CONSTRUCTION OF REGULAR SEMIGROUPS WITH INVERSE TRANSVERSALS

by TATSUHIKO SAITO

(Received 24th March 1987)

1. Preliminaries

Let S be a regular semigroup. An inverse subsemigroup S° of S is an inverse transversal if $\left|V(x) \cap S^{\circ}\right|=1$ for each $x \in S$, where $V(x)$ denotes the set of inverses of x. In this case, the unique element of $V(x) \cap S^{\circ}$ is denoted by x°, and $x^{\circ \circ}$ denotes $\left(x^{\circ}\right)^{-1}$. Throughout this paper S denotes a regular semigroup with an inverse transversal S°, and $E\left(S^{\circ}\right)=E^{\circ}$ denotes the semilattice of idempotents of S°. The sets $\left\{e \in S: e e^{\circ}=e\right\}$ and $\left\{f \in S: f^{\circ} f=f\right\}$ are denoted by I_{S} and Λ_{S}, respectively, or simply I and Λ. Though each element of these sets is idempotent, they are not necessarily sub-bands of S. When both I and Λ are sub-bands of S, S° is called an S-inverse transversal. An inverse transversal S° is multiplicative if $x^{\circ} x y y^{\circ} \in E^{\circ}$, and S° is weakly multiplicative if $\left(x^{\circ} x y y^{\circ}\right)^{\circ} \in E^{\circ}$ for every $x, y \in S$. A band B is left [resp. right] regular if efe=ef [resp. efe=fe], and B is left [resp. right] normal if ef $g=e g f$ [resp. efg=feg] for every $e, f, g \in B$. A subset Q of S is a quasi-ideal of S if $Q S Q \subseteq S$.

We list already obtained results in $[3,4,5,6]$, which will be used in this paper:
(1.1) $(x y)^{\circ}=\left(x^{\circ} x y\right)^{\circ} x^{\circ}=y^{\circ}\left(x y y^{\circ}\right)^{\circ}$ for every $x, y \in S$.
(1.2) If S° is a quasi-ideal of S, then I [resp. Λ] is a left [resp. right] normal band with an inverse transversal E°
(1.3) If S° is an S-inverse transversal, then I [resp. Λ] is a left [resp. right] regular band with an inverse transversal E°.
(1.4) S° is weakly multiplicative if and only if $I \Lambda=\{e f: e \in I, f \in \Lambda\}$ is the idempotentgenerated subsemigroup of S with inverse transversal E°.
(1.5) S° is an S-inverse transversal of S if and only if $\left(x^{\circ} y\right)^{\circ}=y^{\circ} x^{\circ \circ}$ and $\left(x y^{\circ}\right)^{\circ}=y^{\circ \circ} x^{\circ}$ for every $x, y \in S$.
(1.6) S is isomorphic to the set $\left\{(e, x, f) \in I \times S^{\circ} \times \Lambda: e^{0}=x x^{-1}, f^{\circ}=x^{-1} x\right\}$ under the multiplication

$$
(e, x, f)(g, y, h)=\left(e x f g y(x f g y)^{\circ}, x(f g)^{\circ \circ} y,(x f g y)^{\circ} x f g y h\right) .
$$

(1.7) The following diagram is obtained:

Proposition 1.8. S is orthodox if and only if $(x y)^{\circ}=y^{\circ} x^{\circ}$ for every $x, y \in S$.
Proof. If S is orthodox, then $y^{\circ} x^{\circ} \in V(x y) \cap S^{\circ}$ for every $x, y \in S$, so that $(x y)^{\circ}=y^{\circ} x^{\circ}$. Conversely, if $(x y)^{\circ}=y^{\circ} x^{\circ}$ for every $x, y \in S$, then $e \in E(S)$ if and only if $e^{\circ} \in E^{\circ}$. Because, $e \in E(S) \quad$ implies $\quad e^{\circ}=(e e)^{\circ}=e^{\circ} e^{\circ} \quad$ and $\quad e^{\circ} \in E^{\circ} \quad$ implies $\quad e=e e^{\circ} e=e\left(e^{\circ}\right)^{2} e=e\left(e^{2}\right)^{\circ} e=$ $e\left(e^{2}\right)^{\circ} e^{2}\left(e^{2}\right)^{\circ} e=e e^{\circ} e e e^{\circ} e=e e$. Let $e, f \in E(S)$. Then $(e f)^{\circ}=f^{\circ} e^{\circ} \in E^{\circ}$, so that $e f \in E(S)$. Thus S is orthodox.

The above result has been obtained, when S° is multiplicative, by T.S. Blyth and R. McFadden (cf. [1]).

2. Main theorem

To achieve our aim, we need several lemmas.
Lemma 2.1. For each $a \in E^{\circ}$, let $L_{a}=\left\{e \in I: e^{\circ}=a\right\}$ and $R_{a}=\left\{f \in \Lambda: f^{\circ}=a\right\}$. Then:
(1) $L_{a}\left[\right.$ resp. $\left.R_{a}\right]$ is a left $[$ resp. right $]$ zero-semigroup,
(2) if $e \in L_{a}, g \in L_{b}$ with $b \leqq a$, then $e g \in L_{b}$, and if $f \in R_{a}, h \in R_{b}$ with $b \leqq a$, then $h f \in R_{b}$, and
(3) $I=\Sigma\left\{L_{a}: a \in E^{\circ}\right\}$ and $\Lambda=\Sigma\left\{R_{a}: a \in E^{\circ}\right\}$, where Σ denotes disjoint union.

Proof. (1) For $e, g \in L_{a}$, we have $e g=e e^{\circ} g=e g^{\circ} g=e g^{\circ}=e e^{\circ}=e$.
(2) Let $e \in L_{a}$ and $g \in L_{b}$. Then $e g b=e g g^{\circ}=e g$. If $b \leqq a$, then $b e g=b a e g=g^{\circ} e^{\circ} e g=$ $g^{\circ} e^{\circ} g=g^{\circ} g=g^{\circ}=b$. Thus $e g \in L_{b}$.
(3) This is clear.

Let Y be a semilattice, and T_{α} a semigroup for each $\alpha \in Y$. Let $T=\Sigma\left\{T_{\alpha}: \alpha \in Y\right\}$. If a partial binary operation \circ is defined in T such that
(1) for $x, y, z \in T, x \circ(y \circ z)=(x \circ y) \circ z$ if $x \circ y,(x \circ y) \circ z, y \circ z$ and $x \circ(y \circ z)$ are defined in T,
(2) $x \circ y=x y$ if $x, y \in T_{\alpha}$, where $x y$ is the product of x and y in T_{a}, and
(3) for $x \in T_{\alpha}$ and $y \in T_{\beta}$ with $\beta \leqq \alpha, x \circ y$ [resp. $y \circ x$] is defined and $x \circ y$ [resp. $y \circ x] \in T_{\beta}$,
then the resulting system $T(\circ)$ is called a lower [resp. upper] partial chain of $\left\{T_{\alpha}: \alpha \in Y\right\}$. In particular, if each T_{α} contains $\bar{\alpha}$, and $\{\bar{\alpha}: \alpha \in Y\}$ forms a semilattice isomorphic to Y under the binary operation \circ, then $\{\bar{\alpha}: \alpha \in Y\}$ is called a semilattice transversal of $T(\circ)$.

By Lemma 2.1, I [resp. Λ] is a lower [resp. upper] partial chain of left [resp. right] zero semigroups $\left\{L_{a}: a \in E^{\circ}\right\}$ [resp. $\left.\left\{R_{a}: a \in E^{\circ}\right\}\right]$, and I and Λ have a common semilattice transversal E°.

Lemma 2.2. If S° is an S-inverse transversal of S, then I [resp. Λ] is a semilattice of left [resp. right] zero semigroups $\left\{L_{a}: a \in E^{\circ}\right\}\left[\right.$ resp. $\left.\left\{R_{a}: a \in E^{\circ}\right\}\right]$.

Proof. Let $e \in L_{a}$ and $g \in L_{b}$. Then, by (1.1) and (1.5), we have $(e g)^{\circ}=\left(e^{\circ} e g\right)^{\circ} e^{\circ}=$ $\left(e^{\circ} g\right)^{\circ} e^{\circ}=g^{\circ} e^{\circ} e^{\circ}=g^{\circ} e^{\circ}=a b$. Since $e g \in I, e g \in L_{a b}$.

Lemma 2.3. Let $e \in I$ and $f \in \Lambda$. Then:
(1) $f^{\circ}(f e)^{\circ \circ} e^{\circ}=(f e)^{\circ \circ}$,
(2) $\left(f^{\circ} e^{\circ}\right)^{\circ \circ}=f^{\circ} e^{\circ}$,
(3) $\left(f f^{\circ}\right)^{\circ \circ}=f^{\circ}$ and $\left(e^{\circ} e\right)^{\circ \circ}=e^{\circ}$,
(4) if $f^{\circ}=\left(f e^{\circ}\right)^{\circ \circ}\left(f e^{\circ}\right)^{\circ}\left[r e s p . e^{\circ}=\left(f^{\circ} e\right)^{\circ}\left(f^{\circ} e\right)^{\circ \circ}\right]$, then $f^{\circ}=\left(f e^{\circ}\right)^{\circ \circ}\left[r e s p . e^{\circ}=\left(f^{\circ} e\right)^{\circ \circ}\right]$,
(5) if S° is an S-inverse transversal of S, then $\left(f^{\circ} e\right)^{\circ \circ}=\left(f e^{\circ}\right)^{\circ \circ}=f^{\circ} e^{\circ}$,
(6) if S° is weakly multiplicative, then $(f e)^{\circ \circ} \in E^{\circ}$.
(7) if S° is a quasi-ideal of S, then $(f e)^{\circ \circ}=f e$, and
(8) if S is orthodox, then $(f e)^{\circ \circ}=f^{\circ} e^{\circ}$.

Proof. (1) By (1.1) we have $(f e)^{\circ}=e^{\circ}\left(f^{\circ} f e e^{\circ}\right)^{\circ} f^{\circ}=e^{\circ}(f e)^{\circ} f^{\circ}$, so that $(f e)^{\circ \circ}=$ $f^{\circ}(f e)^{\circ \circ} e^{\circ}$. (2) and (3) are clear. (4) Let $f^{\circ}=\left(f e^{\circ}\right)^{\circ \circ}\left(f e^{\circ}\right)^{\circ}$. Then we have $f e^{\circ}=$ $f^{\circ} f e^{\circ}=\left(f e^{\circ}\right)^{\circ 0}\left(f e^{\circ}\right)^{\circ} f e^{\circ}$, so that $f e^{\circ}\left(f e^{\circ}\right)^{\circ}=\left(f e^{\circ}\right)^{\circ \circ}\left(f e^{\circ}\right)^{\circ}=f^{\circ}$. Thus we have $f\left(f e^{\circ}\right)^{\circ} f=f e^{\circ}\left(f e^{\circ}\right)^{\circ} f=f^{\circ} f=f$ and $\left(f e^{\circ}\right)^{\circ} f\left(f e^{\circ}\right)^{\circ}=\left(f e^{\circ}\right)^{\circ} f e^{\circ}\left(f e^{\circ}\right)^{\circ}=\left(f e^{\circ}\right)^{\circ}$, so that $f^{\circ}=\left(f e^{\circ}\right)^{\circ}$. Thus $f^{\circ}=\left(f e^{\circ}\right)^{\circ \circ}$. (5) By (1.5), this is clear. (6) Since $(f e)^{\circ}=\left(f^{\circ} f e e^{\circ}\right)^{\circ} \in E^{\circ}$, $(f e)^{\circ \circ} \in E^{\circ}$. (7) Since $f e=f^{\circ} f e e^{\circ} \in S^{\circ} S S^{\circ} \subseteq S^{\circ},(f e)^{\circ \circ}=f e$. (8) By Proposition 1.8, this is clear.

Lemma 2.4. For each $(x, y) \in S^{\circ} \times S^{\circ}$, let $\alpha_{(x, y)}: R_{x^{-1} x} \times L_{y y^{-1}} \rightarrow I$ and $\beta_{(x, y)}: R_{x^{-1} x} \times$ $L_{y y^{-1}} \rightarrow \Lambda$ be mappings defined by $(f, e) \alpha_{(x, y)}=x f e y(x f e y)^{\circ}$ and $(f, e) \beta_{(x, y)}=(x f e y)^{\circ} x f e y$, respectively. Then:
(1) $(f, e) \alpha_{(x, y)} \in L_{x(f e)^{\infty} y\left(x(f e)^{\infty} y\right)^{-1}}$ and $(f, e) \beta_{(x, y)} \in R_{\left(x(f e)^{\infty} y\right)^{-1} x(f e)^{\infty} y}$,
(2) if $f \in R_{x^{-1} x}, g \in L_{y y^{-1}}, h \in R_{y^{-1} y}$ and $k \in L_{z z^{-1}}$, then

$$
\begin{aligned}
& (f, g) \alpha_{(x, y)}\left((f, g) \beta_{(x, y)} h, k\right) \alpha_{\left(x(f g)^{\infty} y, z\right)}=\left(f, g(h, k) \alpha_{(y, z)}\right) \alpha_{\left(x, y(h k)^{\infty} z\right)}, \\
& \left(f, g(h, k) \alpha_{(y, z)}\right) \beta_{\left(x, y(h k)^{\infty} z\right)}(h, k) \beta_{(y, z)}=\left((f, g) \beta_{(x, y)} h, k\right) \beta_{\left(x(f g)^{\infty} y, z\right)}
\end{aligned}
$$

and

$$
(f g)^{\circ \circ} y\left((f, g) \beta_{(x, y)} h k\right)^{\circ \circ}=\left(f g(h, k) \alpha_{(y, z)}\right)^{\circ \circ} y(h k)^{\circ \circ}
$$

(3) $\left(x^{-1} x, y y^{-1}\right) \alpha_{(x, y)}=x y(x y)^{-1}$ and $\left(x^{-1} x, y y^{-1}\right) \beta_{(x, y)}=(x y)^{-1} x y$, and
(4) if S° is an S-inverse transversal of S, then $\left(f^{\circ}, e\right) \alpha_{\left(s^{\circ}, e^{\circ}\right)}=f^{\circ} e$ and $\left(f, e^{\circ}\right) \beta_{\left(f^{\circ}, e^{\circ}\right)}=f e^{\circ}$.

Proof. (1) Let $(f, e) \in R_{x^{-1} x} \times L_{y y^{-1}}$. Then, by (1.1), we have

$$
(x f e y)^{\circ}=y^{-1}\left(x^{-1} x f e y y^{-1}\right)^{\circ} x^{-1}=y^{-1}\left(f^{\circ} f e e^{\circ}\right) x^{-1}=y^{-1}(f e)^{\circ} x^{-1}=\left(x(f e)^{\circ \circ} y\right)^{-1}
$$

so that

$$
\left((f, e) \alpha_{(x, y)}\right)^{\circ}=\left(x f e y(x f e y)^{\circ}\right)^{\circ}=(e f e y)^{\circ \circ}(x f e y)^{\circ}=x(f e)^{\circ \circ} y\left(x(f e)^{\circ \circ} y\right)^{-1}
$$

(2) By using (1.1), we can tediously but easily show that

$$
\begin{aligned}
& (f, g) \alpha_{(x, y)}\left((f, g) \beta_{(x, y)} h, k\right) \alpha_{\left(x(f g)^{\circ} y, z\right)} \\
& \quad=x f g y h k z(x f g y h k z)^{\circ}=\left(f, g(h, k) \alpha_{(y, z)}\right) \alpha_{\left(x, y(h k)^{\circ \circ z}\right),}\left(f, g(h, k) \alpha_{(y, z)}\right) \beta_{\left(x, y(h k)^{\circ} z\right)}(h, k) \beta_{(y, z)} \\
& \quad=(x f g y h k z)^{\circ} x f g y h k z=\left((f, g) \beta_{(x, y)} h, k\right) \beta_{\left(x(f g)^{\circ} \mathrm{o}, z\right)}
\end{aligned}
$$

and

$$
(f g)^{\circ \circ} y\left((f, g) \beta_{(x, y)} h k\right)^{\circ \circ}=(f g y h k)^{\circ \circ}=\left(f g(h, k) \alpha_{(y, z)}\right)^{\circ \circ} y(h k)^{\circ \circ} .
$$

(3) By the definition, this can be easily proved.
(4) By using (1.5), this can be easily proved.

Let M and N be two sets. A partial mapping from M to N is a mapping from a subset C of M into N. The set of all partial mappings form M to N is denoted by $P T(M, N)$. Then, by Lemma 2.4, $\alpha_{(x, y)} \in P T(\Lambda \times I, I)$ and $\beta_{(x, y)} \in P T(\Lambda \times I, \Lambda)$ with $\operatorname{dom}\left(\alpha_{(x, y)}\right)=$ $\operatorname{dom}\left(\beta_{(x, y)}\right)=R_{x^{-1} x} \times L_{y y^{-1}}$.

Theorem 2.5. Let S° be an inverse semigroup with the semilattice E° of idempotents, and let I be a lower partial chain of left zero semigroups $\left\{L_{a}: a \in E^{\circ}\right\}$ and Λ an upper partial chain of right zero semigroups $\left\{R_{a} ; a \in E^{\circ}\right\}$. Suppose that I and Λ have a common semilattice transversal E°. Let $\Lambda \times I \rightarrow S^{\circ},(f, e) \rightarrow f * e$ be a mapping satisfying:
$\left(1^{*}\right) f^{\circ}(f * e) e^{\circ}=f * e$,
(2*) $f^{\circ} * e^{\circ}=f^{\circ} e^{\circ}$,
(3*) $f * f^{\circ}=f^{\circ}$ and $e^{\circ} * e=e^{\circ}$ and
(4*) if $f^{\circ}=\left(f * e^{\circ}\right)\left(f * e^{\circ}\right)^{-1}$, then $f^{\circ}=f * e^{\circ}$, and if $e^{\circ}=\left(f^{\circ} * e\right)^{-1}\left(f^{\circ} * e\right)$, then $e^{\circ}=$ $f^{\circ} * e$.

Suppose that, for each $(x, y) \in S^{\circ} \times S^{\circ}$, there exist $\alpha_{(x, y)} \in P T(\Lambda \times I, I)$ and $\beta_{(x, y)} \in$ $P T(\Lambda \times I, \Lambda)$ satisfying:
(a*) $\operatorname{dom}\left(\alpha_{(x, y)}\right)=\operatorname{dom}\left(\beta_{(x, y)}\right)=R_{x^{-1} x} \times L_{y y^{-1}},(f, e) \alpha_{(x, y)} \in L_{x(f * e) y(x(f * e) y)^{-1}}$ and $(f, e) \beta_{(x, y)} \in$ $R_{(x(f * e) y)^{-1} x(f * e) y}$,
(b*) if $f \in R_{x^{-1} x}, g \in L_{y y^{-1}}, h \in R_{y^{-1} y}$ and $k \in L_{z z^{-1}}$, then

$$
\begin{aligned}
& (f, g) \alpha_{(x, y)}\left((f, g) \beta_{(x, y)} h, k\right) \alpha_{(x(f * g) y, z)}=\left(f, g(h, k) \alpha_{(y, z)}\right) \alpha_{(x, y(h * k) z)}, \\
& \left(f, g(h, k) \alpha_{(y, z)}\right) \beta_{(x, y(h * k) z)}(h, k) \beta_{(y, z)}=\left((f, g) \beta_{(x, y)} h, k\right) \beta_{(x(f * g) y, z)}
\end{aligned}
$$

and

$$
(f * g) y\left((f, g) \beta_{(x, y)} h * k\right)=\left(f * g(h, k) \alpha_{(y, z)}\right) y(h * k), \quad \text { and }
$$

(c) $\left(x^{-1} x, y y^{-1}\right) \alpha_{(x, y)}=x y(x y)^{-1}$ and $\left(x^{-1} x, y y^{-1}\right) \beta_{(x, y)}=(x y)^{-1} x y$.

Define a multiplication on the set $W=\left\{(e, x, f) \in I \times S^{\circ} \times \Lambda: e \in L_{x x^{-1}}, f \in R_{x^{-1} x}\right\}$ by $(e, x, f)(g, y, h)=\left(e(f, g) \alpha_{(x, y)}, x(f * g) y,(f, g) \beta_{(x, y)} h\right)$. Then W is a regular semigroup with an inverse transversal isomorphic to S°.

Conversely, every regular semigroup with an inverse transversal can be constructed in this way.

Proof. We can easily show, by using (a^{*}) and (b^{*}), that W is a semigroup. Let $W^{\circ}=\left\{(e, x, f) \in W: e, f \in E^{\circ}\right\}$. Then $(e, x, f) \in W^{\circ}$ if and only if $e=x x^{-1}$ and $f=x^{-1} x$. By (2^{*}) and (c^{*}), we obtain $\left(x x^{-1}, x, x^{-1} x\right)\left(y y^{-1}, y, y^{-1} y\right)=\left(x y(x y)^{-1}, x y,(x y)^{-1} x y\right)$, which shows $W^{\circ} \simeq S^{\circ}$, so that W° is an inverse subsemigroup of W.

For $(e, x, f) \in W$, by (3*), we have $x\left(f * f^{\circ}\right) x^{-1}=x f^{\circ} x^{-1}=x x^{-1}=e^{\circ}$, so that $\left(f, f^{\circ}\right) \alpha_{\left(x, x^{-1}\right)} \in L_{e^{\circ}}$ and $\left(f, f^{\circ}\right) \beta_{\left(x, x^{-1}\right)} \in R_{e^{\circ .}}$. Thus we have $(e, x, f)\left(f^{\circ}, x^{-1}, e^{0}\right)=$ $\left.\left(e\left(f, f^{\circ}\right) \alpha_{\left(x, x^{-1}\right.}\right), e^{\circ},\left(f, f^{\circ}\right) \beta_{\left(x, x^{-1}\right)} e^{\circ}\right)=\left(e, e^{\circ}, e^{\circ}\right)$. Again by $\left(3^{*}\right), e^{\circ}\left(e^{\circ} * e\right) x=x$, so that $\left(e^{\circ}, e\right) \alpha_{\left(e^{\circ}, x\right)} \in L_{e^{\circ}}$ and $\left(e^{\circ}, e\right) \beta_{\left(e^{\circ}, x\right)} \in R_{f^{\circ}}$. Thus we have $(e, x, f)\left(f^{\circ}, x^{-1}, e^{0}\right)(e, x, f)=$ $\left(e, e^{\circ}, e^{\circ}\right)(e, x, f)=\left(e\left(e^{\circ}, e\right) \alpha_{\left(e^{\circ}, x\right)}, x,\left(e^{\circ}, e\right) \beta_{\left(e^{\circ}, x\right)} f\right)=(e, x, f) \quad$ Similarly we obtain $\left(f^{\circ}, x^{-1}, e^{\circ}\right)(e, x, f)\left(f^{\circ}, x^{-1}, e^{\circ}\right)=\left(f^{\circ}, x^{-1}, e^{\circ}\right)$. Consequently $\left(f^{\circ}, x^{-1}, e^{\circ}\right)$ is an inverse of (e, x, f) in W°.

Let $\left(g^{\circ}, y, h^{\circ}\right) \in W^{\circ}$ be an inverse of $(e, x, f) \in W$. Then

$$
\begin{aligned}
(e, x, f)= & (e, x, f)\left(g^{\circ}, y, h^{\circ}\right)(e, x, f)=\left(\ldots, x\left(f * g^{\circ}\right) y,\left(f, g^{\circ}\right) \beta_{(x, y)} h^{\circ}\right)(e, x, f) \\
& =\left(\ldots, x\left(f * g^{\circ}\right) y\left(\left(f, g^{\circ}\right) \beta_{(x, y)} h^{\circ} * e\right) x, \ldots\right)
\end{aligned}
$$

Thus we have

$$
x x^{-1} \geqq x\left(f * g^{\circ}\right) y\left(x\left(f * g^{\circ}\right) y\right)^{-1}
$$

$$
\begin{aligned}
& \geqq x\left(f * g^{\circ}\right) y\left(\left(f, g^{\circ}\right) \beta_{(x, y)} h^{\circ} * e\right) x\left(x\left(f * g^{\circ}\right) y\left(\left(f, g^{\circ}\right) \beta_{(x, y)} h^{\circ} * e\right) x\right)^{-1} \\
& =x x^{-1}
\end{aligned}
$$

so that $x x^{-1}=x\left(f * g^{\circ}\right) y\left(x\left(f * g^{\circ}\right) y\right)^{-1}$. By $\left(1^{*}\right)$

$$
\begin{aligned}
x^{-1} x= & x^{-1} x x^{-1} x=x^{-1} x\left(f * g^{\circ}\right) y y^{-1}\left(f * g^{\circ}\right)^{-1} x^{-1} x \\
& =f^{\circ}\left(f * g^{\circ}\right) g^{\circ}\left(f * g^{\circ}\right)^{-1} f^{\circ}=\left(f * g^{\circ}\right)\left(f * g^{\circ}\right)^{-1}
\end{aligned}
$$

By (4*), we obtain $f^{\circ}=f * g^{\circ}$, and similarly $e^{\circ}=h^{\circ} * e$. Since

$$
e^{\circ}=x x^{-1}=x\left(f * g^{\circ}\right) y\left(x\left(f * g^{\circ}\right) y\right)^{-1}
$$

$\left(f, g^{\circ}\right) \alpha_{(x, y)} \in L_{e^{\circ}}$. Thus we have

$$
\begin{aligned}
\left(g^{\circ}, y, h^{\circ}\right)= & \left(g^{\circ}, y, h^{\circ}\right)(e, x, f)\left(g^{\circ}, y, h^{\circ}\right)=\left(g^{\circ}, y, h^{\circ}\right)\left(e\left(f, g^{\circ}\right) \alpha_{(x, y)}, x\left(f * g^{\circ}\right) y, \ldots\right) \\
& =\left(g^{\circ}, y, h^{\circ}\right)\left(e, x f^{\circ} y, \ldots\right)=\left(g^{\circ}, y, h^{\circ}\right)(e, x y, \ldots)=\left(\ldots, y\left(h^{\circ} * e\right) x y, \ldots\right) \\
& =\left(\ldots, y e^{\circ} x y, \ldots\right)=(\ldots, y x y, \ldots)
\end{aligned}
$$

so that $y=y x y$. Since $y^{-1} y \geqq(x y)^{-1} x y \geqq(y x y)^{-1} y x y=y^{-1} y, y^{-1} y=(x y)^{-1} x y$ and $\left(f, g^{\circ}\right) \beta_{(x, y)} \in R_{h^{\circ}}$. Thus we have $(e, x, f)=(e, x, f)\left(g^{\circ}, y, h^{\circ}\right)(e, x, f)=\left(e, x y, h^{\circ}\right)(e, x, f)=$ $(\ldots, x y x, \ldots)$, so that $x=x y x$. Consequently $y=x^{-1}$. Thus each element $(e, x, f) \in W$ has the unique inverse ($f^{\circ}, x^{-1}, e^{\circ}$) in W°.

Conversely, let S be a regular semigroup with an inverse transversal S°. By Lemma 2.1, I_{S} and Λ_{S} are a lower partial chain of left zero semigroups $\left\{L_{a}: a \in E^{\circ}\right\}$ and an upper partial chain of right zero semigroups $\left\{R_{a}: a \in E^{\circ}\right\}$, respectively. For $(f, e) \in \Lambda_{S} \times I_{S}$, put $f * e=(f e)^{\circ \circ}$. Then, by Lemma 2.3, * is a mapping from $\Lambda_{S} \times I_{S}$ into S° satisfying the conditions ($\left.1^{*}\right)-\left(4^{*}\right)$. For each $(x, y) \in S^{\circ} \times S^{\circ}$ and for every $(f, e) \in R_{x^{-1} x} \times L_{y y}{ }^{-1}$, put $(f, e) \alpha_{(x, y)}=x f e y(x f e y)^{\circ}$ and $(f, e) \beta_{(x, y)}=(x f e y)^{\circ} x f e y$. Then, $\alpha_{(x, y)} \in P T(\Lambda \times I, I)$ and $\beta_{(x, y)} \in P T(\Lambda \times I, \Lambda)$, and by Lemma 2.4, they satisfy the conditions (a^{*})-(c^{*}). Thus we can construct a semigroup $W=\left\{(e, x, f) \in I_{S} \times S^{\circ} \times \Lambda_{S}: e \in L_{x x^{-1}}, f \in R_{x^{-1} x}\right\}$ under the multiplication $(e, x, f)(g, y, h)=\left(e x f g y(x f g y)^{\circ}, x(f g)^{\circ \circ} y,(x f g y)^{\circ} x f g y h\right)$. Then, by (1.6), $W \simeq S$. The proof is complete.

3. Application to special cases

(1) S-inverse transversals

Lemma 3.1. In Theorem 2.5, if the mapping * satisfies the condition (1*), and (2 ${ }^{\circ}$) $f * e^{\circ}=f^{\circ} * e=f^{\circ} e^{\circ}$ instead of the conditions (2*), (3*) and (4*), then W is a regular
semigroup with an S-inverse transversal isomorphic to S°. Conversely, every such semigroup can also be so constructed.

Furthermore, if a binary operation \circ is defined on I [resp. N] by $e \circ g=e\left(e^{\circ}, g\right) \alpha_{\left(e^{\circ}, g^{\circ}\right)}$ for $e, g \in I\left[\right.$ resp. $h \circ g=\left(f, h^{\circ}\right) \beta_{\left(f^{\circ}, h^{\circ}\right)} h$ for $\left.f, h \in \Lambda\right]$, then $I(\circ) \simeq I_{W}\left[\operatorname{resp} . \Lambda(\circ) \simeq \Lambda_{W}\right]$.

Proof. It is clear that (2°) implies (2^{*}), (3^{*}) and (4^{*}). Thus, it is enough to show that W° is an S-inverse transversal of W. Let $(e, x, f),(g, y, h) \in W$, Then, by $\left(2^{\circ}\right)$, we have

$$
\begin{aligned}
\left((e, x, f)^{\circ}(g, y, h)\right)^{\circ}= & \left(\left(f^{\circ}, x^{-1}, e^{\circ}\right)(g, y, h)\right)^{\circ} \\
& =\left(\ldots, x^{-1}\left(e^{\circ} * g\right) y, \ldots\right)^{\circ} \\
& =\left(\ldots, x^{-1} e^{\circ} g^{\circ} y, \ldots\right)^{\circ}=\left(\ldots, x^{-1} y, \ldots\right)^{\circ} \\
& =\left(\left(x^{-1} y\right)^{-1} x^{-1} y,\left(x^{-1} y\right)^{-1}, x^{-1} y\left(x^{-1} y\right)^{-1}\right) \\
& =\left(y^{-1} x\left(y^{-1} x\right)^{-1}, y^{-1} x,\left(y^{-1} x\right)^{-1} y^{-1} x\right) \\
& =\left(y^{-1} y, y^{-1}, y y^{-1}\right)\left(x x^{-1}, x, x^{-1} x\right) \\
& =(g, y, h)^{\circ}(e, x, f)^{\circ \circ}
\end{aligned}
$$

and similarly $\left((e, x, f)(g, y, h)^{\circ}\right)^{\circ}=(g, y, h)^{\circ \circ}(e, x, h)^{\circ}$, so that, by (1.5), W° is an S-inverse transversal. By (5) of Lemma 2.3, the converse assertion is clear.

For the last assertion, by a part of the proof of Theorem $2.5,(e, x, f)(e, x, f)^{\circ}=$ $\left(e, e^{\circ}, e^{\circ}\right)$, which shows that $(e, x, f) \in I_{W}$ if and only if $x=f=e^{\circ}$. Let $\left(e, e^{\circ}, e^{\circ}\right)$, $\left(g, g^{\circ}, g^{\circ}\right) \in I_{W}$. Then, by $\left(1^{*}\right)$ and $\quad\left(2^{\circ}\right), \quad e^{\circ}\left(e^{\circ} * g\right) g^{\circ}=e^{\circ} * g=e^{\circ} g^{\circ}, \quad$ so that $\left(e, e^{\circ}, e^{\circ}\right)\left(g, g^{\circ}, g^{\circ}\right)=\left(e\left(e^{\circ}, g\right) \alpha_{\left(e^{\circ}, g^{\circ}\right)}, e^{\circ} g^{\circ},\left(e^{\circ}, g\right) \beta_{\left(e^{\circ}, g^{\circ}\right)} g^{\circ}\right)$. Since I_{W} is a sub-band of W, $\left(e\left(e^{\circ}, g\right) \alpha_{\left(e^{\circ}, g^{\circ}\right)}, e^{\circ} g^{\circ},\left(e^{\circ}, g\right) \beta_{\left(e^{\circ}, g^{\circ}\right.} g^{\circ}\right) \in I_{W}$, so that $\left(e^{\circ}, g\right) \beta_{\left(e^{\circ}, g^{\circ}\right)} g^{\circ}=e^{\circ} g^{\circ}$. Consequently $\left(e, e^{\circ}, e^{\circ}\right)\left(g, g^{\circ}, g^{\circ}\right)=\left(e \circ g, e^{\circ} g^{\circ}, e^{\circ} g^{\circ}\right)$, which shows that $I_{W} \simeq I(\circ)$.

By Lemmas 2.2 and 3.1, we obtain:
Theorem 3.2. Let S° be an inverse semigroup with the semilattice E° of idempotents, and let I be a semilattice of left zero semigroups $\left\{L_{a}: a \in E^{\circ}\right\}$ and Λ a semilattice of right zero semigroups $\left\{R_{a}: \dot{a} \in E^{\circ}\right\}$. Suppose that I and Λ have a common semilattice transversal E°. Let $\Lambda \times I \rightarrow S^{\circ},(f, e) \rightarrow f * e$ be a mapping satisfying:
$\left(1^{*}\right) f^{\circ}(f * e) e^{\circ}=f * e$ and $\left(2^{\circ}\right) f^{\circ} * e=f * e^{\circ}=f^{\circ} e^{\circ}$.
Suppose that, for each $(x, y) \in S^{\circ} \times S^{\circ}$, there exist $\alpha_{(x, y)} \in P T(\Lambda \times I, I)$ and $\beta_{(x, y)} \in P T(\Lambda \times I, \Lambda)$ satisfying the conditions $\left(\mathrm{a}^{*}\right),\left(\mathrm{b}^{*}\right)$, and $\left(\mathrm{c}^{*}\right)$ in Theorem 2.5, and $\left(\mathrm{d}^{*}\right)$ $\left(f^{\circ}, e\right) \alpha_{\left(f^{\circ}, e^{\circ}\right)}=f^{\circ} e$ and $\left(f, e^{\circ}\right) \beta_{\left(f^{\circ}, e^{\circ}\right)}=f e^{\circ}$. Define a multiplication on the set $W=$ $\left\{(e, x, f) \in I \times S^{\circ} \times \Lambda: e \in L_{x x^{-1}}, f \in R_{x^{-1} x}\right\}$ as in Theorem 2.5. Then W is a regular semigroup with an S-inverse transversal isomorphic to S°, and $I_{W} \simeq I$ and $\Lambda_{W} \simeq \Lambda$. Conversely, every such semigroup can be so constructed.

Proof. It is enough to show that $I_{W} \simeq I$ and $\Lambda_{W} \simeq \Lambda$. Let $e, g \in I$. Then, by (d^{*}), $e\left(e^{\circ}, g\right) \alpha_{\left(e^{\circ}, g^{\circ}\right)}=e e^{\circ} g=e g$, so that the binary operation \circ in Lemma 3.1 coincides with the product in I. Thus $I_{W} \simeq I$, and similarly $\Lambda_{W} \simeq \Lambda$.
(2) Weakly multiplicative inverse transversals

Lemma 3.3. In Theorem 2.5, if the mapping $*$ is $\Lambda \times I \rightarrow E^{\circ}$ instead of $\Lambda \times I \rightarrow S^{\circ}$, then W is a regular semigroup with a weakly multiplicative inverse transversal isomorphic to S°. Conversely, every such semigroup can be so constructed.

Proof. It is enough to show that W° is weakly multiplicative. Let $(e, x, f),(g, y, h) \in W$. Then, since $f * g \in E^{\circ}$, we have

$$
\begin{aligned}
\left((e, x, f)^{\circ}(e, x, f)(g, y, h)(g, y, h)^{\circ}\right)^{\circ}= & \left(\left(f^{\circ}, f^{\circ}, f\right)\left(g, g^{\circ}, g^{\circ}\right)\right)^{\circ}=\left(\ldots, f^{\circ}(f * g) g^{\circ}, \ldots\right)^{\circ} \\
& =(\ldots, f * g, \ldots)^{\circ}=(f * g, f * g, f * g) \in E\left(W^{\circ}\right)
\end{aligned}
$$

so that W° is weakly multiplicative. By (6) of Lemma 2.3, the converse assertion is clear.
By Theorem 3.2 and Lemma 3.3, we obtain:

Theorem 3.4. Let S°, E°, I and Λ be as in Theorem 3.2, Let $\Lambda \times I \rightarrow E^{\circ},(f, e) \rightarrow f * g$ be a mapping satisfying the condition (1^{*}) and (2°). Suppose that, for each $(x, y) \in S^{\circ} \times S^{\circ}$, there exist $\alpha_{(x, y)} \in P T(\Lambda \times I, I)$ and $\beta_{(x, y)} \in P T(\Lambda \times I, \Lambda)$ satisfying the conditions $\left(\mathrm{a}^{*}\right)-\left(\mathrm{d}^{*}\right)$. Define a multiplication on the set $\left.W=\{(e, x, f)) \in I \times S^{\circ} \times \Lambda: e \in L_{x x-1}, f \in R_{x^{-1} x}\right\}$ as in Theorem 2.5. Then W is a regular semigroup with a weakly multiplicative inverse transversal isomorphic to S°, and $I_{W} \simeq I$ and $\Lambda_{W} \simeq \Lambda$. Conversely, every such semigroup can be so constructed.
(3) Orthodox semigroups

Lemma 3.5. In Theorem 2.5, if the mapping * satisfies (1°) $f * e=f^{\circ} e^{\circ}$ instead of $\left(1^{*}\right)-$ (4*), then W is an orthodox semigroup with an inverse transversal isomorphic to S°. Conversely, every such semigroup can be so constructed.

Proof. It is clear that ($\left(^{\circ}\right.$) implies ($\left.1^{*}\right)-\left(4^{*}\right)$. Thus, it is enough to show that W is orthodox. Let $(e, x, f),(g, y, h) \in W$. Then we have

$$
\begin{aligned}
((e, x, f)(g, y, h))^{\circ}= & (\ldots, x(f * g) y, \ldots)^{\circ}=\left(\ldots, x f^{\circ} g^{\circ} y, \ldots\right)=(\ldots, x y, \ldots)^{\circ} \\
& =\left((x y)^{-1} x y,(x y)^{-1}, x y(x y)^{-1}\right) \\
& =\left(y^{-1} x^{-1}\left(y^{-1} x^{-1}\right)^{-1}, y^{-1} x^{-1},\left(y^{-1} x^{-1}\right)^{-1} y^{-1} x^{-1}\right)
\end{aligned}
$$

$$
=\left(y^{-1} y, y^{-1}, y y^{-1}\right)\left(x^{-1} x, x^{-1}, x x^{-1}\right)=(g, y, h)^{\circ}(e, x, f)^{\circ} .
$$

By Proposition 1.8, W is orthodox. By (8) of Lemma 2.3, the converse assertion is clear.
If the mapping * in Theorem 2.5 satisfies the condition $\left(1^{\circ}\right)$, then $x(f * e) y=x y$ for ($f, e) \in R_{x^{-1} x} \times L_{y y^{-1}}$, so that we can omit the mapping *. Thus, by Theorem 3.2 and Lemma 3.5, we obtain:

Theorem 3.6. Let S°, E°, I and Λ be as in Theorem 3.2. Suppose that, for each $(x, y) \in S^{\circ} \times S^{\circ}$, there exist $\alpha_{(x, y)} \in P T(\Lambda \times I, I)$ and $\beta_{(x, y)} \in P T(\Lambda \times I, \Lambda)$ satisfying:
$\left(a^{\circ}\right) \operatorname{dom}\left(\alpha_{(x, y)}\right)=\operatorname{dom}\left(\beta_{(x, y)}\right)=R_{x^{-1} x} \times L_{y y^{-1}}, \quad \operatorname{ran}\left(\alpha_{(x, y)}\right) \subseteq L_{x y(x y)^{-1}} \quad$ and $\quad \operatorname{ran}\left(\beta_{(x, y)}\right) \subseteq$ $R_{(x y)^{-1} x y}$,
(b) if $f \in R_{x^{-1} x}, g \in L_{y y^{-1}}, h \in R_{y^{-1} y}$ and $k \in L_{z z^{-1}}$, then

$$
\begin{gathered}
(f, g) \alpha_{(x, y)}\left((f, g) \beta_{(x, y)} h, k\right) \alpha_{(x y, z)}=\left(f, g(h, k) \alpha_{(y, z)}\right) \alpha_{(x, y z)}, \\
\left(f, g(h, k) \alpha_{(y, z)}\right) \beta_{(x, y z)}(h, k) \beta_{(y, z)}=\left((f, g) \beta_{(x, y)} h, k\right) \beta_{(x y, z)},
\end{gathered}
$$

and $\left(\mathrm{c}^{*}\right)$ and $\left(\mathrm{d}^{*}\right)$ in Theorem 3.2. Define a multiplication on the set

$$
\left.W=\{(e, x, f)) \in I \times S^{\circ} \times \Lambda: e \in L_{x x^{-1}}, f \in R_{x^{-1}}\right\}
$$

by $(e, x, f)(g, y, h)=\left(e(f, g) \alpha_{(x, y)}, x y,(f, g) \beta_{(x, y)} h\right)$. Then W is an orthodox semigroup with an inverse transversal isomorphic to S°, and $I_{W} \simeq I$ and $\Lambda_{W} \simeq \Lambda$. Conversely, every such semigroup can be so constructed.

A left [resp. right] inverse semigroup is an orthodox semigroup whose band of idempotents is left [resp. right] regular.

Lemma 3.7. In Theorem 3.2, if each right zero semigroup $R_{a}, a \in E^{\circ}$, is trivial, that is, $\Lambda=E^{\circ}$, then W is a left inverse semigroup with an inverse transversal isomorphic to S°, and $I_{W} \simeq I$. Conversely, every such semigroup can be so constructed.

Proof. Let $(e, x, f) \in W$. Since $f \in E^{\circ}, f=x^{-1} x$. Let $\left(e, x, x^{-1} x\right) \in W$ be an idempotent. Then $\left(e, x, x^{-1} x\right)=\left(e, x, x^{-1} x\right)\left(e, x, x^{-1} x\right)=\left(\ldots, x\left(x^{-1} x * e\right) x, \ldots\right)=\left(\ldots, x x^{-1} x e^{\circ} x, \ldots\right)=$ $\left(\ldots x^{2}, \ldots\right)$, so that $x=x^{2} \in E^{\circ}$. Thus, $\left(e, x, x^{-1} x\right)=\left(e, e^{\circ}, e^{0}\right)$, which shows $E(W)=I_{W}$. Consequently, the set $E(W)$ of idempotents of W is left regular, so that W is a left inverse semigroup.

In Lemma 3.7, for $g \in L_{y y^{-1}}$, we have $x\left(x^{-1} x * g\right) y=x x^{-1} x g^{\circ} y=x y$, so that the mapping * can be omitted.

Corollary 3.8 ([8, Theorem 1]). Let S° and I be as in Theorem 3.2. Let σ be an antihomomorphism S° into End $(I), x \rightarrow \sigma(x)$ satisfying (1) $L_{y y-1} \sigma(x) \subseteq L_{x y(x y)^{-1}},(2)\left(y y^{-1}\right) \sigma(x)=$ $x y(x y)^{-1}$ and (3) e $\sigma\left(f^{\circ}\right)=e f^{\circ}$.

Define a multiplication on the set $W=\left\{(e, x) \in I \times S^{\circ}: e \in L_{x x-1}\right\} \quad$ by $(e, x)(g, y)=(e(g \sigma(x)), x y)$. Then W is a left inverse semigroup with an inverse transversal isomorphic to S°, and $I_{W} \simeq I$. Conversely, every such semigroup can be so constructed.

Proof. For each $(x, y) \in S^{\circ} \times S^{\circ}$ and for every $e \in L_{y y-1}$, we take $\left(x^{-1} x, e\right) \alpha_{(x, y)}=e \sigma(x)$ and $\left(x^{-1} x, e\right) \beta_{(x, y)}=(x y)^{-1} x y$. Then we can show that $\alpha_{(x, y)}$ and $\beta_{(x, y)}$ satisfy the condition ($\left.\mathrm{a}^{*}\right)-\left(\mathrm{d}^{*}\right)$ in Theroem 3.2. Thus, by Lemma 3.7, we can construct a left inverse semigroup $W^{\prime}=\left\{\left(e, x, x^{-1} x\right) \in I \times S^{\circ} \times E^{\circ}: e \in L_{x x-1}\right\}$ under the multiplication

$$
\left(e, x, x^{-1} x\right)\left(g, y, y^{-1} y\right)=\left(e\left(x^{-1} x, g\right) \alpha_{(x, y)}, x y,\left(x^{-1} x, g\right) \beta_{(x, y)} y^{-1} y\right)=\left(e(g \sigma(x)), x y,(x y)^{-1} x y\right) .
$$

Let $W^{\prime} \rightarrow W$ be a mapping given by $\left(e, x, x^{-1} x\right) \rightarrow(e, x)$. Then the mapping is clearly an isomorphism. Thus W is a left inverse semigroup with an inverse transversal isomorphic to S°, and $I_{W} \simeq I$. The proof of the converse is the same as in [8].

(4) Quasi-ideal inverse transversals

Corollary 3.9. ([3, Theorem 4.2]). Let S°, I and Λ be as in Theorem 3.2., and let $\Lambda \times I \rightarrow S^{\circ},(f, e) \rightarrow f * e$ be a mapping satisfying the conditions $\left(1^{*}\right)$ and $\left(2^{\circ}\right)$ in Theorem 3.2. Suppose that, for each $(x, y) \in S^{\circ} \times S^{\circ}$, there exist $\alpha_{(x, y)}$ and $\beta_{(x, y)}$ in $P T\left(\Lambda \times I, E^{\circ}\right)$ satisfying the condition (a^{*}) in Theorem 3.2. Define a multiplication on the set $W=\{(e, x, f)) \in$ $\left.I \times S^{\circ} \times \Lambda: e \in L_{x x^{-1}}, f \in R_{x^{-1} x}\right\}$ as in Theorem 3.2. Then W is a regular semigroup with a quasi-ideal inverse transversal isomorphic to S°, and $I_{W} \simeq I$ and $\Lambda_{W} \simeq \Lambda$. Conversely, every such semigroup can be so constructed.

Proof. For $(f, e) \in R_{x^{-1} x_{x}} \times L_{y y^{-1}}$, since $(f, e) \alpha_{(x, y)} \in E^{\circ},(f, e) \alpha_{(x, y)}=x(f * e) y(x(f * e) y)^{-1}$ and similarly $(f, e) \beta_{(x, y)}=(x(f * e) y)^{-1} x(f * e) y$. Then we can easily show that $\alpha_{(x, y)}$ and $\beta_{(x, y)}$ satisfy the conditions ($\left.\mathrm{b}^{*}\right)-\left(\mathrm{d}^{*}\right)$ in Theorem 3.2. Thus W is a regular semigroup with an S-inverse transversal isomorphic to S°, and $I_{W} \simeq I$ and $\Lambda_{W} \simeq \Lambda$. For $(e, x, f) \in W$ and for $\left(g^{\circ}, y, h^{\circ}\right),\left(k^{\circ}, z, m^{\circ}\right) \in W^{\circ}$, we can show that $\left(g^{\circ}, y, h^{\circ}\right)(e, x, f)\left(k^{\circ}, z, m^{\circ}\right)=$ $\left(y x z(y x z)^{-1}, y x z,(y x z)^{-1} y x z\right) \in W^{\circ}$, so that W° is a quasi-ideal of W. By (7) of Lemma 2.3, the converse assertion is clear.

Corolloray 3.10 ([9, Theorem 2]). In Corollary 3.9, if the mapping * is $\Lambda \times I \rightarrow E^{\circ}$ instead of $\Lambda \times I \rightarrow S^{\circ}$, then W is a regular semigroup with a multiplicative inverse transversal isomorphic to S°, and $I_{W} \simeq I$ and $\Lambda_{W} \simeq \Lambda$. Conversely, every such semigroup can be so constructed.

Proof. For $(f, e) \in R_{x^{-1} x} \times L_{y y^{-1}}$, since $f * e \in E^{\circ}$, we have $(f, e) \alpha_{(x, y)}=x(f * e) x^{-1}$ and $(f, e) \beta_{(x, y)}=y^{-1}(f * e) y$. From this fact, we have $(e, x, f)^{\circ}(e, x, f)(g, y, h)(g, y, h)^{\circ}=$ $\left(f^{\circ} f^{\circ}, f\right)\left(g, g^{\circ}, g^{\circ}\right)=(f * g, f * g, f * g) \in E\left(W^{\circ}\right)$, so that W° is multiplicative.

By (1.2), I_{W} [resp. Λ_{W}] in Corollaries 3.9 and 3.10 is a left [resp. right] normal band. Since $I_{\boldsymbol{W}} \simeq I\left[\operatorname{resp} . \Lambda_{W} \simeq \Lambda\right], I$ [resp. Λ] is necessarily a left [resp. right] normal band.

Though the condition (1) $g^{\circ}(f * e)=g^{\circ} f * e$ and $(f * e) h^{\circ}=f * e h^{\circ}$ has been used instead of (1^{*}) $f^{\circ}(f * e) e^{\circ}=f * e$ in [3] and [9], Corollaries 3.9 and 3.10 can be obtained under the condition (1^{*}) which is weaker than (1).

Moreover, we can obtain construction theorems on idempotent-generated regular semigroups with inverse transversals and bands with inverse transversals, by taking $S^{\circ}=E^{\circ}$ in Theorem 3.4 and Theorem 3.6, respectively.

REFERENCES

1. T. S. Blyth and R. McFadden, Regular semigroups with a multiplicative inverse transversal, Proc. Roy. Soc. Edinburgh 92A (1982), 253-270.
2. D. B. McAlister and T. S. Blyth, Split orthodox semigroups, J. Algebra 51, (1978), 491-525.
3. D. B. McAlister and R. McFadden, Regular semigroups with inverse transversals, Quart. J. Math. Oxford 34 (1983), 459-474.
4. D. B. McAlister and R. McFadden, Semigroups with inverse transversals as matrix semigroups, Quart. J. Math. Oxford 35 (1984), 455-474.
5. Tatsuhioo Saito, Construction of a class of regular semigroups with an inverse transversal, to appear.
6. Tatsuhiko Saito, Regular semigroups with a weakly multiplicative inverse transversal. Proc. 8th Symposium on Semigroups, Shimane Univ. (1985), 22-25.
7. M. Yamada, Introduction to Semigroup Theory (Maki-Shoten, Tokyo, 1979), in Japanese.
8. R. Yoshida, Left inverse semigroups with inverse transversals, preprint.
9. R. Yoshida, Regular semigroups with multiplicative inverse transversals II, preprint.
[^0]
[^0]: Department of General Education
 Shimonoseki University of Fisheries
 Yoshimi, Shimonoseki 759-65
 Japan

