider the language defined by the RE r = ab∗. The derivative of r

with respect to a is b∗, while the derivative with respect to b is the empty set.

Derivatives are useful for scanner construction in part because the regular

languages are closed under the derivative operation, as stated in the following

theorem:

Theorem 3.1

If L ⊆ Σ∗ is regular, then ∂uL is regular for all strings u ∈ Σ∗.

Proof

We start by showing that for any a ∈ Σ, the language ∂aL is regular. Let 〈Q, q0,F, δ〉
be a DFA that accepts the regular language L. Then we can construct a DFA that

recognises ∂aL as follows: if δ(q0, a) is defined, then 〈Q, δ(q0, a),F, δ〉 is a DFA that

recognises ∂aL, and, thus, ∂aL is regular. Otherwise ∂aL = ∅, which is regular. The

result for strings follows by induction. �

For regular languages that are represented as REs, there is a natural algorithm

for computing the derivative as another RE. First we need a helper function ν from

REs to REs. We say that an RE r is nullable if the language it defines contains the

empty string, that is if ε ∈ L[[r]]. The ν function has the property

ν(r) =

{
ε if r is nullable

∅ otherwise

and is defined as follows:

ν(ε) = ε

ν(a) = ∅
ν(∅) = ∅

ν(r · s) = ν(r) & ν(s)

ν(r + s) = ν(r) + ν(s)

ν(r∗) = ε

ν(r & s) = ν(r) & ν(s)

ν(¬r) =

{
ε if ν(r) = ∅
∅ if ν(r) = ε
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The following rules, owed to Brzozowski (1964), compute the derivative of an RE

with respect to a symbol a:

∂a ε = ∅
∂a a = ε

∂a b = ∅ for b 
= a

∂a ∅ = ∅
∂a (r · s) = ∂a r · s + ν(r) · ∂a s
∂a (r∗) = ∂a r · r∗

∂a (r + s) = ∂a r + ∂a s

∂a (r & s) = ∂a r & ∂a s

∂a (¬r) = ¬(∂a r)

The rules are extended to strings as follows:

∂ε r = r

∂ua r = ∂a (∂u r)

3.2 Using derivatives for RE matching

Suppose we are given an RE r and a string u, and we want to determine that

u ∈ L[[r]]. We have u ∈ L[[r]] if, and only if, ε ∈ L[[∂u r]], which is true exactly

when ε = ν(∂u r). Combining this fact with the definition of ∂u leads to an algorithm

for testing if u ∈ L[[r]]. We express the algorithm in terms of the relation r ∼ u

(r matches the string u), defined as the smallest relation satisfying

r ∼ ε ⇔ ν(r) = ε

r ∼ a · w ⇔ ∂a r ∼ w

It is straightforward to show that r ∼ u if, and only if, u ∈ L[[r]].

Notice that when an RE matches a string, we compute a derivative for each of

the characters in the string. For example consider the derivation of a · b∗ ∼ abb:

a · b∗ ∼ abb ⇔ ∂a a · b∗ ∼ bb

⇔ b∗ ∼ bb

⇔ ∂b b∗ ∼ b

⇔ b∗ ∼ b

⇔ ∂b b∗ ∼ ε

⇔ b∗ ∼ ε

⇔ ν(b∗) = ε
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When the RE does not match the string, we reach a derivative that is the RE ∅ and

stop. For example

a · b∗ ∼ aba ⇔ ∂a a · b∗ ∼ ba

⇔ b∗ ∼ ba

⇔ ∂b b∗ ∼ a

⇔ b∗ ∼ a

⇔ ∂a b∗ ∼ ε

⇔ ∅ ∼ ε

⇔ ν(∅) = ε (false)

3.3 Using derivatives for DFA construction

Before describing DFA construction, we need another definition.

Definition 3.2

We say that r and s are equivalent, written r ≡ s, if L[[r]] = L[[s]]. We write [r]≡
for the set {s | r ≡ s}, which is the equivalence class of r under ≡.

For example a + b ≡ b + a.

The matching relation gives an algorithm for testing a string against an RE by

computing successive derivatives of the RE for successive characters in the string.

At each step we have a residual RE that must match a residual string. If, instead of

computing the derivatives on the fly, we precompute the derivative for each symbol

in Σ, we can construct a DFA recogniser for the language of the RE. The states of

the DFA are RE equivalence classes, and the transition function is the derivative

function on those classes: δ(q, [a]≡) = [∂a (q)]≡. This function is well defined because

the derivatives of equivalent REs are equivalent. In constructing the DFA, we label

each state with an RE representing its equivalence class. Accepting states are those

states labelled by nullable REs, and the error state is labelled by ∅. The key challenge

in making this algorithm practical is developing an efficient test for RE equivalence.

We will return to this point in the next section.

Figure 1 gives the complete algorithm for constructing a DFA 〈Q, q0,F, δ〉, using

derivatives. The goto function constructs the transition from a state q for when

the symbol c is encountered, while the explore function collects together all of the

possible transitions from the state q. Together, these functions perform a depth-first

traversal of the DFA’s state graph while constructing it. Note that we test RE

equivalence when checking to see if qc is a new state. Brzozowski (1964) proved

that an RE can only have finitely many derivatives (up to RE equivalence), which

guarantees the termination of the algorithm. Once the state graph, represented by

the (Q, δ) pair, has been constructed, it is simple to compute the accepting states

and construct the DFA 4-tuple.
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Fig. 1. DFA construction using RE derivatives.

Fig. 2. The DFA for ab + ac.

3.4 An example

Consider the RE a · b + a · c over the alphabet {a, b, c}. The DFA construction for

this RE starts with q0 = ∂ε (a · b + a · c) = a · b + a · c and proceeds as follows:

1. compute ∂a q0 = ∂a (a · b + a · c) = b + c, which is new and so is called q1;

2. compute ∂a q1 = ∂a (b + c) = ∅, which is new and so is called q2;

3. compute ∂a q2 = ∂a ∅ = ∅ = q2;

4. likewise ∂b q2 = q2 and ∂c q2 = q2;

5. compute ∂b q1 = ∂b (b + c) = (ε + ∅) ≡ ε, which is new and so is called q3;

6. compute ∂a q3 = ∂a ε = ∅ = q2;

7. likewise ∂b q3 = q2 and ∂c q3 = q2;

8. compute ∂c q1 = ∂c (b + c) = (∅ + ε) ≡ ε = q3;

9. compute ∂b q0 = ∂b (a · b + a · c) = ∅ = q2; and

10. compute ∂c q0 = ∂c (a · b + a · c) = ∅ = q2.

Note that since ν(q3) = ε, q3 is an accepting state. Figure 2 shows the resulting DFA

in graphical form.
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4 Practical DFA construction

While the algorithm given in Figure 1 is simple, we are faced with three issues that

must be addressed to build an efficient implementation:

1. The problem of determining when two REs are equivalent, which is used to test

if q′ ≡ qc in the goto function, is expensive. In fact, deciding language equality

for REs with intersection and complement operators is of non-elementary

complexity (Aho et al., 1974).

2. The iteration over the symbols in Σ that is used to compute the δ function is

not practical for large alphabets. (For example the Unicode character set has

over 1.1 million code points.)

3. A scanner generator typically takes a collection of REs as its input specification,

whereas the algorithm in Figure 1 builds a DFA for a single RE.

These issues are addressed in the next three subsections.

4.1 Weaker notions of RE equivalence

The DFA construction algorithm in Figure 1 only introduces a new state when

no equivalent state is present. Brzozowski (1964) proved that this check for state

equivalence guarantees the minimality of the DFA produced by the algorithm, but

checking RE equivalence is expensive; so in practice we change the test to

∃q′ ∈ Q such that q′ ≈ qc

where ≈ is an approximation of RE equivalence that is defined as follows:

Definition 4.1

Let ≈ denote the least relation on REs, including the following equations:

r & r ≈ r

r & s ≈ s & r

(r & s) & t ≈ r & (s & t)

∅ & r ≈ ∅
¬∅ & r ≈ r

(r · s) · t ≈ r · (s · t)
∅ · r ≈ ∅
r · ∅ ≈ ∅
ε · r ≈ r

r · ε ≈ r

(∗) r + r ≈ r

(∗) r + s ≈ s + r

(∗) (r + s) + t ≈ r + (s + t)

¬∅ + r ≈ ¬∅
∅ + r ≈ r

(r∗)∗ ≈ r∗

ε∗ ≈ ε

∅∗ ≈ ε

¬(¬r) ≈ r

Two REs r and s are similar if r ≈ s and dissimilar otherwise.

Theorem 4.1

If r ≈ s then r ≡ s; that is similar REs are equivalent.

Proof

By induction on the rules defining similarity. The non-inductive cases are simple

algebraic consequences of Definition 2.2. �
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Brzozowski (1964) proved that a notion of RE similarity including only the above

rules marked with (∗) is enough to ensure that every RE has only a finite number of

dissimilar derivatives. Hence, DFA construction is guaranteed to terminate if we use

similarity as an approximation for equivalence. In our experience, including only the

marked rules results in very large machines, but using the full set yields the minimal

machine in most cases (see Section 5).

In our implementations, we maintain the invariant that all REs are in ≈-canonical

form and use structural equality to identify equivalent REs. To ensure this invariant,

we represent REs as an abstract type and use smart-constructor functions to build

≈-canonical forms. Each RE operator has an associated smart-constructor function

that checks its arguments for the applicability of the ≈ equations. If an equation

applies, the smart constructor simplifies the RE using the equation as a reduction

from left to right. For example the constructor for negation inspects its argument,

and if it is of the form (¬r), the constructor simply returns r.

For the commutativity and associativity equations, we use these equivalences to

sort the subterms in lexical order. We also use this lexical order to implement a

functional finite map with RE keys. This map is used as the representation of the set

Q of DFA states in Figure 1, where RE labels are mapped to states. The membership

test qc ∈ Q is just a look-up in the finite map.

4.2 Character sets

The presentation of traditional DFA construction algorithms (Aho et al., 1986)

involves iteration over the alphabet Σ, and the derivative-based algorithm in Figure 1

does as well. Iteration over Σ is inefficient but feasible for small alphabets, such

as the ASCII character set, but for large alphabets, such as Unicode (Unicode

Consortium, 2003), iteration over Σ is impractical. Since the out degree of any given

state is usually much smaller than the size of the alphabet, it is advantageous to label

state transitions with sets of characters. In this section, we describe an extension to

Brzozowski’s (1964) work that uses character sets to greatly reduce the number of

derivatives that must be computed when determining the transitions from a given

state.

The first step is to reformulate the abstract syntax of REs as follows:

r, s ::= S where S ⊆ Σ

| ε empty string

| r · s concatenation

| r∗ Kleene-closure

| r + s logical or (alternation)

| r & s logical and

| ¬r complement

Note that S covers both the empty set and single character cases from Definition 2.1,

as well as character classes. The definitions of Sections 2 and 3 extend naturally to
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character sets:

L[[S]] = S
ν(S) = ∅

∂a S =

{
ε a ∈ S
∅ a 
∈ S

As before, our implementation uses simplification to canonicalise REs involving

character sets.

R + S ≈ T where T = R ∪ S

¬S ≈ T where T = Σ \ S

where R, S and T denote character sets.

As we remarked above, a given state q in a DFA will usually have many fewer

distinct outgoing state transitions than there are symbols in Σ. Let S1, . . . , Sn be a

partition of Σ such that whenever a, b ∈ Si, we have δ(q, a) = δ(q, b) (equivalently

∂a q ≈ ∂b q). If we somehow knew the partition S1, . . . , Sn for q in advance, we would

only need to calculate one derivative per Si when computing the transitions from

q. Note that if the derivatives are distinct, then the partition is minimal. This last

situation is described by the following definition:

Definition 4.2

Given an RE r over Σ and symbols a, b ∈ Σ, we say that a �r b if and only if

∂a r ≡ ∂b r. The derivative classes of r are the equivalence classes Σ/�r . We write

[a]r = {b | a �r b} for the derivative class of r represented by a.

For example the derivative classes for a + b · a + c are {a, c}, {b} and Σ \ {a, b, c}.
Whenever two symbols belong to the same derivative class for two REs, those

symbols belong to the same derivative class for any combination of the REs. This

insight is formalised by the following lemma:

Lemma 4.1

Let r and s be REs and a and b symbols such that a �r b and a �s b. Then the

following equations hold:

• a �(r·s) b

• a �(r+s) b

• a �(r&s) b

• a �r∗ b

• a �¬r b

Proof

The proof follows from simple equational reasoning. For example

∂a (r · s) ≡ ∂a r · s + ν(r) · ∂a s
≡ ∂b r · s + ν(r) · ∂b s
≡ ∂b (r · s)

and thus a �(r·s) b. The other equations follow similarly. �
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We could determine the derivative classes of each state before finding any

derivatives, but in general it is not possible to compute them without doing work

O(|Σ|). Instead, we define a function C : RE → 22Σ

by structural recursion that

computes an approximation of the derivative classes. For atomic REs, C gives an

exact result:

C(ε) = {Σ}
C(S) = {S, Σ \ S}

But compound REs are somewhat trickier. Lemma 4.1 provides guidance: if a and

b are related in both C(r) and C(s), then they should also be related in C(r+ s), etc.

Our algorithm is conservative because it assumes that only those symbols that are

related in both C(r) and C(s) are related in C(r + s) as specified by the following

notation:

C(r) ∧ C(s) = {Sr ∩ Ss | Sr ∈ C(r), Ss ∈ C(s)}

We can now define the remaining cases for C:

C(r · s) =

{
C(r) r is not nullable

C(r) ∧ C(s) otherwise

C(r + s) = C(r) ∧ C(s)

C(r & s) = C(r) ∧ C(s)

C(r∗) = C(r)

C(¬r) = C(r)

Consider once more the example a + b · a + c:

C((a + b · a) + c) = C(a + b · a) ∧ C(c)

= (C(a) ∧ C(b · a)) ∧ C(c)

= (C(a) ∧ C(b)) ∧ C(c)

= ({{a}, Σ \ {a}} ∧ {{b}, Σ \ {b}}) ∧ {{c}, Σ \ {c}}
= {∅, {a}, {b}, Σ \ {a, b}} ∧ {{c}, Σ \ {c}}
= {∅, {a}, {b}, {c}, Σ \ {a, b, c}}

As stated above, the exact derivative classes for this RE are {a, c}, {b} and

Σ\{a, b, c}, and so the approximation has overpartitioned the alphabet. Nevertheless,

we have reduced consideration to five symbol sets and need only compute one

derivative for each set.

The correctness of the derivative class approximation is easy to prove.

Theorem 4.2

Let r be an RE. Then for all S ∈ C(r) and a ∈ S, we have S ⊆ [a]r .

Proof

By induction on the structure of r, using Lemma 4.1. �
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Fig. 3. DFA construction using RE derivatives and character classes.

With the approximation of derivative classes, we can modify the algorithm for

DFA construction to only compute one derivative per approximate class. This

version of the algorithm is shown in Figure 3.

4.3 Regular vectors

In order to use this DFA construction algorithm in a scanner generator, we need

to extend it to handle multiple REs in parallel. Brzozowski (1964) recognised this

problem and introduced regular vectors as an elegant solution.

Definition 4.3

An n-tuple of REs, R = (r1, . . . , rn), is called a regular vector.

Rather than labelling DFA states with REs, we now label them with regular vectors.

The transition function is still just the derivative function, where the derivative of a

regular vector is defined componentwise:

∂a (r1, . . . , rn) = (∂a r1, . . . , ∂a rn)

The definitions for accepting and error states must also be revised. A state is

accepting if its regular vector contains a nullable RE. The error state is the

regular vector with components all equal to the empty language, ∅. Finally, we can

approximate the derivative classes of a regular vector by intersecting the approximate

derivative classes of its components:

C(r1, . . . , rn) =
∧

C(ri)

5 Experience

We have experience with two independent implementations of RE-derivative-based

scanner generators: ml-ulex, which is an SML scanner generator developed at the
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University of Chicago, and the PLT Scheme scanner generator. Both of these tools

support extended REs and are being used on a regular basis.

5.1 Extended REs

The inclusion of the complementation operator in the RE language increases its

ability to express natural and concise specifications. For example the following RE

matches C-style comments, where a comment is started by the ‘/�’ sequence and

ended by the first following ‘�/’ sequence (comment-opening sequences are ignored

inside of comments; i.e. these comments do not nest):

/�¬(Σ∗�/Σ∗)�/

The inner RE ‘(Σ∗�/Σ∗)’ denotes the strings that contain the comment-ending

sequence ‘�/’, and so its negation denotes the strings that do not contain the

comment-ending sequence. Thus, the entire RE denotes strings that start with the

comment-opening sequence and do not contain the comment-ending sequence except

as the last two elements. Expressing this pattern without the complement operator

is more cumbersome:

/�((Σ \ {�})∗(ε + �∗(Σ \ {/, �})))∗�/

One common use of the boolean operations on REs is to implement RE

subtraction, i.e., r & ¬s to denote the strings in L[[r]] \ L[[s]]. For example, the

DrScheme programming environment (Findler et al., 2002) highlights erroneous

lexemes in red. To detect these lexemes, it uses the following RE:

(idchar)+ & ¬(identifier + number)

where idchar is the set of characters that can appear in an identifier; identifier is an

RE-matching valid identifier; and number is an RE that matches numeric literals.

The RE on the left of the ‘&’ includes all potential bad identifiers, but it also includes

valid strings, such as valid identifiers and numbers. To match just the erroneous

identifiers, we subtract the valid identifiers and numbers. In this example, the RE

subtraction idiom removes the need to devise a positive definition of just the invalid

lexemes. Such a definition would be exceptionally complex because of the nature

of PLT Scheme’s lexical syntax. For example an identifier can start with the #

character – but only when one of several specific strings immediately follow it.

5.2 DFA size

Our experience has been that using RE derivatives is a straightforward way to

generate recognisers from REs. It also turns out that the use of RE derivatives

produces smaller state machines than the algorithm used by tools like lex and

ml-lex (Appel et al., 1994). We compared the size of the state machines generated

by the ml-lex tool with those generated by our new ml-ulex tool. We also ran

a DFA minimisation algorithm over the state machines generated by ml-ulex. As

test cases, we used 14 pre-existing ml-lex specifications for various languages, a
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Table 1. Number of states (best results in bold)

Lexer ml-lex ml-ulex Minimal Description

Burg 61 58 58 A tree-pattern match generator

CKit 122 115 115 ANSI C lexer

Calc 12 12 12 Simple calculator

CM 153 146 146 The SML/NJ compilation manager

Expression 19 19 19 A simple expression language

FIG 150 144 144 A foreign-interface generator

FOL 41 41 41 First-order logic

HTML 52 49 49 HTML 3.2

MDL 161 158 158 A machine-description language

ml-lex 121 116 116 The ml-lex lexer

Scheme 324 194 194 R5RS Scheme

SML 251 244 244 Standard ML lexer

SML/NJ 169 158 158 SML/NJ lexer

Pascal 60 55 55 Pascal lexer

ml-yacc 100 94 94 The ml-yacc lexer

Russo 4803 3017 2892 System-log data mining

L2 n/a 147 106 Monitoring stress-test

specification for R5RS Scheme (translated from PLT-Scheme), a specification for

mining system logs for interesting events (translated from a Python script provided

by Nick Russo) and an RE that recognises the language L2 (Sen & Roşu, 2003),

where

Lk = {u#w#v$w | w ∈ {0, 1}k and u, v ∈ {0, 1, #}∗}
This last example requires use of the boolean operations for concise specification; so

we did not test the ml-lex tool on it. The results are presented in Table 1.3 In most

cases, the RE derivative method produced a smaller state machine. Most of the time,

the difference is small, but in two cases (Scheme and Russo), the ml-ulex DFAs

have a third fewer states. Furthermore, ml-ulex produces the minimal state machine

for every example except Russo, where the DFA is 4% larger than optimal, and L2,

where the DFA is 39% larger. In both of these cases, ml-lex did significantly worse.

The reason that the derivative approach produces smaller machines can be

illustrated using a small example, but first we must give a quick description of

the algorithm used by ml-lex. This algorithm was invented by McNaughton and

Yamada (1960) and is described in the “Dragon Book” (Aho et al., 1986). It directly

translates the abstract syntax tree (AST) representation of an RE to a DFA. The

non-ε leaves in the AST are annotated with unique positions, and sets of positions

are used to represent the DFA states. Intuitively, if ai is a symbol in the RE and i is

in a state q, then there is a non-error transition from q on a in the DFA. The state

3 We adjusted the number of states reported by ml-lex downward by 2, because it includes the error
state and a redundant initial state in its count, whereas ml-ulex reports only the non-error states.
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transition from a state q on the symbol a s computed by
⋃

Follow(i) such that i ∈ q and ai is in the RE

where Follow(i) is the set of positions that can follow ai in a string matched by the

RE. We demonstrate this algorithm on the following RE, which also illustrates why

the derivative algorithm produces smaller DFAs:

(a1c2 + b3c4)$5

Here we have annotated each symbol with its position and denoted the position at

the end of the RE by $5. The initial state is q0 = {1, 3}. The construction of the

DFA proceeds as follows:

1. compute δ(q0, a) = {2}, which is new and so is called q1;

2. compute δ(q0, b) = {4}, which is new and so is called q2;

3. compute δ(q1, c) = {5}, which is new and so is called q3; and

4. compute δ(q2, c) = {5}, which is q3.

This construction produces the four-state DFA shown in Figure 4(a).4

Now consider building a DFA for this RE, using the derivative algorithm. The

first state is q0 = ∂ε ac + bc = ac + bc:

1. compute δ(q0, a) = ∂a (ac + bc) = c, which is new and so is called q1:

2. compute δ(q0, b) = ∂b (ac + bc) = c = q1; and

3. compute δ(q1, c) = ∂c c = ε, which is new and so is called q2.

This construction produces the smaller, three-state, DFA shown in Figure 4(b). As

can be seen from this example, the use of positions in the Dragon Book algorithm

causes equivalent states (i.e. q1 and q2 in the example) to be distinguished, whereas

the use of canonical REs to label the states in the derivative algorithm allows their

equivalence to be detected.

5.3 Effectiveness of character classes

We also used the above suite of lexer specifications to measure the usefulness of

character classes. For a DFA with n states and m distinct state transitions, one has

to compute at least m but no more than n|Σ| derivatives. We instrumented ml-ulex

to count the number of distinct state transitions and the number of approximate

character classes computed by our algorithm. In all but two cases (Scheme and L2),

the approximation was perfect. In the two cases in which it was not perfect, our

algorithm computed 5.4% and 6.2% more derivatives than necessary. What is more

impressive is the number of derivatives that we avoid computing. If we assume the

seven-bit ASCII character set as our input alphabet, then our algorithm computes

only 2%–4% of the possible derivatives. Thus, we conclude that character classes

provide a significant benefit in the construction of DFAs, even when the underlying

alphabet is small.

4 For this exercise, we are ignoring the error state.
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Fig. 4. DFAs for (ac + bc): (a) DFA generated by the Dragon Book algorithm; (b) DFA

generated by the derivative algorithm.

6 Related work

RE derivatives have been occasionally used to perform on-the-fly RE matching

(without building automata) in XML validation tasks (English, 1999; Schmidt,

2002). Other than our systems, we know of at least two uses of derivatives in DFA

construction. The first two versions of the Esterel language used derivatives, but

the approach was abandoned in 1987 for being too memory intensive (Berry, 1999);

furthermore, the REs and DFAs were not used for lexical analysis. More recently,

Sen and Roşu (2003) used RE derivatives to construct DFAs for program trace

monitoring. Their system generates minimal DFAs by testing full RE equivalence,

using a technique called circular coinduction. This approach seems less practical than

the approximate equivalence testing of our systems: for example they report that

computing the optimal DFA for the L2 RE mentioned in the previous section took

18 minutes, whereas ml-ulex takes less than a second to compute a DFA that has

only 40% more states than the optimal machine. The slowness of their approach

may be owing to the fact that their method is based on rewriting, since even if we

apply state minimisation to this example, ml-ulex still takes less than a second to

construct the optimal DFA.

Derivatives have largely been ignored by the scanning literature. One exception

is a paper by Berry and Sethi (1986) that shows how a derivative-based algorithm

for DFA construction can be used to derive the McNaughton and Yamada, a.k.a.

the Dragon Book, algorithm (McNaughton & Yamada, 1960). The key difference

between their work and Brzozowski’s (1964) derivative algorithm is that they mark

each symbol in the RE with a unique subscript. These subscripts mean that states that

Brzozowski’s (1964) algorithm would conflate are instead distinguished as illustrated
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in Figure 4. Ken Thompson, in his seminal paper on RE matching (Thompson,

1968), claims:

In the terms of Brzozowski, this algorithm continually takes the left derivative of the given

regular expression with respect to the text to be searched.

This claim is true if one is computing derivatives for REs in which occurrences of

symbols have been marked to distinguish them but not if one is using Brzozowski’s

(1964) algorithm. Again, the example from Figure 4 can be used to illustrate this

difference.

Berry and Sethi (1986) observed that the unmarking homomorphism does not

commute with RE complement and intersection, and so algorithms based on marked

symbols (e.g. the Dragon Book algorithm) cannot be easily modified to support

these operations. On the other hand, since the complement of a DFA is simple

to compute, the standard NFA to DFA construction can be extended to support

RE complements. When the algorithm encounters a complemented RE ¬r, it builds

an NFA for r as usual, then converts the NFA to a DFA, which can be simply

complemented and converted back to an NFA. The algorithm then proceeds as usual.

The lexer generator for the DMS system (Baxter et al., 2004), supports complement

in exactly this way.5 We are unaware of any other lexer generator that supports the

complement operator.

7 Concluding remarks

In this paper, we have presented RE derivatives, which are an old, but largely

forgotten, technique for constructing DFAs directly from REs. Our experience has

been that RE derivatives are a superior technique for generating scanners from REs,

and they should be in the toolkit of any programmer. Specifically, RE derivatives

have the following advantages:

• They provide a direct RE to DFA translation that is well suited to implemen-

tation in functional languages.

• They support extended REs almost for free.

• The generated scanners are often optimal in the number of states and uniformly

better than those produced by previous tools.

In addition to presenting the basic RE to DFA algorithm, we have also discussed a

number of practical issues related to implementing a scanner generator that is based

on RE derivatives, including supporting large character sets.
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