SOME MAXIMAL NORMAL SUBGROUPS OF THE MODULAR GROUP

by GARETH A. JONES*

(Received 10th August 1985)

1. Introduction

For each finite group G, let \mathscr{N}_{G} denote the set of all normal subgroups of the modular group $\Gamma=P S L_{2}(\mathbb{Z})$ with quotient group isomorphic to G; since Γ is finitely generated, the number $N_{G}=\left|\mathscr{N}_{G}\right|$ of such subgroups is finite. We shall be mainly concerned with the case where G is the linear fractional group $P S L_{2}(q)$ over the Galois field $G F(q)$, in which case we shall write $\mathcal{N}(q)$ and $N(q)$ for \mathcal{N}_{G} and N_{G}; for $q>3$, $P S L_{2}(q)$ is simple, so the elements of $\mathscr{N}(q)$ will be maximal normal subgroups of Γ.
When q is a prime p, there is one obvious element of $\mathcal{N}(p)$: for each $n \in \mathbb{N}$, the principal congruence subgroup

$$
\Gamma(n)=\{ \pm A \in \Gamma \mid A \equiv \pm I \bmod n\}
$$

of level n, is the kernel of the reduction $\bmod n$ from Γ to $P S L_{2}\left(\mathbb{Z}_{n}\right)$; this is an epimorphism, so if we take n to be a prime p we find that $\Gamma(p) \in \mathcal{N}(p)$. A natural question is whether there are any other elements of $\mathcal{N}(q)$ for any q; it follows from the normal subgroup structure of $P S L_{2}\left(\mathbb{Z}_{n}\right)$ (see [6] for instance) that apart from the single exception $\Gamma(5) \in \mathcal{N}(4)$, arising from the isomorphism $P S L_{2}(5) \cong P S L_{2}(4)$, any such element would be a non-congruence subgroup of Γ, that is, would contain no $\Gamma(n)$.

In 1936, Philip Hall [2] published an extension of the Möbius inversion formula which allows one to calculate N_{G} provided one knows the subgroup structure and the number of automorphisms of G (indeed, his method also applies to other finitely generated groups besides Γ). Hall concentrated mainly on the groups $G=P S L_{2}(p)$, where p is prime, and showed that $N(p)=\frac{1}{2}(p-c)$ where c is a constant (which he computed) depending on the congruence class of p mod 120; this result was rediscovered by Sinkov [9], using a different method, in 1969. In particular, for each prime $p \geqq 13$ we have $N(p) \geqq 2$, so that $\mathcal{N}(p)$ contains a non-congruence subgroup (Newman [7] also demonstrated the existence of such subgroups in $\mathscr{N}(p)$ for primes $p \geqq 37$ in 1968).

The techniques used by Newman and Sinkov are specific to quotient groups of type $P S L_{2}$, as are those of Macbeath [5] who proved in 1967 that $\mathcal{N}(q)$ is non-empty for

[^0]each prime-power $q \neq 9$, thus giving further examples of maximal normal subgroups of Γ which are non-congruence subgroups. The aim of this note is to show how one can use Hall's method to strengthen Macbeath's result by explicitly calculating $N(q)$. For simplicity, we will restrict our attention to the case where $q=2^{e}$; however, the method is quite general, and indeed Martin Downs (private communication) has calculated $N(q)$ for odd q.

Theorem. The number $N\left(2^{e}\right)$ of normal subgroups of the modular group with quotient group isomorphic to $\operatorname{PSL}_{2}\left(2^{e}\right)$ is

$$
\frac{1}{e} \sum_{f} \mu\left(\frac{e}{f}\right) \grave{\left(2^{f}-1\right)}
$$

thus $N(2)=1$, and $N\left(2^{e}\right)=(1 / e) \sum_{f} \mu(e / f) 2^{f}$ for all $e>1$.
(Here μ is the Möbius function, and \sum_{f} denotes summation over all positive divisors f of e.)

For small e we have the following values:

e	1	2	3	4	5	6	7	8	9	10	11	12	\ldots
$N\left(2^{e}\right)$	1	1	2	3	6	9	18	30	56	99	186	335	\ldots

The theorem implies that $N\left(2^{e}\right) \geqq 1$ for all e, so we have:
Corollary. If $e \geqq 1$ there is a normal subgroup $N \unlhd \Gamma$ with $\Gamma / N \cong P S L_{2}\left(2^{e}\right)$; if $e=1$ or $e=2$ then $N=\Gamma(2)$ or $N=\Gamma(5)$, but if $e \geqq 3$ each such N is a non-congruence subgroup of Γ.

2. Hall's method

We will briefly outline Hall's method [2], restricting attention to the case of quotients of Γ; the extension to other finitely generated groups is obvious.

Let G be any finite group; then each epimorphism $\phi: \Gamma \rightarrow G$ determines an element $N=\operatorname{ker} \phi \in \mathscr{N}_{G}$, and every element of \mathscr{N}_{G} arises in this way. Two epimorphisms ϕ, $\psi: \Gamma \rightarrow G$ have the same kernel if and only if $\psi=\phi \circ \alpha$ for some $\alpha \in$ Aut G, so N_{G} is the number of orbits in this action of Aut G on the set of epimorphisms $\phi: \Gamma \rightarrow G$.

Now Γ has a presentation

$$
\Gamma=\left\langle X, Y \mid X^{2}=Y^{3}=1\right\rangle
$$

(see [8]), so if $|G|>3$ then epimorphisms $\phi: \Gamma \rightarrow G$ are in one-to-one correspondence with pairs of elements $x=X \phi$ and $y=Y \phi$ of G such that
(i) x and y have orders 2 and 3 respectively,
(ii) x and y generate G.

Let us call $(x, y) \in G \times G$ a modular pair if it satisfies (i), and a modular generating pair (for G) if it satisfies (i) and (ii). Then N_{G} is the number of orbits of Aut G in its natural action on the set \mathscr{G}_{G} of all modular generating pairs for G. Only the identity automorphism can fix such a pair, so Aut G acts semi-regularly on \mathscr{G}_{G}; hence

$$
\begin{equation*}
N_{G}=\frac{n_{G}}{|\operatorname{Aut} G|}, \tag{2.1}
\end{equation*}
$$

where $n_{G}=\left|\mathscr{G}_{G}\right|$ is the number of modular generating pairs for G.

3. Proof of the theorem

We now take G to be the group $G_{e}=P S L_{2}(q)$, where $q=2^{e}$. We write N_{e} for $N(a)=N_{-}$ etc. Now Aut $G_{e}=P \Gamma L_{2}(q)$ has order $e \omega_{e}$ where $\omega_{e}=q\left(q^{2}-1\right)$ is the order of G_{e}.
To calculate $n_{e}=\left|\mathscr{G}_{e}\right|$, let m_{e} be the number of modular pairs in G_{e}; clearly $m_{e}=\tau_{e} \theta_{e}$, where τ_{e} and θ_{e} are the numbers of elements of orders 2 and 3 in G_{e}. Suppose first that e is odd. Then $\tau_{e}=q^{2}-1$ and $\theta_{e}=q^{2}-q$, so

$$
\begin{align*}
m_{e} & =\left(q^{2}-1\right)\left(q^{2}-q\right) \tag{3.1}\\
& =(q-1) \omega_{e} .
\end{align*}
$$

Each modular pair generates a unique subgroup H of G, and each subgroup H is generated by n_{H} such pairs, so

$$
\begin{equation*}
m_{e}=\sum_{H \leqq G} n_{H} . \tag{3.2}
\end{equation*}
$$

Dickson ([1], Chapter XII) lists the subgroups H of G_{e}, and by inspection the only ones which can be generated by a modular pair are the subgroups $H \cong G_{f}=P S L_{2}\left(2^{f}\right)$, where f divides e. There are $\left|G_{e}: G_{f}\right|=\omega_{e} / \omega_{f}$ such subgroups for each f, and each of them is generated by $n_{f}=n_{G_{f}}$ modular pairs, so (3.2) becomes

$$
\begin{equation*}
m_{e}=\sum_{f} \frac{\omega_{e}}{\omega_{f}} \cdot n_{f} \tag{3.3}
\end{equation*}
$$

Combining (3.1) and (3.3), and cancelling ω_{e}, we get

$$
\begin{equation*}
\sum_{f} \frac{n_{f}}{\omega_{f}}=2^{e}-1 \tag{3.4}
\end{equation*}
$$

Applying the Möbius inversion formula to this, we deduce that

$$
\begin{equation*}
\frac{n_{e}}{\omega_{e}}=\sum_{f} \mu\left(\frac{e}{f}\right)\left(2^{f}-1\right) . \tag{3.5}
\end{equation*}
$$

In (2.1), we now put $n_{G}=n_{e}$ and \mid Aut $G \mid=e \omega_{e}$, so that (3.5) gives

$$
N_{G}=N_{e}=\frac{n_{e}}{e \omega_{e}}=\frac{1}{e} \sum_{f} \mu\left(\frac{e}{f}\right)\left(2^{f}-1\right) .
$$

If $e>1$ then $\sum_{f} \mu(e / f)=0$, so

$$
N_{G}=\frac{1}{e} \sum_{f} \mu\left(\frac{e}{f}\right) 2^{f}
$$

When e is even, the only changes are that θ_{e} is now $q^{2}+q$, and that G_{e} has $\omega_{e} / 12$ subgroups $H \cong A_{4}$, each of which can be generated by 24 modular pairs. Thus we must add $2 \omega_{e}$ to the right-hand sides of (3.1) and (3.3). However, these extra terms cancel in (3.4), so the final result is the same as for odd e.

4. Proof of the corollary

If $\sum_{f} \mu(e / f) 2^{f}=0$ then by taking the negative terms across to the right-hand side we obtain two different binary representations of the same integer, which is absurd. Thus $N\left(2^{e}\right) \neq 0$ so there exists $N \in \mathscr{N}\left(2^{e}\right)$. If $e=1$ or $e=2$ then by inspection $N=\Gamma(2)$ or $N=$ $\Gamma(5)$, so let $e \geqq 3$. If $N \geqq \Gamma(n)$ for some n, then $P S L_{2}\left(2^{e}\right)$ is a homomorphic image of $P S L_{2}\left(\mathbb{Z}_{n}\right)$; however, the only non-abelian composition factors of $P S L_{2}\left(\mathbb{Z}_{n}\right)$ are the groups $P S L_{2}(p)$ for primes $p \geqq 5$ dividing n (see [6], [8]), and $P S L_{2}\left(2^{e}\right)$ is not isomorphic to one of these, as can be seen by comparing orders. Thus N is a non-congruence subgroup.

5. Remarks

1. Hall's method can be applied to quotient groups G of Γ for which the subgroup structure is more complicated than that of $P S L_{2}\left(2^{e}\right)$. Let \mathscr{S} be the set of subgroups $H \leqq G$ which have modular generating pairs (that is, $n_{H}>0$). One defines $\mu_{\mathscr{S}}(H)$, for each $H \in \mathscr{S}$, by

$$
\begin{gather*}
\mu_{\mathscr{S}}(G)=1, \\
\sum_{K \geqq H} \mu_{\mathscr{S}}(K)=0 \quad \text { if } \quad H<G \tag{5.1}
\end{gather*}
$$

(the summation being over all $K \in \mathscr{S}$ containing H). If m_{H} and n_{H} are the numbers of modular pairs and of modular generating pairs in H, then the analogues of (3.2) and (3.5) are

$$
\begin{equation*}
m_{G}=\sum_{H \leqq G} n_{H} \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{G}=\sum_{H \leqq G} \mu_{\mathscr{S}}(H) m_{H} \tag{5.3}
\end{equation*}
$$

(again, both summations are restricted to $H \in \mathscr{S}$); this last equation can be verified by applying (5.1) and (5.2) to the right-hand side. Knowing the subgroup structure of G, one can calculate $\mu_{\mathscr{L}}(H)$ and m_{H} for each $H \in \mathscr{S}$, and hence determine n_{G} from (5.3); then (2.1) gives N_{G}. For the general form of Hall's theory, the reader is strongly urged to read [2].
2. The formula for $N\left(2^{e}\right)$ in the theorem also gives the number of irreducible polynomials of degree e over $G F(2)$, or equivalently the number of orbits of length e in the action of the cyclic group C_{e} on its power-set. It would be interesting to find a natural parametrization of the elements of $\mathcal{N}\left(2^{e}\right)$ using these polynomials or orbits.
3. As shown in [3, 4], there is a bijection between triangular maps \mathscr{M} on orientable surfaces and conjugacy classes of subgroups $M \leqq \Gamma$; the map \mathscr{M} is regular if and only if M is normal, in which case the orientation-preserving automorphism group Aut ${ }^{+} \mathscr{M}$ is isomorphic to Γ / M. Thus for any finite group G, N_{G} is the number of regular orientable triangular maps \mathscr{M} with Aut ${ }^{+} \mathscr{M} \cong G$. For instance, the fact that $N(4)=1$ shows that there is just one such map with Aut ${ }^{+} \mathscr{M} \cong P S L_{2}(4)$; it is, of course, the icosahedron.

Acknowledgement. The author is grateful to the referee for some very helpful comments.

REFERENCES

1. L. E. Dickson, Linear groups (Teubner, Leipzig, 1901; reprinted Dover, New York, 1958).
2. P. Hall, The Eulerian functions of a group, Quarterly J. Math. Oxford 7 (1936), 134-151.
3. G. A. Jones, Triangular maps and non-congruence subgroups of the modular group, Bull. London Math. Soc. 11 (1979), 117-123.
4. G. A. Jones and D. Singerman, Theory of maps on orientable surfaces, Proc. London Math. Soc. (3) 37 (1978), 273-307.
5. A. M. Macbeath, Generators of the linear fractional groups, Proc. Sympos. Pure Math. vol. 12 (Amer. Math. Soc., Providence, R.I., 1967), 14-32.
6. D. L. McQuillan, Classification of normal congruence subgroups of the modular group, Amer. J. Math. 87 (1965), 285-296.
7. M. Newman, Maximal normal subgroups of the modular group, Proc. Amer. Math. Soc. 19 (1968), 1138-1144.
8. M. Newman, Integral matrices (Academic Press, New York, 1972).
9. A. Sinkov, The number of abstract definitions of $L F(2, p)$ as a quotient group of $(2,3, n)$, J. Algebra 12 (1969), 525-532.

Department of Mathematics
University of Southampton
Southampton SO9 5NH

[^0]: *This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.

