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Abstract. We address the question of identifying the long-term (secular) stability regions in the
semi-major axis-eccentricity projected phase space of the Sun-Jupiter planar circular restricted
three-body problem in the domains i) below the curve of apsis equal to the planet’s orbital radius
(ensuring protection from collisions) and ii) above that curve. This last domain contains several
Jupiter’s crossing trajectories. We discuss the structure of the numerical stability map in the
(a, e) plane in relation to manifold dynamics. We also present a closed-form perturbation theory
for particles with non-crossing highly eccentric trajectories exterior to the planet’s trajectory.
Starting with a multipole expansion of the barycentric Hamiltonian, our method carries out a
sequence of normalizations by Lie series in closed-form and without relegation. We discuss the
applicability of the method as a criterion for estimating the boundary of the domain of regular
motion.
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1. Introduction

The secular (long-term) behaviour of the planetary problem, even in the restricted
case, is a central question in the framework of the N -body problem. Several heuristic
criteria, such as the orbital crossing or the Hill condition (see Ramos et al. (2015)) or
AMD stability (Laskar & Petit (2017)), have been proposed to discriminate between
stable and unstable orbits in phase space. However, there are numerical indications that
such methods have some limits as regards their applicability both as a necessary and
sufficient condition able to guarantee secular stability.

Here, we first briefly discuss the structure of regular and chaotic regions from a numer-
ical point of view, using short- and long-period Fast Lyapunov Indicator (FLI) stability
maps (Lega et al. (2016), Guzzo & Lega (2018)) in a very refined grid of initial conditions
for the Sun-Jupiter planar circular system (pCR3BP hereafter). As in Todorović et al.
(2020), we identify arch-like structures and the fractal boundaries discriminating between
regular and chaotic orbits. For large values of the semi-major axis and correspondingly
increasing eccentricities, a wide set of regular orbits emerges in the FLI diagram. These
are clearly protected from collisions and we call them the “lower stability region” (low
part of the (a, e) plane).
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The main purpose of our semi-analytical work consists of formulating a normalization
scheme via closed-form theory capable to deal with considerably high eccentricities and
capture topological details of the boundary motion of the lower stability region.

Closed-form perturbation theory provides a framework for series calculations in
perturbed Keplerian problems without expansions in powers of the bodies’ orbital eccen-
tricities. This is mainly motivated by the necessity to construct secular models for
sufficiently eccentric orbits. A main obstruction for the application of closed-form theory
in the restricted three-body problem stems from the difficulty to solve the homological
equation explicitly when the kernel contains addenda beyond the Keplerian ones. An
effective procedure to overcome this issue has been proposed by Deprit et al. (2001),
called relegation algorithm, which, however, comes with intrinsic poor convergence prop-
erties: convergence occurs only in the limit when one of the frequencies is dominant.
Such hypothesis cannot be adopted in our case. Hence, in our work we propose a nor-
malization algorithm avoiding relegation supported by numerical verifications, like the
accurate reproduction of the orbital elements’ variations and detection of mean motion
resonances.

The method presented below applies to particles with trajectory completely external
to the trajectory of Jupiter. For an analogous method in the case of internal trajectories,
see, instead, Cavallari & Efthymiopoulos (this volume of the proceedings).

2. FLI stability map of the Sun-Jupiter pCR3BP

The pCR3BP is defined by the planar motion of a body P of negligible mass in the
gravitation field of two massive bodies P0 (the primary) and P1 (the secondary), which

perform a circular trajectory around the common barycenter. Let �R(t) be the barycentric
radius vector of the particle and �r1(t) the relative radius vector of P1 with respect to P0.

The starting Hamiltonian of the model written in barycentric coordinates (i.e. Jacobi

variables when ‖�R‖> ‖�r1‖) reads

H(�R,M1, �P , J1) =
‖�P‖2

2
− Gm0

‖�R+ μ�r1(M1)‖ − Gm1

‖�R− (1 − μ)�r1(M1)‖ + n1J1 , (2.1)

where �R= (X, Y ), �P = (PX , PY ) ∈ T ∗(R2 \ {−μ�r1, (1 − μ)�r1}) is the position-momentum
couple of P, G is the gravitational constant, M1 = n1t is the mean anomaly of P1 (n1
is the mean motion of the P0,P1 system), J1 is a dummy action variable canonically
conjugate to the angle M1 and

μ=
m1

m0 +m1
∈ (0, 1/2)

is the mass parameter. For a circular trajectory of the primary we have

�r1(M1) = ‖�r1‖ (cosM1, sinM1) . (2.2)

Figure 1 shows the short-term and long-term FLI stability maps in the semi-major
axis-eccentricity (a, e) plane when P0 is the Sun and P1 is Jupiter (μ= 9.5364 · 10−4) for
particle trajectories computed numerically in the above model. The initial conditions are
such that the particle starts orbiting from its pericenter positioned on the X axis.
The top diagram shows how regions of regular orbits permeate the whole phase space,
even above the line of pericenter crossing. It is worth noticing that the line of pericenter
overestimates the boundary of the lower stability region. This boundary has a fractal
shape whose form becomes clearer increasing the integration time, as displayed in bot-
tom panel. Also, mean motion resonances are depicted as spikes penetrating the regular
regions of the stability map.
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Figure 1. Short-period (top panel) and long-period (bottom panel) FLI maps computed over
a grid of 300× 900 initial data, where aJ = ‖�r1‖. Integration times are respectively 50 and 1000
Jupiter’s orbital periods. The two curves represent the lines of constant apocenter and pericenter
of the particle’s trajectory equal to aJ .
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We also observe in the same plot intricate structures created by the manifolds of
the unstable orbits of various mean motion resonances (the “arches of chaos”, see
Todorović et al. (2020)).

3. Closed-form method for trajectories exterior to the trajectory of
Jupiter

Assuming ‖�r1‖/‖�R‖� 1, we introduce a book-keeping symbol σ, with numerical value
equal to 1, that keeps trace of the order of magnitude of the eccentricity e and of the
small mass ratio μ at the same time via the powers σ1, σν . Expanding (2.1) up to

O(μkμ , (‖�r1‖/‖�R‖)kmp), for kμ, kmp ∈N \ {0} with kμ > 1, we pass to Delaunay elements
(�, g, L, G), defined by

L=
√

Gm0a , �=M ,

G=L
√

1 − e2 , g= ω , (3.1)

where a,M, ω stand for the semi-major axis, the mean anomaly and the argument of

pericenter respectively. We then write L=L∗ + δL, L∗ =
√Gm0a∗ and n∗ =

√Gm0a
−3/2
∗

for constant reference values a∗, e∗ dependent on initial conditions.
Given the above definitions, we have the following.
Proposition. There exists a canonical transformation conjugating (2.1) to the secular

normal form with respect to the fast angles f,M1 of the system provided by

H = H0 + R , (3.2)

with

H0 = n∗δL− 3n∗
2L∗

δL2 + n1J1 +

νkμ−1∑
j=ν

cj(δL, e; μ)σj + O(δL3) , (3.3)

R =
∑
s∈Z3

s=(s1,s2,s3)

dνkμ,s(δL, e; μ) cos(s1f + s2g+ s3M1)σνkμ

+ O
(
σνkμ+1;

(‖�r1‖
‖�R‖

)kmp+1

, δL3

)
, (3.4)

where f denotes the particle’s true anomaly and

ν =

⌈
log10 μ

log10 e∗

⌉
, (3.5)

for cj , dνkμ,s ∈R.
The details of the proof of the above proposition will be presented elsewhere (Rossi &

Efthymiopoulos, in preparation). Briefly, expanding the Hamiltonian in power series of
the quantity δL=L−L∗, we obtain

H = −G2m2
0

2L2∗

∞∑
l=1

l

(
−δL
L∗

)l−1

+ n1J1 + μ

∞∑
l=0

1

l!

∂lH1

∂Ll

∣∣∣∣
L=L∗

δLl

= n∗δL+ n1J1 + μ

(
H1|δL=0, μ=0 +

∂H1

∂δL

∣∣∣∣
δL=0, μ=0

δL

)
+ O(μ2, δL2) ,

(3.6)
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where we drop the constant −G2m2
0/(2L

2
∗), and n∗ = G2m2

0/L
3
∗, with the function H1

given by

H1 = −Gm0

‖�R‖ + O
((‖�r1‖

‖�R‖

)2

, μ2

)
. (3.7)

Let us rewrite (3.6) in Fourier expansion taking advantage of the periodicity of the angles
and making the book-keeping symbol explicit:

H = n∗δL+ n1J1 +
∑
s∈Z3

qs(δL, e; μ) cos(s1f + s2g+ s3M1)σs (3.8)

where σs ∈ {σν , σν+1, . . .} and, by D’Alembert rules, only cosines and real coefficients qs
appear.

Setting Z0 = n∗δL+ n1J1 and R
(0)
ν = O(σν) the remaining summation in (3.8), we define

the Lie series operator by

exp (Lχ) =
∑
n≥0

1

n!
Lnχ = I+ Lχ +

1

2
Lχ ◦ Lχ + . . . , (3.9)

where Lχ· = {·, χ} is the Poisson bracket operator.
Applying (3.9) to (3.8) we get the first transformed Hamiltonian

H (1) = Z0 + R(0)
ν + {Z0, χ

(1)
ν } + {R(0)

ν , χ(1)
ν } +

1

2
{{H, χ(1)

ν }, χ(1)
ν } + . . . (3.10)

with respect to the generating function χ
(1)
ν , found out as solution of the homological

equation

{Z0, χ
(1)
ν } + R(0)

ν = O(σν+1) (3.11)

which cancels out σν-terms.
By means of an appropriate rearrangement of the Poisson structure using the chain

rule, one can show that

χ(1)
ν =

∑
s∈Z

3

(s1,s3) =(0,0)

qsν
s1n∗ + s3n1

sin(s1f + s2g+ s3M1)σν , (3.12)

with coefficients qsν = O(σν).
The procedure can be repeated at successive normalization steps.

4. Numerical tests

We consider the example reported in Figure 2. The left panel shows in logarithmic
scale the quantity:

E (j) =

νkμ∑
l=ν+j

∑
s∈Z3

|d(j)l,s | ≥ ‖R(j)
ν+j‖∞ , j = 1, . . . , ν(kμ − 1) , (4.1)

where ‖·‖∞ is the sup norm, j is the number of normalization steps and R
(j)
ν+j = O(σν+j)

is the normal form remainder of the j-th order.
The plot gives an estimate of the error of the semi-analytical method at the j-th

step. The right panel shows a remarkably good agreement of the evolution of the semi-
major axis a(t) between a direct integration of the Cartesian equations of motion and a
semi-analytic integration using the normal form part of (3.3).

Figure 3, finally, shows in shade scale the size of the remainder as a function of (a, e).
We observe that the semi-analytical method allows to define with good precision the
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Figure 2. (Left) Evolution of the size of the remainder of the normal form construction of
Section 3 as a function of the normalization order j, in an example with a∗ = 20, e∗ = 0.4 (ν = 8),
kμ = 2, kmp = 3 and order of δL expansion equal to 1. (Right) Comparison of the semi-analytic
(dark curve) with the numerical propagation (light curve) of a trajectory.

Figure 3. Computation of log10(E
(ν(kμ−1))) over a 100× 15 (a, e) grid. For every e= e∗ a

different normalization is derived and then evaluated for each a= a∗. The traced curve is again
the constant pericenter line.

lower stability region in Figure 1: the error increases for trajectories close to Jupiter’s
orbit. The vertical strips correspond to mean motion resonances, as illustrated also in
the FLI maps.
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Deprit, André, Palacián, Jesúus & Deprit, Etienne 2001, Cel. Mech. and Dyn. Astron., 79,
157–182

Guzzo, Massimiliano & Lega, Elena 2018, Physica D: Nonlin. Phen., 373, 38–58
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