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A NOTE ON M-IDEALS 
OF COMPACT OPERATORS 

BY 

CHONG-MAN CHO 

ABSTRACT. Suppose X and Y are closed subspaces of (£Xn)p and 
(LYn)q (1 < p ^ q < oo, dimXfl < oo, dimYn < oo), respectively. If 
K(X, Y), the space of the compact linear operators from X to Y, is dense 
in L(X, Y), the space of the bounded linear operators from X to Y, in the 
strong operator topology, then K(X, Y) is an M-ideal in L(X, Y). 

1. Introduction. Since Alfsen and Effros [1] introduced the notion of an M-ideal, 
an interesting problem has been determining those Banach spaces X and Y for which 
K(X, Y), the space of compact linear operators from X to F, is an M-ideal in L(X, Y), 
the space of bounded linear operators from X to Y. It is well known that if X is Co, 
P{\ < p < oo) or a Hilbert space, then £(X) is an M-ideal in L(X) [6, 13] while K(ll) 
and K(l°°) are not M-ideals in the corresponding spaces of operators [13]. Several 
authors proved that K(lp, lq) when 1 < p ^ q < oo is an M-ideal in L(P, /*) [6, 9, 
12] and &(X,co) is an M-ideal in L(X, Co) f° r every Banach space X [8, 12, 13]. 

Harmand and Lima [5] proved that if X is a Banach space for which K{X) is an 
M-ideal in L(X) then there exists a net {Ta} in /£(X) such that 

(i) Ta —> Ix strongly 
(ii) | |ra | | S 1 for all a 
(iii) T* —> 7X* strongly 
(iv) | | / x - r a | | — 1 . 

Thus, if K(X) is an M-ideal in L(X), then X satisfies the metric compact approximation 
property. A strong converse of this is also true if X is a closed subspace of lp(\ < 
p<oo) [3]. 

Recently Werner [15] proved that for a closed subspace Y of a c0-sum of finite 
dimensional Banach spaces K(X, Y) is an M-ideal in L(X, Y) for every Banach space 
X if and only if Y satisfies the metric compact approximation property. 

Cho [4] observed that if X and Y are Banach spaces and K{X1 Y) is an M-ideal in 
L(X, Y) then the closed unit ball of K(X, Y) is dense in the closed unit ball of L(X, Y) 
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in the strong operator topology, and the converse is also true if F is a closed subspace 
of a co-sum of finite dimensional Banach spaces and X is a reflexive Banach space. 

The purpose of this paper is to prove the analogue of a result of Cho [4] for closed 
subspaces X and Y of F and lq (1 < p ^ q < co), respectively. In Theorem 5 we 
will show that if X and Y are closed subspaces of (lXn)p and (LYn)q (1 < p =? q < 
oo, dimXw < co, dim Yn < co), respectively, and if K(X, Y) is dense in L(X, Y) in the 
strong operator topology, then K(X, Y) is an M-ideal in L(X, Y). Thus, if either X or 
Y has the compact approximation property then K(X, Y) is an M-ideal in L(X, Y). 

The general approach to proving our main theorem is greatly inspired by a paper 
of Cho and Johnson [3]. 

2. Notation and preliminaries. A closed subspace / of a Banach space X is 
called an L-summand if there exists a projection P on X such that PX = J and 
||.x|| = \\Px\\ + ||JC — PA:11 for every x in X. In this case we write X = y 0 i J' where 
J' = (I — P)X. A closed subspace / of a Banach space X is called an M-ideal in X 
if/0, the annihilator of/ in X*, is an L-summand in X*. 

If X and Y are Banach spaces, L(X,Y) (resp. K(X,Y)) will denote the space of 
all bounded linear operators (resp. compact linear operators) from X to Y. If X — Y, 
then we simply write L(X) (resp. K(X)). 

A Banach space X is said to have a finite dimensional Schauder decomposition (F. 
D. D. in short) {Xn}^x if every x in X can be uniquely written as x — Ijcn where 
each xn G Xn and each Xn is a finite dimensional subspace of X. For each n the partial 
sum projection Pn on X is defined by 

( oo \ n 

X I Xi\= X*'where x/ e Xi-
1=1 / 1=1 

By the uniform boundedness principle we have supw ||PW|| < co. A Banach space X 
with a F. D. D. {Xn}™=l is called the /'-sum of { X j ^ and is written X = (IXn)p if 
HZxJ = (Zll^H')1/' for every x = IjcneX with xrt G X„. 

If X is a Banach space, Bx will denote the closed unit ball of X. A Banach space X is 
said to have the compact approximation property (resp. metric compact approximation 
property) if the identity operator on X is in the closure of K(X) (resp. BK{X))

 with 
respect to the topology of uniform convergence on compact sets in X. 

3. M-ideals. As was mentioned earlier, if X is a Banach space for which K(X) is an 
M-ideal in L(X), then X has the metric compact approximation property, equivalently 
BK{X) is dense in #L(X) in the topology of uniform convergence on compact sets in X. 
For a pair of Banach spaces X and Y we have an analogous conclusion. 

THEOREM l.IfX and Y are banach spaces and K(X,Y) is an M-ideal in L(X, Y), 
then BK(X,Y) is dense in ^L(X,F) in the topology of uniform convergence on compact 
sets in X. 
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PROOF. Suppose K(X, Y) is an M-ideal in L(X,F) and suppose L(X,7)* = 
K(X, Y)° 0 i / for a subspace / of L(X, Y)\ Then the map <f> —• <\> + K(X, Y)° defines 
an isometry from / onto L(X, Y)*/K(X, Y)° and hence the map <j> —> <£|tf(x,r) defines 
an isometry from / onto K(X, Y)* via L(X, Y)*/K(X, Y)°. 

Let g be the projection from L(X, 7)* onto / . Then <j> G L(X, F)* is in the range 
of Q if and only if the restriction of </> to K(X,Y) has the same norm as <j>. If 
T G L{XJ) Ç L(XJ)** with ||r|| ^ 1, then for </> = </>{ + fc in L(X,Yf with 
<j)X G K(X,Y)° and </>2 G / we have (G*7>/> = rg(<£i + <fo) = Tfc. Thus g*7 G 
K(X,Y)°° =J* = K(X,Y)**. 

Since Q*7 G K(X, 7)** and | |GT| | ^ 1, by the Goldstine's theorem there is a net 
{Ka} in BKix,Y) such that # a —• g T in the weak*-topology induced by K(X,Y)*. 
Since for each x G X and each j * G T* j * (g) x is in the range of g , we have 

y\Kax) = Ka(y* ®x)-* (Q*T)(y*®x) = y*(Tx). 

This shows that T is in the closure of BK(x,Y) in the weak operator topology and hence 
in the strong operator topology. • 

The above theorem is essentially due to Werner [15] although he restricted attention 
to the case X = Y and the identity map on X. 

LEMMA 2. Suppose E is a Banach space which has a F. D. D. {Xn}^x with the 
partial sum projections {Pn}%L{. Suppose X is a reflexive subspace of E and Y is a 
Banach space. Then for a given e > 0 and T G BK{X,Y) there exists a positive integer 
m such that if x G Bx and \\Pmx\\ = £> then \\Tx\\ ^ 2ae where a = sup„ \\Pn\\' 

PROOF. If the statement were false, then there would exist a sequence {x^} in Bx 
such that ||/>*x*|| = e and ||7JC*|| > loce. Since Bx is weakly compact, by passing 
to a subsequence if necessary we may assume x^ —» x weakly. Since T and P} are 
compact, PjXk —> PjX and Txk —* Tx in norm as k —> oo. If k > j , \\PjXk\\ — 
\\PjPkXk\\ = a\\PkXk\\ ^ ae. Thus \\PJX\\ ^ ae for ally. Since P}x —+x, \\x\\ ^ ae and 
hence ||7x|| ^ ae. This is impossible since ||7JC*|| > 2ae and ||7jfy|| —> ||7JC||. D 

LEMMA 3. [3]. Suppose {Pn}
(^=l is a sequence in K(X)for a Banach space X which 

converges strongly to the identity map on X and K is a weakly compact subset ofX. 
Then for any e > 0 and a positive integer m there exists n = n(m, e)> m such that 

sup min d(PkX,K) < e 
x£K m<k<n 

where d{x,K) — inf{||x — z\\;z G K}. 

PROPOSITION 4. Let X be a separable reflexive Banach space and Y a closed sub-
space of Z = (LYn)q(l < q < oo). If K(X,Y) is dense in L(X,Y) in the strong 
operator topology, then for any T G #L(x,r) there exist sequences { A ^ } ^ in K(X, Y) 
and {Rn}T=\ in BK(X,Z) such that \\(T - Rn)x\\ ^ ||7jt|| for all x G X, \\Rn - Kn\\ —• 0 

https://doi.org/10.4153/CMB-1989-062-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1989-062-8


1989] M-IDEALS 437 

and Qn(T — Rr) = 0 for all r and with r ^ n, where {Qn}™=\ is the partial sum 
projections ofZ. 

PROOF. Let T E #L(*,F) and let {Tn}%L{ be a sequence in K(X, Y) such that Tn^T 
strongly. Since QnT —» T strongly, T — QnT —> 0 strongly in K(X,Z) and for some 
a > 0 \\Tn - QnT\\ < a for all n. 

We claim that Tn — QnT^>0 weakly in K(X1 Z). Since Bx with the weak topology 
and Bz* with the weak*-topology are compact Hausdorff, the product space £2 — 
Bx x Bz* is a compact Hausdorff space. Let C(£2) be the space of all continuous 
scalar valued functions on £2 with the supremum norm. To each S E K(X,Z) we 
assign a function hs on £2 defined by hs(x,z*) = z*(Sx) for (x,z*) E £2. Suppose 
{(zr, z*)} is a net in £2 converging to (x, z*). Then 

|A5(Xr,zT*) - hs(x,z*)\ = \z*T(SxT) - z*(Sx)\ 

^\\S*(z*T-z*)\\\\xT\\ + \S*z*(xT-x)\. 

Since S* is compact and weak*-to-weak continuous, ||5*(z* — z*)|| —> 0, and since 
5*z* E X*,5*z*(xr—x) —-> 0. Hence /i5 is continuous on £2. Since ||5|| = sup |Z*(SJC)| = 
sup|/^(x,z*)| where the supremum is taken over £2, | |5|| = \\hs\\ and hence the map 
S —> hs defines an isometry from K(X, Z) to C(£2). Thus by the Hahn-Banach theorem 
and the Riesz representation theorem for every <j> E K(X,Z)* there exists a regular 
Borel measure [i on £2 such that 

(f)(S) = / z*(Sx)dfi(x, z*) for all 5 E £(X, F). 

As a sequence in C(£2), rw — QnT —» 0 pointwise on 12. 
By the bounded convergence theorem 

<KTn - QnT) = [ z*(Tn - QnT)zd\x(x, z*) -> 0 as « -> oo. 

Thus rrt - g w r —> 0 weakly in tf(X,Z). 
Since Trt — QnT —• 0 weakly in K{X,Z), there exist sequences {A^} in AT(X,F) 

and {/?„} in BK(X,z) such that 

k=an+l k=an+l 

and | | ^ - ^ H —• 0, where A* ̂  0, 
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and {an} is a strictly increasing sequence of positive integers. From the construction 
of Rn it is obvious that \\(T-Rn)x\\ ^ ||7JC|| for all x G X and Qn(T-Rr) = 0 for all 
r > n. • 

Now we are ready to prove the main results. We will use the following char
acterization of M-ideals due to Lima [7]. A closed subspace / of a Banach space 
X is an M-ideal in X if and only if for any e > 0, for any x G Bx and for any 
yt G Bj{i =1 ,2 ,3 ) , there exists y G / such that ||JC + yi — y || < 1+6 for / = 1,2,3. 

THEOREM 5. Suppose X and Y are closed subspace s of (LXn)p and Z = ÇLYn)q, 
respectively (1 < p ^ q < oo, dimX^ < oo, d i m ^ < oo). If K(X,Y) is dense in 
L(X, Y) in the strong operator topology, then K(X,Y) is an M-ideal in L(X, Y). 

PROOF. Let S i , ^ , ^ G BK(X,Y) and T G #L(X,K)- We will show that for a given 
r] > 0, there exists K G £(X,F) such that ||S/ + T - K\\ < 1 + r\(i = 1,2,3). Let 
{Pn}^\ and {Qn}%\ be the partial sum projections of (lXn)p and (XF„)^, respectively. 
Using {Qn}%L\, we choose sequences {Kn}^ in £(X, F) and {Rn}^L\ in BK(X,Y) as in 
Proposition 4 so that ||£„-/?„|| —> 0, Qn(T-Rr) = 0forr>n and ||(r-7?rt)jc|| ^ ||7JC|| 

for all x eX. 
Fix 0 < e < 1. By Lemma 2, Proposition 4, and the compactness of the norm 

closure of |J / = 1 St(JBx) we can choose m so that 

(0 \\Si - QmSi\\ < e for / = 1,2,3, and \\Rn - Kn\\ <eforn^m 

(//) if x G Bx and \\Pmx\\ ^ e then ||5/JC|| ^ 2e for i = 1,2,3. 

By Lemma 3, we choose N > m so that for every JC G Bx there exists A: = k(x) 
(m ^ k < N) such that d{Pkx,Bx) < e. For x G X with ||x|| = 1, let k = £(x) and 
pick xi G #x with \\PkX — *i || = e. Set X2 = JC — JCI- Then we get 

(iii) ||(/ -Pk)xx\\ ^ e, ||P*jr2|| ^ c and ||*2|| ^ ||(/ -Pk)x\\ + e. 

Choose r > N so that 

(/v) ||(7 — /?r)jc|| ^ 4e for every JC in the set A = {x G X : 

||JC|| ^ 1 and \\(I -PN)x\\ ^ e}. 

This is possible since A has a 3e-net, ||T — Rn\\ ^ 1 and T — Rn —> 0 strongly. By (i), 
we have 

||5l- + r - ^ r | | < | | G w 5 I - + r - / ? r | | + 2 c . 
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For x G X with ||JC|| = 1, we write x = x\ + x2 as in (iii). Then for / = 1,2,3, 

WQmSiX + iT-R^xW* 

= WQmSiXi + emS/^2 + (T ~ Rr)Xl + ( 7 - /? r)*2 | |« 

< (ll&nS,*! + ( r - Rr)x2\\ + 4e + 4e)« by (ii)-(iv) 

= WQmSiXx \\q + ||(r - / ^ H * +/(c) (/(c) — 0 as 6 — 0) by Proposition 4 

^ ||jc1|^ + ( l+c)^ | | jc 2 | | / ,+/(e) since ||jd|| ^ 1 and ||JC2|| ^ 1+e 

^ (||/Vt|| + ef + (1 + e )^ ( | | ( / - />*)*|| + ef +/(e) by (iii) and | | /V - *i || ^ e 

= UMP7 + ||(/ - Pk)x\\p+g(e) (g(e) — 0 as 6 — 0) 

= l+*(e) . 

Thus for i = 1,2,3, 
||5/ + r - ^ | | ^ ( l + ^ ( e ) ) 1 ^ + 2e. 

Now choose e > 0 so that (1 + g(e))xlq + 2e < 1 +17 and let K = ^ r . • 

COROLLARY 6. Suppose X and Y are as in Theorem 5. 7f e/f/ier X of Y has the 
compact approximation property, then K(X, Y) is an M-ideal in L(X, Y). 

PROOF. Suppose Y has the compact approximation property. Let T G L(X, Y). UK 
is a compact subset of X, then T(K) is a compact subset of Y. Hence for any e > 0, 
there exists a compact operator S from F to y such that \\Sy— y\\ < e for all y G T(K). 
Thus \\STx - Tx\\ < e for all x G K. Since 51 G £(X, Y\ K(X, Y) is dense in L(X, 7) 
in the strong operator topology. By Theorem 5, K(X, Y) is an M-ideal in L(X, Y). The 
proof of the other case is similar. • 

Cho and Johnson [3] proved that if X is a separable reflexive Banach space which 
has the compact approximation property, then X has the metric compact approximation 
property. Theorem 5 gives a short proof of this for closed subspace X of (LXn)p 

(1 <p < 00, dimX„ < 00). 

COROLLARY 7. IfX is a closed subspace of(IXn)p (1 < p < 00, dimXw < 00) which 
has the compact approximation property, then X has the metric compact approximation 
property. 

PROOF. By Theorem 5, K(X) is an M-ideal in L(X) and hence satisfies the metric 
compact approximation property. • 
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