ON IMMERSIONS OF N-MANIFOLDS IN CODIMENSION N-1

M. A. AGUILAR AND G. PASTOR

(Received 1 August 1986)

Communicated by J. H. Rubinstein

Abstract

We give a simple proof, using only classical algebraic topology, of the following theorem of B. H. Li and F. P. Peterson. Any map from an N-manifold into a (2N-1)-manifold is homotopic to an immersion.

1980 Mathematics subject classification (Amer. Math. Soc.): 57 R 42.

Let $f: M \to N$ be a map between smooth manifolds of dimension n and n+k respectively. In [6] Whitney proved that if $k \ge n$ then f is homotopic to an immersion. In this note we give a simple proof of the following generalization of Whitney's result due to B. H. Li and F. P. Peterson [4].

THEOREM. Let $f: M \to N$ be a map between smooth manifolds of dimension n and 2n-1, respectively. Then f is homotopic to an immersion (n > 1).

By Hirsch's theorem [2] it is enough to find an (n-1)-vector bundle ν such that $TM \oplus \nu \cong f^*TN$, where T denotes the tangent bundle. If ν_M denotes the normal bundle of M then this condition is equivalent to $[\nu] = [f^*TN \oplus \nu_M]$, where the brackets denote the stable class of the bundle.

Let $\xi: M \to BO(n+1)$ be a map representing $f^*TN \oplus \nu_M$, then the existence of the bundle ν is equivalent to the lifting problem (1) below, where p is a fibration with fiber $O(n+1)/O(n-1) = V_{n+1,2}$. The space $V_{n+1,2}$ is (n-2)-connected so by classical obstruction theory [5] there is only one

^{© 1988} Australian Mathematical Society 0263-6115/88 \$A2.00 + 0.00

obstruction $\theta_n(\xi)$ to the existence of this lifting and

$$\theta_n(\xi) \in H^n(M; \{\pi_{n-1}(V_{n+1,2})\})$$

(the brackets denote twisted coefficients).

(1)
$$BO(n-1)$$

$$\downarrow^{p}$$

$$M \xrightarrow{\epsilon} BO(n+1)$$

We now have two cases:

(i) If M has boundary then $M \simeq M - \partial M$ and $M - \partial M$ is an open n-manifold so it has the homotopy type of an (n-1)-complex and hence

$$H^n(M; \{\pi_{n-1}(V_{n+1,2})\}) = 0.$$

(ii) If M has no boundary, then if M is not compact M is an open n-manifold and we proceed as in case (i). Hence we only have to consider the case when M is a closed manifold.

Suppose now that M is closed and assume without loss of generality that M is connected. We will show that $\theta_n(\xi)$ is determined by the nth Stiefel-Whitney class $w_n(\xi)$ and that $w_n(\xi) = 0$.

It is known [5] that if n is odd then $\pi_{n-1}(V_{n+1,2}) \cong \mathbb{Z}$ and that the bundle ξ twists \mathbb{Z} with the homomorphism $w_1(\xi)_{\#} \colon \pi_1(M) \to \mathbb{Z}_2$ induced by the class $w_1(\xi)$. We will denote these twisted coefficients by \mathbb{Z}_{ξ} ; with this notation $\theta_n(\xi) \in H^n(M; \mathbb{Z}_{\xi})$.

LEMMA.
$$H^n(M; \mathbf{Z}_{\varepsilon}) \cong \mathbf{Z}$$
 or \mathbf{Z}_2 .

PROOF. By the Thom isomorphism with twisted coefficients [3] we have that $H^n(M; \mathbf{Z}_{\xi}) \cong \tilde{H}^{2n+1}(T\xi; \mathbf{Z})$. The bundle ξ is isomorphic to a smooth bundle so we can assume that the total space $E(\xi)$ is a (2n+1)-manifold. Furthermore, if we denote by $E(\xi)^{\infty}$ the one point compactification of $E(\xi)$ and by $H_c^*(-)$ the cohomology with compact supports, we have $\tilde{H}^{2n+1}(T\xi; \mathbf{Z}) \cong \tilde{H}^{2n+1}(E(\xi)^{\infty}; \mathbf{Z}) \cong H_c^{2n+1}(E(\xi); \mathbf{Z})$, and by Poincaré duality with twisted coefficients $H_c^{2n+1}(E(\xi); \mathbf{Z}) \cong H_0(E(\xi); \mathbf{Z}_{TE(\xi)})$.

Finally $H_0(E(\xi); \mathbf{Z}_{TE(\xi)}) \cong \mathbf{Z}/H$, where H is the subgroup generated by elements of the form $n-r\cdot n$ with $n\in \mathbf{Z}$ and $r\in \pi_1(E(\xi))$. But $r\cdot n=n$ or -n so H=0 or $2\mathbf{Z}$.

The obstruction class $\theta_n(\xi)$ is related to $w_n(\xi)$ as follows [5]: if n is even then $\theta_n(\xi) = w_n(\xi)$, and if n is odd consider the sequence $H^{n-1}(M; \mathbb{Z}_2) \xrightarrow{\delta} H^n(M; \mathbb{Z}_\xi) \xrightarrow{\rho} H^n(M; \mathbb{Z}_2)$, where δ is the twisted Bockstein and ρ is the mod 2 reduction, then $\delta(w_{n-1}(\xi)) = \theta_n(\xi)$ and $\rho(\theta_n(\xi)) = w_n(\xi)$.

By the lemma above $H^n(M; \mathbf{Z}_{\xi}) \cong \mathbf{Z}$ or \mathbf{Z}_2 . If this group is isomorphic to \mathbf{Z} then $\delta(w_{n-1}(\xi)) = \theta_n(\xi) = 0$. If it is isomorphic to \mathbf{Z}_2 then ρ is an isomorphism sending $\theta_n(\xi)$ to $w_n(\xi)$.

Hence, we have proved that $\theta_n(\xi) = 0$ if and only if $w_n(\xi) = 0$. We finish the proof of the theorem by showing that $w_n(\xi)$ is zero.

LEMMA. $w_n(\xi) = 0$.

PROOF. Let $f^!$ and $f_!$ denote the Umkehr homomorphisms in cohomology and homology, respectively, associated with the map $f \colon M \to N$. These homomorphisms have the following properties [1]: (i) $\langle f^!(a), x \rangle = \langle a, f_!(x) \rangle$; (ii) $S_q f^!(x) = f^!(w(\xi) \cup S_q(x))$, where S_q is the total Steenrod square and $w(\xi)$ is the total Stiefel-Whitney class; (iii) if [] denotes the fundamental class of a manifold, then $f_![N] = [M]$.

Using these properties we have

$$\langle w_n(\xi), [M] \rangle = \langle w_n(\xi), f_![N] \rangle = \langle f^!(w_n(\xi)), [N] \rangle = \langle S_a^n f^!(1), [N] \rangle.$$

But $f^{!}(1)$ is a class of dimension n-1 so this Kronecker product is zero, and as M is connected then $w_{n}(\xi) = 0$.

REMARK. It is well known that there is no immersion of the real projective space of dimension 2^r into the sphere of dimension $2(2^r) - 2$ so we do not have a similar result when the codimension is less than n - 1.

References

- [1] E. Dyer, Cohomology theories, W. A. Benjamin, New York, 1969.
- [2] M. W. Hirsch, 'Immersions of manifolds', Trans. Amer. Math. Soc. 93 (1959), 242-276.
- [3] P. Holm, 'Microbundles and S-duality', Acta Math. 118 (1968), 271-296.
- [4] B. H. Li and F. P. Peterson, 'On immersions of k-manifolds in (2k-1)-manifolds', *Proc. Amer. Math. Soc.* 83 (1981), 159-162.
- [5] N. Steenrod, The topology of fiber bundles, Princeton University Press, Princeton, N. J., 1951.
- [6] H. Whitney, 'Differentiable manifolds', Ann. of Math. 37 (1936), 645-680.

Instituto de Matemáticas Universidad Nacional Autónoma de México Ciudad Universitaria 04510 México, D.F. Mexico Departamento de Matemáticas Centro de Investigación y Estudios Avanzados del I.P.N. Apartado Postal 14-740 07000 México, D.F. Mexico