THE BESSEL POLYNOMIALS

J. L. BURCHNALL

1. Krall and Frink [2] have recently considered in connection with certain solutions of the wave equation a system of polynomials $y_{n}(x),(n=0,1,2, \ldots)$, where y_{n} is defined as that polynomial solution of the differential equation

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+(2 x+2) \frac{d y}{d x}=n(n+1) y \tag{1}
\end{equation*}
$$

which is equal to unity when $x=0$.
They note the relationship of these polynomials to Hankel's functions of imaginary argument and establish among other results:

$$
\begin{align*}
y_{n} & =2^{-n} e^{2 / x} D^{n}\left(x^{2 n} e^{-2 / x}\right) \quad\left(D=\frac{d}{d x}\right) \tag{2}\\
& =\sum_{r=0}^{w} \frac{(n+r)!}{(n-r)!r!}\left(\frac{x}{2}\right)^{r}, \\
y_{n+1} & =(2 n+1) x y_{n}+y_{n-1},
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{C} y_{m} y_{n} e^{-2 / x} d x=\frac{(-)^{n+1} 2 \epsilon_{m n}}{2 n+1} \tag{4}
\end{equation*}
$$

where C is the unit circle or any contour surrounding $x=0$ and $\epsilon_{m n}=0,1$ according as $m \neq n, m=n$.

It seems worthwhile to point out that the polynomials y_{n} are effectively the same as those encountered by T. W. Chaundy and the author in the course of a wider investigation [1]. Recognition of this fact leads to a more economical determination of the principal formulae of [2] as well as to other properties not mentioned by the authors of that paper. I therefore develop in more detail than was previously possible the properties of the polynomials in question.
2. It was shown in [1, pp. 478, 485] that the differential equation

$$
\begin{equation*}
\delta(\delta-2 n-1) y=x^{2} y \quad\left(\delta=x \frac{d}{d x}\right) \tag{5}
\end{equation*}
$$

where n is zero or a positive integer, has the solutions

$$
y=\theta_{n}(x) e^{-x}, \theta_{n}(-x) e^{x}
$$

where θ_{n} is a polynomial of degree n in x defined by

$$
\begin{equation*}
\theta_{0}=1, \theta_{n}=(-)^{n} e^{x}(\delta-1)(\delta-3) \ldots(\delta-2 n+1) e^{-x} \tag{6}
\end{equation*}
$$

Received November 14, 1949.

We note that in θ_{n} the coefficient of x^{n} is unity and that more explicitly

$$
\begin{equation*}
\theta_{n}=\sum_{r=0}^{n} \frac{(n+r)!x^{n-r}}{2^{r}(n-r)!r!} \tag{7}
\end{equation*}
$$

A comparison of (7) with (2) shows that

$$
\begin{equation*}
y_{n}(x)=x^{n} \theta_{n}(1 / x), \tag{8}
\end{equation*}
$$

an identification which may be made without a knowledge of the explicit forms of θ_{n}, y_{n} by observing that, on setting $y=\theta_{n} e^{-x}$ in (5), we obtain

$$
\delta(\delta-2 n-1) \theta_{n}=2 x(\delta-n) \theta_{n},
$$

whence, without difficulty, $x^{n} \theta_{n}(1 / x)$ is a solution of

$$
\begin{equation*}
\delta z+\frac{1}{2} x(\delta-n)(\delta+n+1) z \tag{9}
\end{equation*}
$$

which is the " δ " form of (1).
3. The zeros of θ_{n}, and so of y_{n}, have properties not mentioned in [2]. It was for instance shown in [1], as a corollary to a more general argument, that zeros $a_{r}(r=1,2, \ldots, n)$ of θ_{n} satisfy the relations

$$
\begin{equation*}
\sum_{r=1}^{n} a_{r}^{-1}=-1, \sum_{r=1}^{n} a_{r}^{1-2 s}=0 \quad(s=2,3, \ldots, n) . \tag{10}
\end{equation*}
$$

Hence the zeros b_{r} of y_{n} obey the relations

$$
\begin{equation*}
\sum_{r=1}^{n} b_{r}=-1, \sum_{r=1}^{n} b_{r}^{2 s-1}=0 \quad(s=2,3, \ldots, n) \tag{11}
\end{equation*}
$$

An ad hoc proof of (10) is immediate: for let σ_{k} denote the sum of the k th powers of the zeros of θ_{n} and let $\theta_{n}=e^{x} \phi_{n}$, then

$$
\begin{equation*}
\frac{\phi_{n}^{\prime}}{\phi_{n}}+1=\frac{\theta_{n}^{\prime}}{\theta_{n}}=-\sum_{k=1}^{\infty} x^{k-1} \sigma_{-k} \tag{12}
\end{equation*}
$$

Reference to (6) shows that the expansion of ϕ_{n} in ascending powers contains no odd powers of x of index less than $2 n+1$. In consequence the expansion of $\phi^{\prime}{ }_{n} / \phi_{n}$ contains no even powers of x with index less than $2 n$ and so, on equating coefficients in (12), we have (10).

We may also establish the following results:
(13) The polynomials θ_{n}, θ_{n+1} have no zero in common and no θ_{n} has a repeated zero.
(14) The polynomial θ_{n} has at most one real zero.

Proofs of the statements in (13) are obtained by a familiar argument from the identities ${ }^{1}$

[^0]\[

$$
\begin{align*}
& \theta_{n}^{\prime}-\theta_{n}=-x \theta_{n-1} \tag{15}\\
& \theta_{n+1}-x^{2} \theta_{n-1}=(2 n+1) \theta_{n} \tag{16}
\end{align*}
$$
\]

the latter of which is equivalent to (3).
To establish (15) we observe that

$$
\begin{aligned}
e^{-x} & (\delta-x) \theta_{n}=\delta \theta_{n} e^{-x} \\
& =(-)^{n}(\delta-3)(\delta-5) \ldots(\delta-2 n+1) \delta(\delta-1) e^{-x} \\
& =(-)^{n}(\delta-3) \ldots(\delta-2 n+1) x^{2} e^{-x} \\
& =(-)^{n} x^{2}(\delta-1) \ldots(\delta-2 n+3) e^{-x} \\
& =-x^{2} e^{-x} \theta_{n-1} .
\end{aligned}
$$

Again from (6)

$$
(\delta-2 n-1) \theta_{n} e^{-x}=-\theta_{n+1} e^{-x},
$$

i.e.,

$$
x\left(\theta_{n}^{\prime}-\theta_{n}\right)=(2 n+1) \theta_{n}-\theta_{n+1}
$$

and, substituting on the left from (15), we have (16).
To prove (14) let

$$
z_{1}=e^{-x} \theta_{n}(x), z_{2}=e^{x} \theta_{n}(-x),
$$

then from (5),

$$
z_{1} z_{2}^{\prime}-z_{2} z_{1}^{\prime}=C x^{2 n}
$$

or,

$$
\begin{equation*}
\theta_{n}(-x) \theta_{n}^{\prime}(x)+\theta_{n}(x) \theta_{n}^{\prime}(-x)=2 \theta_{n}(x) \theta_{n}(-x)+C x^{2 n} \tag{17}
\end{equation*}
$$

where C is a constant shown by a simple calculation to be $2(-1)^{n+1}$. Now in $\theta_{n}(x)$ all coefficients are positive and so all real zeros are negative. If possible let $-a,-\beta$ be two consecutive real zeros. Then, from (17),

$$
\theta_{n}(a) \theta_{n}^{\prime}(-a)=C a^{2 n}, \quad \theta_{n}(\beta) \theta^{\prime}{ }_{n}(-\beta)=C \beta^{2 n} .
$$

But $\theta_{n}(\alpha), \theta_{n}(\beta)$ are both positive and so $\theta^{\prime}{ }_{n}(-\alpha), \theta^{\prime}{ }_{n}(-\beta)$ have the same sign which is impossible. Hence θ_{n} has at most one real zero.

It is natural to enquire whether the zeros $\left(b_{r}\right)$ of $y_{n}(x)$, in some order or other furnish the only solutions of the system of equations

$$
\sum_{r=1}^{n} x_{r}=-1, \quad \sum_{r=1}^{n} x_{r}^{2 s-1}=0 \quad(s=2,3, \ldots, n)
$$

This is in fact the case for, if $\left(x_{r}\right)$ is any solution, let $-x_{r}=y_{r}$. Then

$$
\sum_{r=1}^{n} b_{r}^{2 s-1}+\sum_{r=1}^{n} y_{r}^{2 s-1}=0 \quad(s=1,2, \ldots, n)
$$

The elementary symmetric functions $A_{2 s-1}$ of the numbers $\left(b_{r}\right),\left(y_{r}\right)$ taken together therefore vanish when $s=1,2, \ldots, n$ and the $\left(b_{r}\right),\left(y_{r}\right)$ are the roots of an equation

$$
t^{2 n}+A_{2} t^{2 n-2}+\ldots+A_{2 n}=0
$$

containing only even powers of t. To every root t there corresponds a root - t. Now reference to (17) shows that no two zeros of θ_{n} can differ in sign only and the same is therefore true of the $\left(b_{r}\right)$. Hence the $\left(y_{r}\right)$ are the $\left(b_{r}\right)$ in some order or other.
4. A pseudo-generating function for $\theta_{n}(x)$. I establish the formula

$$
\begin{equation*}
\frac{e^{2 x u}}{1-2 u}=\sum_{n=0}^{\infty} \frac{\theta_{n}(x)}{n!}[2 u(1-u)]^{n} \tag{18}
\end{equation*}
$$

for sufficiently small values ${ }^{2}$ of u, from which the generating function for y_{n} and other variants in [2] may be derived. For the right-hand side of (18) is

$$
\begin{aligned}
e^{x} \sum_{n=0}^{\infty} & (-)^{n} \frac{[2 u(1-u)]^{n}}{n!}(\delta-1)(\delta-3) \ldots(\delta-2 n+1) e^{-x} \\
& =e^{x} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-)^{n}[2 u(1-u)]^{n}}{n!}(m-1) \ldots(m-2 n+1) \frac{(-x)^{m}}{m!} \\
& =e^{x} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(-x)^{m}}{m!} \frac{\left(\frac{1}{2}-\frac{1}{2} m\right)_{n}}{n!}[4 u(1-u)]^{n} \\
& =e^{x} \sum_{m=0}^{\infty} \frac{(-x)^{m}}{m!}\left(1-4 u+4 u^{2}\right)^{\frac{1}{2} m-\frac{1}{2}} \\
& =\frac{e^{x}}{1-2 u} \sum_{m=1}^{\infty} \frac{(-x)^{m}(1-2 u)^{m}}{m!} \\
& =\frac{e^{2 x u}}{1-2 u} .
\end{aligned}
$$

5. The authors of [2] have also considered the equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+(a x+b) \frac{d y}{d x}=n(n+a-1) y
$$

or

$$
b \delta y+x(\delta+n+a-1)(\delta-n) y=0
$$

with polynomial solutions $y_{n}(x, a, b)$ made definite by the supplementary condition $^{3} y_{n}(0)=1$. Defining $\phi_{n}(x, a, b) \equiv \phi_{n}$ by

$$
\phi_{n}=x^{n} y_{n}\left(x^{-1}, a, b\right)
$$

we find that ϕ_{n} is a solution of

$$
\begin{equation*}
\delta(\delta+1-a-2 n) z=b x(\delta-n) z \tag{19}
\end{equation*}
$$

${ }^{2}$ We may take conveniently $0<u<\frac{1}{2}$.
${ }^{3}$ It is evident from the second form of the differential equation that the constant b is a mere scale-factor, and nothing would be lost by considering only $b= \pm 1$. I retain b for the sake of comparison with the formulae of [2].
and that $e^{-b x} \phi_{n}$ is a solution of

$$
\begin{equation*}
\delta(\delta+1-a-2 n) w=-b x(\delta-n-a+2) w \tag{20}
\end{equation*}
$$

We note that, if $a=2$, (19) and (20) differ only in the sign of b and that (20) will then have the solutions

$$
e^{-b x} \phi_{n}(x, 2, b), \quad \phi_{n}(x, 2,-b)
$$

leading us back effectively to the theory of $\S 2$.
We observe also that, if $n+a-2$ is zero or a positive integer, (20) will have a polynomial solution of that degree. I now show that equation (20) has the solution

$$
\begin{equation*}
w=(\delta-n-a+1)(\delta-n-a) \ldots(\delta-2 n-a+2) e^{-b x} \tag{21}
\end{equation*}
$$

For

$$
\begin{aligned}
\delta(\delta-2 n-a & +1) w=(\delta-n-a+1) \ldots(\delta-2 n-a+1) \delta e^{-b x} \\
& =(\delta-n-a+1) \ldots(\delta-2 n-a+1)(-b x) e^{-b x} \\
& =-b x(\delta-n-a+2) \ldots(\delta-2 n-a+2) e^{-b x} \\
& =-b x(\delta-n-a+2) w .
\end{aligned}
$$

Recalling that the coefficient of x^{n} in ϕ_{n} is unity we have

$$
\begin{align*}
\phi_{n}(x, a, b) & =(-b)^{-n} e^{b x}(\delta-n-a+1) \ldots(\delta-2 n-a+2) e^{-b x} \tag{22}\\
& =(-b)^{-n} e^{b x} x^{a+2 n-1} D^{n}\left(x^{-a-n+1} e^{-b x}\right)
\end{align*}
$$

the latter form being equivalent to (47) of [2] and to (2) of the present note on setting $a=b=2$. Thus, in addition to the formula (6) for the θ_{n} of $\S 2$, we have

$$
\begin{align*}
e^{-2 x} \theta_{n}(x) & =\left(-\frac{1}{2}\right)^{n}(\delta-n-1) \ldots(\delta-2 n) e^{-2 x} \tag{23}\\
& =\left(-\frac{1}{2}\right)^{n} x^{2 n+1} D^{n}\left(x^{-n-1} e^{-2 x}\right)
\end{align*}
$$

6. The operational methods of the present note enable me to repair one omission in [2], namely the failure to supply a generating function for the polynomials $y_{n}(x, a, b)$. I establish in the first place the result

$$
\begin{equation*}
\frac{(1-u)^{2-a} e^{b x u}}{1-2 u}=\sum_{n=0}^{\infty} \frac{[b u(1-u)]^{n} \phi_{n}}{n!} \tag{24}
\end{equation*}
$$

which reduces to (18) when $a=b=2$. We require the auxiliary formula

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(n-k)_{n}[u(1-u)]^{n}}{n!}=(1-2 u)^{-1}(1-u)^{k+1} \tag{25}
\end{equation*}
$$

which may be proved as follows.
The coefficient of u^{s} in

$$
\sum_{n=0}^{\infty} \frac{(n-k)_{n} u^{n}(1-u)^{n-1-k}}{n!} \text { is } \sum_{n=0}^{s} \frac{(-)^{s-n}(2 n-k-s)_{s}}{n!(s-n)!}
$$

and this is the coefficient of t^{8} in the expansion of

$$
\sum_{n=0}^{s} \frac{(-)^{n} s!}{n!(s-n)!}(1+t)^{k+s-2 n}=(1+t)^{k+s}\left[1-(1+t)^{-2}\right]^{s}=(1+t)^{k-s} t^{s}(2+t)^{s}
$$

in which the coefficient of t^{8} is 2^{s}.
Returning now to (24), on the right we have, by (22) and (25),

$$
\begin{aligned}
e^{b x} \sum_{n=0}^{\infty} & \frac{(-)^{n}[u(1-u)]^{n}}{n!} \sum_{m=0}^{\infty} \frac{(m-2 n-a+2)_{n}(-b x)^{m}}{m!} \\
& =e^{b x} \sum_{m=0}^{\infty} \frac{(-b x)^{m}}{m!} \sum_{n=0}^{\infty} \frac{(n+a-1-m)_{n}[u(1-u)]^{n}}{n!} \\
& =e^{b x}(1-2 u)^{-1} \sum_{m=0}^{\infty} \frac{(-b x)^{m}(1-u)^{m+2-a}}{m!} \\
& =(1-2 u)^{-1}(1-u)^{2-a} e^{b x u},
\end{aligned}
$$

as required. Writing x^{-1} for x and $x u$ for u in (24), we have

$$
\begin{equation*}
\frac{(1-x u)^{2-a} e^{b u}}{1-2 x u}=\sum_{n=0}^{\infty} \frac{b^{n} y_{n}(x, a, b)[u(1-x u)]^{n}}{n!} \tag{26}
\end{equation*}
$$

and, setting

$$
2 u(1-x u)=t, \text { or } 2 x u=1-(1-2 x t)^{\frac{1}{2}}
$$

in (26), we find

$$
\begin{gathered}
{\left[\frac{1}{2}-\frac{1}{2}(1-2 x t)^{\frac{1}{2}}\right]^{2-a}(1-2 x t)^{-\frac{1}{2}} \exp \left[\frac{b}{2 x}\left\{1-(1-2 x t)^{\frac{1}{2}}\right\}\right]} \\
=\sum_{n=0}^{\infty} \frac{(b / 2)^{n} y_{n}(x, a, b) t^{n}}{n!}
\end{gathered}
$$

which may serve as a generating function for the polynomials $y_{n}(x, a, b)$.
7. In this section I assume that a is a positive integer. The results obtained may in certain circumstances be extended to negative integral and zero values of a but at the cost of their ceasing to hold for all n.

In the first place we observe that, when a is a positive integer (20) has a polynomial solution of degree $n+a-2$ and a series solution in ascending powers of x led by $x^{2 n+a-1}$. On the other hand we see that the expansion of the w defined by (21) lacks all terms with indices between $n+a-1$ and $2 n+a-2$ inclusive. The expansion may in fact be divided by this gap into two parts furnishing respectively a polynomial and a series solution. A more important consequence of this gap in the expansion of w is the following. From (21) we have

$$
e^{-b x} \phi_{n}=\sum_{r=0}^{a+n-2} c_{r} x^{r}+\sum_{r=-1}^{\infty} c_{2 n+a+r} x^{2 n+a+r}
$$

where

$$
c_{0}=b^{-n}(n+a-1)_{n}, c_{2 n+a-1}=(-b)^{n+a-1} n!/(2 n+a-1)!.
$$

Suppose now $m<n$; then in the expansion of $e^{-b x} \phi_{m} \phi_{n}$ the term in $x^{m+n+a-1}$ is missing, while in the expansion of $e^{-b x} \phi_{n}{ }^{2}$ the coefficient of $x^{2 n+a-1}$ is $c_{0} c_{2 n+a-1}$. Hence, if C is any contour surrounding $x=0$,

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{C} \frac{\phi_{m} \phi_{n} e^{-b x}}{x^{m+n+a}} d x=\frac{\epsilon_{m n}(-)^{n+a-1} b^{a-1} n!}{(2 n+a-1)(n+a-2)!} \tag{28}
\end{equation*}
$$

and, on changing the variable to $1 / x$,

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{C} \frac{y_{m}(x, a, b) y_{n}(x, a, b) e^{-b / x}}{x^{2-a}} d x=\frac{\epsilon_{m n}(-)^{n+a-1} b^{a-1} n!}{(2 n+a-1)(n+a-2)!} \tag{29}
\end{equation*}
$$

which reduces to (4) when $a=b=2$. The problem of an appropriate weight function when a is not integral has been considered in [2], and to that discussion I have nothing to add.

References

[1] J. L. Burchnall and T. W. Chaundy, Commutative ordinary diferential operators. II. The identity $P^{n}=Q^{m}$, Proc. Roy. Soc. A, vol. 134 (1931), 471-485.
[2] H. L. Krall and Orrin Frink, A new class of orthogonal polynomials: The Bessel polynomials, Trans. Amer. Math. Soc., vol. 65 (1949), 100-115.

Durham, England

[^0]: ${ }^{1}$ It is worthy of notice that, if we define $\theta_{-n}=x^{1-2 n} \theta_{n-1}$ the relations (15), (16) as well as the differential equation

 $$
 \delta(\delta-2 n-1) \theta_{n}=2 x(\delta-n) \theta_{n}
 $$

 are also satisfied for negative integral n.

