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Abstract

It is shown that a variety V has distributive congruence lattices if and only if the intersection of two
principal congruence relations is definable by equations involving terms with parameters. The nature of
the terms involved then provides a useful classification of congruence distributive varieties. In particular,
the classification puts into proper perspective two stronger properties. A variety is said to have the
Principal Intersection Property if the intersection of any two principal congruence relations is principal,
or the Compact Intersection Property if the intersection of two compact congruence relations is compact.
For non-congruence-distributive varieties, it is shown that some useful constructions are nevertheless
possible.
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1. Introduction

For congruence-distributive varieties of algebras, the importance of the structure of
the intersection of two principal congruence relations has long been evident [4,5]. In
particular, many such varieties, especially some familiar from algebraic logic, satisfy
one or both of these two strong properties: A variety V has the principal intersection
property (PIP) if in each algebra in V the intersection of any two principal congruences
is principal, or the compact intersection property (CIP) if the intersection of any two
compact congruences is compact [4]. Blok and Pigozzi [9] have shown that, for a
variety, the CIP and congruence distributivity together are equivalent to the definability
of the intersection of two principal congruences by finitely many equations without
parameters.
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[2] Congruence intersection properties 105

In Section 2 it is shown that, for a variety, congruence distributivity itself is equiv-
alent to the definability of the intersection of two principal congruence relations by
equations (perhaps infinitely many), possibly with parameters. This perspective yields
a classification of congruence-distributive varieties into four categories, one of which
consists of varieties with the CIP. Section 3 shows that, nevertheless, the PIP and
the CIP have some applicability for non-congruence-distributive varieties; a lifting
theorem for reducts provides a useful construction. In Section 4, this construction is
seen to yield more detailed information in the congruence distributive case, with some
instructive examples.

General references are [13,15,18]. The principal congruence relation generated
by identifying a,b e A will be denoted by $A(a, b). Compact congruence relations
can be characterized as those that are a join of finitely many principal congruence
relations. If a variety has the CIP, then the compact congruences of any member of
the variety form a sublattice of the congruence lattice. Note that the CIP and the PIP
are not as close in concept as it may seem; the CIP is purely lattice-theoretic and
depends only on the congruence lattice up to lattice isomorphism, while the PIP may
depend on the specific operations of the variety (Example 4.4 and Example 4.7).

This project originated from a search by the first author for examples of congruence
distributive varieties with the CIP but not the PIP. Several such examples are presented
in this paper.

2. Congruence distributivity and intersection properties of congruences

Let V be any variety. A system of congruence intersection terms with parameters
for V is a family {(p,, q,) : i e /} of pairs of terms in variables x, y, z, w, w0, « i , . . .
such that for every A € V and a,b,c,d € A

(2.1) 0A(a, b) n 0A(c, rf) = V V *A(P/(fl, b, c, d, e),«?,(«, b, c, d, e)),

where p,(a, b, c, d, e) denotes p,(a, b, c, d,e0,... , eni) and similarly for qt. Thus in
the presence of such a system, the intersection of two principal congruence relations
can be described in an explicit uniform way. It will be shown that the existence of
such a system is equivalent to congruence distributivity (Theorem 2.4).

In a system of congruence intersection terms, it may be possible to choose /
finite or not, and the parameters may be needed or not. Thus we obtain a four-way
perspective on congruence distributive varieties, depicted schematically in Figure 1,
which embodies a number of assertions to be justified below.

In this section, for the free algebra on generators x,y,z, ••• let us write F(x, y,
z,...). For a surjection <p : A -> B, let (j>* : Con(A) -> Con(B) be the induced
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106 Paolo Agliano and Kirby A. Baker [3]

finite

infinite

without parameters

Any congruence distributive
variety with the CIP.
(Corollary 2.7)

The variety of Ockham algebras.
(Example 4.3)

with parameters

Any variety generated by
a finite nondistributive lattice.
(Example 2.9)

The variety of all lattices.
(Example 2.10)

FIGURE 1. The four-way classification

map on congruence lattices. As observed in [4, Lemma 1.11], 0* preserves arbitrary
joins and principal congruences, and in the presence of congruence distributivity
preserves (finite) meets as well. The next lemma characterizes systems of congruence
intersection terms with parameters.

LEMMA 2.1. (But see also [4].) Let V be a congruence distributive variety and let

{(/> M <7i) : i € 1} be a family of pairs of terms in variables x,y,z,w, u0, uu Then
the following are equivalent.

(1) The family is a system of congruence intersection terms with parameters for V.
(2) In any subdirectly irreducible algebra A 6 V,for any a, b, c,d € A,

(2.2) ptia, b, c, d, e) = qt(a, b, c, d, e) for all i e I and all e e A "

if and only if a = b or c = d.

PROOF. That (1) implies (2) is evident from the fact that 0A e Con (A) is meet-
irreducible. To verify that (2) implies (1), let A € V and a, b, c, d,eo,eu... e A.
Since Con(A) is an algebraic lattice, any congruence is the intersection of completely
meet irreducible congruences. Thus it is enough to show that, if <p is completely meet
irreducible in Con(A),

&A(a, b) n #A(c, d) <<p if and only if

&A(Pi(a, b, c, d, e), qt{a, b, c, d, e)) <<p, i e I, e 6 A01.

Let B = \/<p. Then B is subdirectly irreducible and, since V is congruence distribu-
tive, the equivalence above becomes

, b/<p) fl &B(c/(p, d/<p) = OB if and only if

i(a, b, c, d, e)/<p, qt{a, b, c, d, e)/<p) = 0B, i G / , e € Aa.

Since B e V this holds by hypothesis. •
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COROLLARY 2.2. Under the equivalent conditions of Lemma 2.1, an algebra A is
finitely subdirectly irreducible if and only if condition (2.2) holds.

PROOF. Finite subdirect irreducibility is equivalent to the condition that 0A €
Con (A) be meet-irreducible, which is in turn equivalent to the condition that #A (a,b)D
#A(C, d) = 0A if and only if $\(a, b) = 0 or #A(c, d) = 0, an assertion expressed by
condition (2.2). •

LEMMA 2.3. Let V be a congruence distributive variety and consider a family
of pairs of terms {(/?,,#,) : i € 1} in variables x,y, z,w, u0, u{, If in the
free algebra F = F(JC, y, z, w, uo,uu...), the family describes &T(X, y) D #F(z, ID),
without needing quantification over parameters,

(2.3) &r(x, y) n &F(z, w) = V 0F(Pi(*. y, z, w, u), qt(x, y, z, w, u)),

then the family is a system of congruence intersection terms with parameters for V.

PROOF. Regard (2.1) as a pair of inclusions. For the right-to-left inclusion, observe
that the following laws hold for each i e I:

(2.4) pi(x,x,z, u>,u0 Mn,) ^qi(x,x,z, w, u0,... ,«„,),

(2.5) pi(x, y, z, z,u0,... , «„.) « qt{x, y, z, z, u0,... , un,).

The first of these laws can be verified by mapping F onto a free subalgebra of F by
sending y to x and other generators to themselves; the second law is similarly derived.

To verify the opposite inclusion in (2.1), first consider the case where A e V i s
countably generated, say by e0, e\, Then we can map x H* a, y i-> b, z i->- c,
w \-+ d, and Uj i-»- e, to get a surjection 0 : F ->• A. Since <j>* is a join-complete
lattice homomorphism preserving principal congruences, the left-to-right inclusion in
(2.1) holds even without quantifying over parameters.

For arbitrary A observe that, by the Mal'tsev construction of principal congruences,
any inclusion &\(r, s) c i?A(a, b) D I?A(C, d) can be verified within a finitely (hence
countably) generated subalgebra of A. It follows that

(Pi<-a> b> c' d< e ) ' 9i(a, b, c, d, e)) .

D

THEOREM 2.4. Fora variety V the following are equivalent.

(1) Vis congruence distributive.
(2) V fazs a system of congruence intersection terms with parameters.
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PROOF. AS already remarked, [4, Theorem 3.4] proves the implication from (1) to
(2) An alternative proof is immediate from Lemma 2.3: In the presence of congruence
distributivity, merely expressing d(x, y) D #(z, w) as a join of principal congruences
in F(x, y,z,w,uo,ui,...) gives a system of congruence intersection terms.

For the converse, it is illuminating to work with maps on congruence lattices
induced by surjections of algebras. Observe that if such maps in a variety do preserve
finite meets then the variety must be congruence distributive. Indeed, for a surjection
</>: A -> B, the map <j>* : Con(A) —> Con(B) is equivalent under the correspondence
theorem to the map 6 \-> 9v ker </> of Con (A) to itself, for which preservation of meets
gives the distributivity of joins with ker<£. Here ker$ could be any congruence.

Given (2), then, and a surjection <f> : A -* B, observe that by the preservation
properties of (f>* and the definition of a system of congruence terms, <j>* at least
preserves the intersection of two principal congruences. We need to show that (f>*
preserves the intersection of two arbitrary congruences, 6X and 62. Suppose by way of
contradiction that

(2.6) 4>*(9lne2)<<p*(01)n<t>*(e2).

Extend the left-hand side of equation (2.6) to a completely meet-irreducible congru-
ence f onB not containing the right-hand side. Factoring out \j/ in the inequality (2.6)
amounts to a reduction to the case where B is subdirectly irreducible and the left-hand
side of equation (2.6) is 0B. Then 0*(#i) and <p*(92) both contain the monolith of B, a
fact that remains true if 0\ and 92 are replaced by a suitable principal congruence under
each. But then we have a contradiction of the observation above that </>* preserves the
intersection of two principal congruences. •

A system of congruence intersection terms without parameters is simply a system
with parameters in which the terms do not actually use the parameters:

#(a, b) n »(c, d) = \/ &(Pi(a, b, c, d), qt{a, b, c, d)).
16/

By Theorem 2.4 varieties with such a system are necessarily congruence distributive
(as shown directly in [9]). These varieties are characterized as follows.

THEOREM 2.5. For a congruence distributive variety V, the following conditions

are equivalent:

(1) V has a system of congruence intersection terms without parameters.
(2) There is a cardinal K such that in algebras of V, the intersection of two principal

congruences is the join of at most K principal congruences.
(3) Any nontrivial subalgebra of a finitely subdirectly irreducible algebra in V is

finitely subdirectly irreducible.
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PROOF. That (1) implies (2) is immediate, taking K = | / | . To verify that (2) implies
(1), choose an infinite cardinal K' > K and in the free algebra F(x, y,z,w, [UJ , j <
K'}) write &(x, y) D $(z, w) as a join of principal congruences,

iel

where />,,<?, are terms evaluated on the generators and | / | < K. Thus infinitely
many generators w; are not involved in any pt or #, and so there exists a surjection
a : F(x,y,z,w,{uj,j < K'}) -»• F(x, y, z, w, {Uj,j < &>}) taking x, y, z, w to
themselves, all Uj involved in some p , or q, to x, and each remaining Uj to some Uy
with; ' < oj. The images cr(/>,),cr(g,), / e / satisfy the hypotheses of Lemma 2.3 and
so form a system of congruence intersection terms, without involving any parameters.

To show that (1) implies (3), observe that by Corollary 2.2, finitely subdirectly
irreducible algebras are characterized by an infinitary universal sentence, namely

Vxyzw /\(pt(x, y, z, w) ^ qt(x, y, z, w)) -*• (x « y) V (z « w) \.
I.*/ J

To show that (3) implies (1), take any system of congruence intersection terms with
parameters (which exists by Theorem 2.4). Replacing the parameters by terms in
x, y, z, w in all possible ways, we obtain a new system of pairs of terms in x, y, z, w
alone. Now checking (2.2) for this new system reduces to checking (2.2) for the old
system in the subalgebra B generated by a, b, c, d. But (2.2) holds in B by Corollary
2.2, since B is finitely subdirectly irreducible. Now Lemma 2.1 yields the thesis. •

We say that a variety has the CIPn if it has a finite system of congruence intersection
terms without parameters {(/?,, qt) : i = 1 , . . . , n}. Any such variety, is congruence
distributive and has the CIP (just use distributivity). On the other hand, any congruence
distributive variety with the CIP must have a system of congruence intersection terms
without parameters (take K = a> in Theorem 2.5). In actuality something even stronger
holds:

COROLLARY 2.6. Let V be a congruence distributive variety with the CIP. Then
any system of congruence intersection terms without parameters can be reduced to a
finite one.

PROOF. Let {(/>,, qt) : i € /} be a system of congruence intersection terms without
parameters for V. In the free algebra F = F(x, y,z,w,uo,uu...)we have

&F(X, y) n #F(z, w) = \/ &F(Pi(x, y, z, w), <?,(*, y, z, w)).
16/
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110 Paolo Agliano and Kirby A. Baker [7]

Since V has the CIP there must be iu ... ,in € I such that

,w)= \J &F(pij(x,y,z,w),qij(x,y,z,w)).

From Lemma 2.3, it follows that {(p^, qtj) : j = 1 , . . . , n] is a finite system of
congruence intersection terms without parameters for V. •

COROLLARY 2.7. (See also [4,9]) For any nontrivial variety V the following are
equivalent.

(1) V is congruence distributive and has the CIP.
(2) V has the CIPn for some n.

In particular, a congruence distributive variety V has the PIP if and only if there are
4-ary terms p , q such that for any A e V and a,b,c,d € A

&A(a, b) n i?A(c, d) = VK{p{a, b, c, d), q(a, b, c, d)).

COROLLARY 2.8. ([4, Theorem 2.15]) IfV has the CIPn, then the class of finitely
subdirectly irreducible algebras in V is strictly elementary, relative to V.

EXAMPLE 2.9. Let V be the variety generated by a finite nondistributive lattice, say
the pentagon N5. By the construction in Section 3 of [4], V has a finite system of
congruence intersection terms with parameters. We cannot dispose of the parameters
by Theorem 2.5: the three-element chain is subalgebra of N5, but it is not finitely
subdirectly irreducible.

EXAMPLE 2.10. The construction in Section 3 of [4] shows that the variety L of all
lattices has an infinite set of congruence intersection terms with parameters. Such a
system can be reduced neither to an infinite set without parameters, nor to a finite set
with parameters.

EXAMPLE 2.11. Filtral varieties were introduced by Magari [16]; the most ac-
cessible reference is [17] but see also [7,8,10,11]. A variety V is filtral if every
congruence on a subdirect product A C n,e /B, of subdirectly irreducible algebras
B, 6 V, i e / is of the form 6F, where F is a filter on / and (a, b) e 9F if and
only if [i e I : a,; = bt} e F. A nontrivial variety V is filtral if and only if the
compact congruences on each algebra in V form a dual generalized Boolean algebra
[7]. It follows immediately that any filtral variety has the CIP. Examples include
distributive lattices, Boolean algebras, and some other varieties from algebraic logic.
Filtral varieties will be used further in Section 4.
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3. Non-congruence-distributive varieties

In the absence of congruence distributivity, the situation is much more complicated.
By Corollary 2.7 above the CIP and the PIP are not expressible via terms, nor can we
affirm that the PIP implies the CIP.

Therefore verifying the CIP or the PIP for a non-congruence-distributive variety
can be difficult. Fortunately there is a 'lifting' theorem for reducts that applies to any
variety V, congruence distributive or not. Let F c Clo(V). Let RdF(A) denote the
F-reduct of A for A e V and let RdF(V) denote the variety generated by the F-reducts
of algebras in V.

THEOREM 3.1. Let V be any variety. Suppose that

(1) for some F C Clo(V), RdF(V) has the CIP;
(2) any principal congruence of any A € V is compact in Con(RdF(A)).

Then V has the CIP.

PROOF. A compact congruence a on A € V remains compact in Con(RdF(A)),
since a is the join of finitely many principal congruences of A, each of which is
compact in Con(RdF(A)). For compact a, fi e Con(A), a n fi is then compact in
Con(Rdf (A)) by hypothesis and hence is compact in Con(A), because a compact
element in a lattice remains compact in any complete sublattice containing it. •

One particular instance of Theorem 3.1 is very useful. Let V be a variety and let
S be a semigroup acting endomorphically on the elements of V. In other words, for
each A e V and a e S there is an endomorphism of A, also called a, such that for
any a, r € S and a € A

<T(T(fl)) = (OTT)(fl).

For any A = (A, F) € V let A[S] = (A, F, S) e V[S] be the corresponding algebra
in which the endomorphisms in the action of S are considered additional operations.
Let V[S] be the variety generated by the algebras A[S] for A e V. The endomorphic
action of S on the members of V is expressible by laws of V[S].

LEMMA 3.2. Let V be a variety and let S be any semigroup acting endomorphically
on V. Then for any A e V and any a,b e A

(3.1) *Ais](a, b) = \ / 0A

<reS

PROOF. We may assume without loss of generality that S has an identity element.
One of the many versions of the Mal'tsev construction of principal congruences is as
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follows. Starting with (a, b) form additional pairs by repeatedly applying the unary
polynomials that are obtained from the basic operations by fixing all variables except
for one. The equivalence closure of such a set of pairs is the principal congruence
generated by (a,b).

Observe that in our case a composition of endomorphisms following a unary polyno-
mial can be rewritten as a unary polynomial following the endomorphisms; moreover,
since S is closed under composition, it is sufficient to apply just one endomorphism
preceding unary polynomials. In other words, to compute #A[S](G, b), one can start
from {a,b), then apply an endomorphism, then the unary polynomials necessary for
computing ft\(a, b) and finally take the transitive closure. But this is precisely what
(3.1) asserts. •

A straightforward application of Theorem 3.1 yields the following fact.

PROPOSITION 3.3. Let V be a variety and let S be a finite semigroup acting endo-
morphically on V. IfV has the CIP, so does V[S].

COROLLARY 3.4. Let A = (A, / i , . . . , fk) be a finite algebra generating a variety
with the CIP. Let olt... ,on be endomorphisms of A and let A' = {A,f\,... ,/*,
a, an). Then V(A') has the CIP.

PROOF. Since A is finite the endomorphism monoid S generated by cru ... ,an

and the identity function is finite. Then V(A[S]) has the CIP, via Proposition 3.3.
But clearly a member of V(A') has the same congruence lattice as the corresponding
member of V(A[S]). •

Let us apply these results to unary varieties (varieties in which every basic operation
has arity at most 1). First, observe that the variety of sets with no operations has the
PIP and CIP, since compact equivalence relations in a partition lattice form an ideal
and principal equivalence relations are atoms.

Since an endomorphism of a set is just a unary function, any variety V of unary
algebras can be viewed as S[M], where 8 is the variety of sets and M = (Clo(V), o).
Since the variety of sets has the CIP, from Proposition 3.3 and Corollary 3.4 we get at
once.

PROPOSITION 3.5. If V is a variety of unary algebras and Clo(V) is finite, then V
has the CIP. Any finitely generated variety of unary algebras has the CIP.

Actually, something more can be proved with a slightly different argument.

PROPOSITION 3.6. Any locally finite variety of unary algebras has the CIP.
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PROOF. Let V be locally finite and let A € V. Any compact congruence 0 of A is
generated by finitely many pairs of elements. Since A is unary the only nonsingleton
blocks of 8 are contained in the subalgebra generated by those elements. This sub-
algebra must be finite since V is locally finite. Hence a congruence of A is compact
if and only if it has finitely many nontrivial blocks, all finite. Thus the compact
congruences of A form an ideal in the congruence lattice of A and so are closed under
intersection. •

In general varieties of unary algebras do not have the PIP. Choose any algebra
A without the PIP and consider the algebra B = {A, Pol^A)). Then the variety
V = V(B) will not have the PIP and, if A is finite, V will be locally finite.

For varieties of monounary algebras (just one unary operation / ) a full characteri-
zation of the PIP can be given. First, two key examples.

EXAMPLE 3.7. If a monounary algebra A is 1-generated, then all congruence rela-
tions on A are principal, so that A has the PIP.

EXAMPLE 3.8. Let Am „ = Cm UCn, the disjoint union of an w-cycle and an n-cycle
as monounary algebras. If 1 < gcd(m, n) < m, n, then A does not have the PIP.
Indeed, if a generates Cm and b generates Cn, then &\(a, b) n #A(a,/(Z>)) is not
principal.

PROPOSITION 3.9. For a monounary variety V the following are equivalent.

(1) V has the PIP;
(2) Am,n i Vfor 1 < gcd(/n, n) <m,n;
(3) V satisfies the law fk+h(x) « /*(*). far some k > 0 and h > 1, where h is

either a power of a prime or the product of two distinct primes.

PROOF. (Outline.) Example 3.8 shows that (1) implies (2). It is also evident
that (3) implies (2), since in A m n with 1 < gcd(m, n) < m,n any law of the form
in (3) fails. That (2) implies (3) follows in the contrapositive from representing
A m n as a homomorphic image of Fv (2 ) = F v ( l ) U F v ( l ) (unless V satisfies a law
/ ' (*) % f' 0 0 , a case handled separately). Finally, the implication from (2) to (1) is
best approached through the lemma that the restriction of a principal congruence to a
subalgebra is again principal; in considering an intersection &A.(a, b) D &A.(C, d) one
can then assume that {a, b] and {c, d] generate the same subalgebra, thus leading to
examples of the form Am „ of which (2) excludes those lacking the PIP. HI

4. Applications to congruence distributive varieties

For congruence distributive varieties, we can refine the results of Section 3, for two
reasons. The first is that Lemma 3.2 will hold for any semigroup of endomorphisms,
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finite or not. The second is purely lattice-theoretic; congruence lattices in such
varieties are distributive algebraic lattices and so satisfy the join infinite distributive
identity (JID). For any a e L and for any family (£;).<=/ 9 L

iel iel

THEOREM 4.1. Let V be a congruence distributive variety and let Sbea semigroup
acting endomorphically on V. If pt(x, y, z, w), qi{x, y, z, w), i G I, is a system of
congruence intersection terms without parameters for V, then

Pi(x, y, a(z), o{w)), qi(x, y, a(z), (r(w)), i e /, o e 5,

form a system of congruence intersection terms without parameters for V[S\.

PROOF. Note that, since we can add an identity to S, with no loss of generality we
may safely assume that S2 = S.

If A' = A[S] G V[S] and a, b, c, d G A, then by Lemma 3.2 and by the JID (applied
twice)

= V *A(<r(a), <r(b)) n \f *A(T(C), x{d))
aeS zeS

a.zeS

= V \J»A<J>i(°(a),°(b),T(c),T(d)),qi(a(a),gma(b),T(c),T(d))).
a,zeS iel

On the other hand, again by Lemma 3.2,

>,(a, b, r(c), r(d)), qi(a, b, r(c), r(d)))

= V \/#A(<y[Pi(a,b,T(c),T(d))l°[qi(a,b,T(c),T(d))])
z.aeS iel

= V \/VA(Pi(<T(a),a(b),ar(c),(TT(d)),qi((j(a),a(b),aT(c),ar(d)))
z.aeS iel

= V \f^A(Pi^(a),a(b),r(c),r(d)),qi(a(a),a(b),T(c),r(d)))

reS i€

iel

where the last equality holds since S2 = S. We have thus shown that the chosen terms
do form a system of congruence intersection terms for V[S]. •
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From Theorem 4.1 it is clear that, if we start from a congruence distributive variety
V with the CIPn and S is finite, then the CIPm holds for V[S] for some m. To what
extent can we determine m? It is clear that the cardinality of S plays an important
role, while the constant endomorphisms do not contribute.

PROPOSITION 4.2. Suppose that V is a congruence distributive variety with the
CIPn. Let S be a finite semigroup acting endomorphically on V and suppose that
\{a e S : o is not constant}] = k. Then V[S] has the CIPm for m = kn.

Our results can be applied to those varieties dubbed M-BD by Cornish in [14] and
to their subvarieties. The algebras of M-BD are bounded distributive lattices with a
semigroup S of endomorphisms or dual endomorphisms acting on them. If T> is the
variety of distributive lattices, then in our notation these varieties are D[S] for some
S. If we take S to be the absolutely free monoid on one generator, then we get the
variety of Ockham algebras, which is a good source of examples. In particular such
a variety has an infinite system of congruence intersection terms without parameters
for which no finite system can be found.

EXAMPLE4.3. An Ockham algebra is an algebra {A, v, A , / , 0,1), where
(A, v, A, 0, 1) is a bounded distributive lattice and/ is a dual lattice endomorphism:
for any a,b € A

f(avb)=f(a)Af(b) f(aAb)=f(a)yf(b) /(0) = l /(l)=0.

Let X be the variety of Ockham algebras and let Xp,q(p > 1, q > 0) be the variety
of Ockham algebras satisfying

The varieties X and Xpi9 were introduced by Berman in [6]. Such varieties encompass
many previously studied varieties; for instance the subvariety of Xuo given by the
equation x A f (x) « 0 is the variety of Boolean algebras. Boolean algebras give
evidence that Proposition 4.2 does not exclude having V[S] satisfy the CIPm' for some
m! < m. Distributive lattices have a majority operation m(x, y, z) and the unique
subdirectly irreducible algebra is the two-element chain. Given that, it is easily
checked that the variety of distributive lattices has the PIP, witness p(x, y, z, w) =
m(x, y, z) and q(x, y, z, w) = m(x, y, w). It follows that Boolean algebras have at
worst the CIP2. However Boolean algebras form a discriminator variety, so in fact
they have the PIP (see for instance [12]).

Next the subvariety of 3CM likewise determined by x A / (x) «s 0 is the variety
of Stone algebras, and finally the variety Xit0 is the variety of de Morgan algebras.
This is a very interesting variety which will be discussed at length in [2]. For more
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information about varieties of Ockham algebras we direct the reader to [1] and to the
extended bibliography therein.

To construct an infinite system of congruence intersection terms for X itself, observe
that by Lemma 3.2 (but see also [6, Theorem 1]), if A € X and a, b e A

where A.d is the underlying distributive lattice. Hence, if m(x,y,z) is the usual
majority term for distributive lattices, a set of congruence intersection terms without
parameters for X is

m(x,y,f(z)), m(x,y,f\w)), neco.

(Note that from Proposition 4.2 it follows that each variety Xp,, has the CIPn for
n = 2p+q- 1.)

To prove that no finite system of congruence intersection terms without parameters
can be found for X it would be enough to show that X does not have the CIP, hence
to display an Ockham algebra in which the meet of two principal congruences is
not compact. However since the varieties Xp,q and their subvarieties coincide with
varieties of finite height (see [1]) such an example might be hard to construct. Thus
we adopt indirect reasoning, based on Corollary 2.6.

If3ChadtheCIP,thenbyCorollary2.6thesystemm(^,>',/n(z)), m(x,y,f(w)),
n e u> could be reduced to a finite one. Hence there would be a k such that for all
A 6 X and a,b,c,deA

= \ / #A(m(a,b,fn(c)),m(a,b,f(d))).
0<n<k

We shall produce an algebra L € X and elements of L for which no such k can exist.
Let L = {0, 1} U {an : n e 1} considered as a 0, 1 chain. In other words 0 is the

smallest element, 1 the largest, and an < am if and only if n < mini. Define a unary
operation / on L by / (0) = 1, / (1) = 0, / («o) = Oo, / (an) = a_(n-i) if n > 0 and
/ (an) = a.-n if n < 0. The following facts are easily checked.

• L = (L, v, A , / , 0,1) is an Ockham algebra.
• Con(L) is an ordered chain isomorphic to co + 2 and hence L is subdirectly

irreducible.
• The monolith of L is #L(OO. a{), which has a unique nontrivial block consisting

exactly of ao and at.
• Any compact congruence of L collapses only finitely many elements except for

the total congruence #L(0, 1). Itfollows that in L the intersection of two compact
congruences is compact.
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Now, for any c ^ d in L with c < d, we must have

, a,) = #L(<7o, a.) n 0L(c, </) = \ / J>A(m(ao, fli,/"(c)), mfo,, a,,
new

= V *A(OI A (ao V / " ( C ) ) , a, A (ao V/"(</))).

Since J?A(«O» «I) is completely join irreducible,

i?A(ao, a,) = 0A(«I A (a,, v/*(<;)), a, A fa V / *

for some h and hence [a0, a\} = {«! A (ao v /"(c) ) , ai A
Next observe that, in L, if x, >> > a ! o r x , j <ao then

|flo,ai) ^ {«i A (ao vjc),ai A (ao v y)}.

If 3C had the CIP, say the CIPt for some k, then such an h would lie between 0 and k.
But for any choice of k > 1 take c = ak and d = ak+i in L; then

ak,ak+i > a,

f(ak),f(ak+i) < ao

f2{ak),f
2{ak+l)>ax

fk(ak),f
k(ak+1) < OQ if k is odd

fk{ak),f
k(ak+l)>ax iffciseven.

This shows that no such k can exist and hence % does not have the CIP.

We are now able to give an example to show that the PIP for an algebra does
not depend solely on the isomorphism type of the congruence lattice. This example
illustrates a failure of the PIP in an explicit way; however the algebra and its variety do
have the CIP. The construction is based on the observation that, in a chain, collapsing
an interval [a, b] gives a principal congruence relation but collapsing two disjoint
intervals simultaneously does not.

EXAMPLE 4.4. LetB = ({0, 1, 2, 3,4}, v, A) regarded as a finite distributive lattice.
Let O\, (j2 be the endomorphisms described by the following tables:

ox 1 0 1 2 3 4 <72 I 0 1 2 3 4
0 0 0 i T 3̂  3 4̂  4 4~
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Any nontrivial distributive lattice generates the variety of distributive lattices, so
Corollary 3.4 applies to show that the algebra B' = ({0, 1, 2, 3, 4}, v, A, CT,, a2)
generates a variety with the CIP. This variety does not have the PIP, though, since B'
does not; in Con(B') as shown in Figure 2, the element cp = ^«(0, 2) n #B'(2, 4) =
#B'(3, 4) v #B'(0, 1) is not principal. Moreover, since both O\ o a2 and a2 o ax are
constant we can conclude by Proposition 4.2 that V(B') has the CIP3.

FIGURE 2. The congruence lattice of B'

Consider A = B ' / # B ' ( 1 , 2 ) and let C = A x A. Then Con(A) is the three-
element chain (by Figure 2) and A has the PIP. Since A generates a congruence
distributive variety the only congruences of C are product congruences and hence
Con(C) = Con(B)'. Note that C has the PIP, while B' does not.

Next, for each n we shall construct a congruence distributive variety having the
CIP (and hence the CIP* for some Jfc) but not the CIPn (Example 4.6).

Let X be a set. By the pointed majority algebra based on X, let us mean the algebra
X = ( X U ( 0 ) , m , 0 ) where 0 £ X and m is the ternary operation such that, for any
u, v, w e X U {0}, m(u, v, w) = 0 if u, v, w are distinct, and

m{v, v, w) = m(v, w, v) — m(w, v, v) = v.

Hence m(x, y, z) is a majority operation on X and so V(X) is congruence distributive.
An equivalent construction is to form the cube {0, l ) x , to endow it with the unique
majority operation m and to take the subalgebra Y consisting of all vertices with at
most one coordinate value of 1. This subalgebra is an isomorphic copy of X. It can be
shown (see [3]), that {{0, 1}, m) is filtral. This means that each congruence relation
9 on a power is induced by a filter 7 on the set of indices: (a, b) € 0 if and only if
{i e X : a,: = b,} e 7. Since any two elements of Y disagree in at most two indices, 9
is determined by the set of indices such that [i} $ 7. In terms of the isomorphic copy
X, the congruence relation #x(S) generated by the pairs belonging to S c X identifies
the elements of S with 0 and leaves all other elements as singletons. Moreover, any
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congruence of X is of this form. It can be shown (see [3]) that the variety generated
by({0, l} ,m)hasthePIP.

Now let G = {W, E, s, 0) be a pointed directed graph with vertex set W, edge set
E, and edge map e (so that for e € E, s(e) = (v, w) if e is an edge from v to w). Let
0 be a new element not in W. We define the corresponding majority graph algebra to
be G = (ffU {0}, m, 0, oe)e^E, where (W U {0}, m, 0) is a pointed majority algebra
and for any e e E and v e W U {0}

I w if e(e) = (v, w)

0 otherwise.

The congruence lattice of a majority graph algebra is thus the sublattice of the congru-
ence lattice of the corresponding pointed majority algebra consisting of those members
compatible with the maps ae. This congruence lattice is easily described.

LEMMA 4.5. Let G — (WU{0),m,0, oe)eeE be a majority graph algebra. For any

a C W x W the following are equivalent:

(1) a 6 Con(G);
(2) a = &c(S)for some S C. W which contains 0 and is edge closed, in the sense

that ifv€S and there is an edge from v to w, then w € S.

The map sending S i-»- &Q(S) is a lattice isomorphism from the lattice of edge-closed
subsets of G and Con(G). It follows that #g(w, v) =

 ^ G ( S ) , where S consists of
u,v,0 and all the vertices reachable by these via a directed path.

EXAMPLE 4.6. Let Wn = {a,b,cu... , c2n+2] and let Gn — (Wn, En, e) be the
directed graph with an edge from a to c, and from fc to c,- for / = 1 , . . . , In + 2 and no
other edge. Consider the majority graph algebra Gn = {Wn U {0}, m, 0, ae)e&En. For
any e € En, ae is an endomorphism of the underlying pointed majority algebra (Wn U
{0}, m, 0). Since such endomorphisms generate a finite semigroup of endomorphisms
and V« Wn U {0}, m, 0)) has the PIP, V(Gn) has the CIP by Corollary 3.4.

We can be more precise. Since oe o oy is the constant endomorphism with value 0
for any e, f e En, it follows that there are only 2n + 3 nonconstant endomorphisms
and so, by Proposition 4.2, V(Gn) has the CIP2n+3.

V(Gn) does not have the CIPn though: From #gn (0, a) = #gn ({0, a, cx,... , c2n+2})
and i?g,(°' b) = i?g,({0, b, cu ... , c2n+2}), it follows that

2n+l

#gn(0, a) n i?e,(0, b)=\J #g,,(c*, c t +i) ;

the latter is a join of n + 1 congruence relations and, because no edges originate among
the Cj, there is no way to express it as a join of fewer principal congruence relations.
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EXAMPLE 4.7. In the introduction it was claimed that the CIP is a purely lattice-
theoretic property while the PIP may depend on the operations. Example 4.4 displayed
two algebras having isomorphic congruence lattices, one having the PIP and the other
the CIP but not the PIP. We can now give an example of two varieties whose members
have the same congruence lattices up to isomorphism, where one variety has the PIP
and the other has the CIP but not the PIP.

Let D be the variety of distributive lattices, which has the PIP. Consider now the
lattice term

p(x,y,z) =x v(y AZ),

let 2 = {0, 1} and let 7 = V«2 , p)). In [3] it is shown that 7 is filtral. Moreover 7
does not have the PIP, for in the free algebra in 7 generated by x, y, z the congruence
ft(x, y) n &(y, z) is not principal. Given A € 7, we seek L e D with Con(L) =
Con(A). Since 7 is clearly semisimple and congruence distributive, A is isomorphic
to a subdirect product of copies of (2, p)\ in fact we may assume that A is such a
subdirect product. Using lattice operations on 2, let L be the sublattice generated by
the elements of A, within the same enveloping product. Since p(x, y, y) % x A y, A
is already closed under meets, so by distributivity L consists of finite joins of elements
of A. Observe also that A has 'bounded joins', in that for a, b, c e A with b,c<av/e
have bvc — p(a,b, c). Define <p : Con(L) -» Con(A) by restriction to A. Then <p
is surjective by filtrality. To verify that <p is an order isomorphism and hence a lattice
isomorphism, it is enough to show that for 9\, 02 € Con(L) we have

0! c $2 if and only if <p(0,) c <p(02).

The left-to-right implication is trivial. For the other, assume (p{6{) c (p(02) and
suppose that (£, I') e &x. Without loss of generality, I < I'. Write I = ax v . . . v ak

and £' = I v ak+l v . . . v an, where a, e A. Proceeding by induction, we may consider
just the case n = k + 1. The lattice interval [t, £'] is a transpose of [£. A ak+u ak+i],
so we have ak+\ 9\ I A ak+x = (ak+i A ax) V . . . v (a*+i A ak), which is in A by the
bounded join property with bound ak+1. But since <p{6{) c <p{62), aM 82 I A ak+i as
well, and by transposition {I, I') e 02. Thus 6X c 02 and <p is a lattice isomorphism,
as claimed.

It follows that congruence lattices of algebras in 7 are isomorphic to congruence
lattices of algebras in T>. The reverse is also true, since if L is a distributive lattice
and A is the reduct of L itself to 7, then <p is the identity map and Con(L) = Con (A).
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