CONSTRUCTION OF REGULAR SEMIGROUPS WITH INVERSE TRANSVERSALS

by TATSUHIKO SAITO

(Received 24th March 1987)

1. Preliminaries

Let S be a regular semigroup. An inverse subsemigroup S° of S is an inverse transversal if $|V(x) \cap S^{\circ}| = 1$ for each $x \in S$, where V(x) denotes the set of inverses of x. In this case, the unique element of $V(x) \cap S^{\circ}$ is denoted by x°, and x°° denotes $(x^{\circ})^{-1}$. Throughout this paper S denotes a regular semigroup with an inverse transversal S°, and $E(S^{\circ}) = E^{\circ}$ denotes the semilattice of idempotents of S°. The sets $\{e \in S : ee^{\circ} = e\}$ and $\{f \in S : f^{\circ}f = f\}$ are denoted by I_S and Λ_S , respectively, or simply I and A. Though each element of these sets is idempotent, they are not necessarily sub-bands of S. When both I and A are sub-bands of S, S° is called an S-inverse transversal. An inverse transversal S° is multiplicative if $x^{\circ}xyy^{\circ} \in E^{\circ}$, and S° is weakly multiplicative if $(x^{\circ}xyy^{\circ})^{\circ} \in E^{\circ}$ for every $x, y \in S$. A band B is left [resp. right] regular if efe = ef [resp. efe = fe], and B is left [resp. right] normal if efg = egf [resp. efg = feg] for every $e, f, g \in B$. A subset Q of S is a quasi-ideal of S if $QSQ \subseteq S$.

We list already obtained results in [3, 4, 5, 6], which will be used in this paper:

- (1.1) $(xy)^\circ = (x^\circ xy)^\circ x^\circ = y^\circ (xyy^\circ)^\circ$ for every $x, y \in S$.
- (1.2) If S° is a quasi-ideal of S, then I [resp. Λ] is a left [resp. right] normal band with an inverse transversal E°
- (1.3) If S° is an S-inverse transversal, then I [resp. Λ] is a left [resp. right] regular band with an inverse transversal E° .
- (1.4) S° is weakly multiplicative if and only if $I\Lambda = \{ef : e \in I, f \in \Lambda\}$ is the idempotentgenerated subsemigroup of S with inverse transversal E° .
- (1.5) S° is an S-inverse transversal of S if and only if $(x^{\circ}y)^{\circ} = y^{\circ}x^{\circ\circ}$ and $(xy^{\circ})^{\circ} = y^{\circ\circ}x^{\circ}$ for every $x, y \in S$.
- (1.6) S is isomorphic to the set $\{(e, x, f) \in I \times S^{\circ} \times \Lambda : e^{\circ} = xx^{-1}, f^{\circ} = x^{-1}x\}$ under the multiplication

$$(e, x, f)(g, y, h) = (exfgy(xfgy)^{\circ}, x(fg)^{\circ\circ}y, (xfgy)^{\circ}xfgyh).$$

41

(1.7) The following diagram is obtained:

Proposition 1.8. S is orthodox if and only if $(xy)^\circ = y^\circ x^\circ$ for every $x, y \in S$.

Proof. If S is orthodox, then $y^{\circ}x^{\circ} \in V(xy) \cap S^{\circ}$ for every $x, y \in S$, so that $(xy)^{\circ} = y^{\circ}x^{\circ}$. Conversely, if $(xy)^{\circ} = y^{\circ}x^{\circ}$ for every $x, y \in S$, then $e \in E(S)$ if and only if $e^{\circ} \in E^{\circ}$. Because, $e \in E(S)$ implies $e^{\circ} = (ee)^{\circ} = e^{\circ}e^{\circ}$ and $e^{\circ} \in E^{\circ}$ implies $e = ee^{\circ}e = e(e^{\circ})^{2}e = e(e^{2})^{\circ}e^{\circ} = e(e^{2})^{\circ}e^{\circ} = e(e^{2})^{\circ}e^{\circ} = e(e^{2})^{\circ}e^{\circ} = ee^{\circ}e^{\circ}e^{\circ} = ee$. Let $e, f \in E(S)$. Then $(ef)^{\circ} = f^{\circ}e^{\circ} \in E^{\circ}$, so that $ef \in E(S)$. Thus S is orthodox.

The above result has been obtained, when S° is multiplicative, by T.S. Blyth and R. McFadden (cf. [1]).

2. Main theorem

To achieve our aim, we need several lemmas.

Lemma 2.1. For each $a \in E^\circ$, let $L_a = \{e \in I: e^\circ = a\}$ and $R_a = \{f \in \Lambda: f^\circ = a\}$. Then:

- (1) L_a [resp. R_a] is a left [resp. right] zero-semigroup,
- (2) if $e \in L_a$, $g \in L_b$ with $b \leq a$, then $eg \in L_b$, and if $f \in R_a$, $h \in R_b$ with $b \leq a$, then $hf \in R_b$, and
- (3) $I = \Sigma \{L_a : a \in E^\circ\}$ and $\Lambda = \Sigma \{R_a : a \in E^\circ\}$, where Σ denotes disjoint union.

Proof. (1) For $e, g \in L_a$, we have $eg = ee^\circ g = eg^\circ g = eg^\circ = ee^\circ = e$.

- (2) Let $e \in L_a$ and $g \in L_b$. Then $egb = egg^\circ = eg$. If $b \leq a$, then $beg = baeg = g^\circ e^\circ eg = g^\circ e^\circ g = g^\circ g = g^\circ g = g^\circ = b$. Thus $eg \in L_b$.
- (3) This is clear.

Let Y be a semilattice, and T_{α} a semigroup for each $\alpha \in Y$. Let $T = \Sigma \{T_{\alpha} : \alpha \in Y\}$. If a partial binary operation \circ is defined in T such that

- (1) for $x, y, z \in T$, $x \circ (y \circ z) = (x \circ y) \circ z$ if $x \circ y$, $(x \circ y) \circ z$, $y \circ z$ and $x \circ (y \circ z)$ are defined in T,
- (2) $x \circ y = xy$ if $x, y \in T_a$, where xy is the product of x and y in T_a , and
- (3) for $x \in T_{\alpha}$ and $y \in T_{\beta}$ with $\beta \leq \alpha$, $x \circ y$ [resp. $y \circ x$] is defined and $x \circ y$ [resp. $y \circ x] \in T_{\beta}$,

then the resulting system $T(\circ)$ is called a lower [resp. upper] partial chain of $\{T_{\alpha}: \alpha \in Y\}$. In particular, if each T_{α} contains $\bar{\alpha}$, and $\{\bar{\alpha}: \alpha \in Y\}$ forms a semilattice isomorphic to Y under the binary operation \circ , then $\{\bar{\alpha}: \alpha \in Y\}$ is called a *semilattice transversal* of $T(\circ)$.

By Lemma 2.1, I [resp. Λ] is a lower [resp. upper] partial chain of left [resp. right] zero semigroups $\{L_a: a \in E^\circ\}$ [resp. $\{R_a: a \in E^\circ\}$], and I and A have a common semilattice transversal E° .

Lemma 2.2. If S° is an S-inverse transversal of S, then I [resp. Λ] is a semilattice of left [resp. right] zero semigroups $\{L_a: a \in E^\circ\}$ [resp. $\{R_a: a \in E^\circ\}$].

Proof. Let $e \in L_a$ and $g \in L_b$. Then, by (1.1) and (1.5), we have $(eg)^\circ = (e^\circ eg)^\circ e^\circ =$ $(e^{\circ}g)^{\circ}e^{\circ} = g^{\circ}e^{\circ}e^{\circ} = g^{\circ}e^{\circ} = ab$. Since $eg \in I$, $eg \in L_{ab}$.

Lemma 2.3. Let $e \in I$ and $f \in \Lambda$. Then:

- (1) $f^{\circ}(fe)^{\circ\circ}e^{\circ} = (fe)^{\circ\circ}$,
- (2) $(f^{\circ}e^{\circ})^{\circ\circ} = f^{\circ}e^{\circ}$,
- (3) $(ff^{\circ})^{\circ\circ} = f^{\circ}$ and $(e^{\circ}e)^{\circ\circ} = e^{\circ}$.
- (4) if $f^{\circ} = (fe^{\circ})^{\circ\circ}(fe^{\circ})^{\circ}$ [resp. $e^{\circ} = (f^{\circ}e)^{\circ}(f^{\circ}e)^{\circ\circ}$], then $f^{\circ} = (fe^{\circ})^{\circ\circ}$ [resp. $e^{\circ} = (f^{\circ}e)^{\circ\circ}$],
- (5) if S° is an S-inverse transversal of S, then $(f^{\circ}e)^{\circ\circ} = (fe^{\circ})^{\circ\circ} = f^{\circ}e^{\circ}$,
- (6) if S° is weakly multiplicative, then $(fe)^{\circ\circ} \in E^{\circ}$.
- (7) if S° is a quasi-ideal of S, then $(fe)^{\circ\circ} = fe$, and
- (8) if S is orthodox, then $(fe)^{\circ\circ} = f^{\circ}e^{\circ}$.

Proof. (1) By (1.1) we have $(fe)^\circ = e^\circ (f^\circ f e e^\circ)^\circ f^\circ = e^\circ (fe)^\circ f^\circ$, so that $(fe)^{\circ\circ} = e^\circ (fe)^\circ f^\circ$. $f^{\circ}(fe)^{\circ\circ}e^{\circ}$. (2) and (3) are clear. (4) Let $f^{\circ} = (fe^{\circ})^{\circ\circ}(fe^{\circ})^{\circ}$. Then we have $fe^{\circ} = fe^{\circ}$ $f^{\circ}fe^{\circ} = (fe^{\circ})^{\circ\circ}(fe^{\circ})^{\circ}fe^{\circ}$, so that $fe^{\circ}(fe^{\circ})^{\circ} = (fe^{\circ})^{\circ\circ}(fe^{\circ})^{\circ} = f^{\circ}$. Thus we have $f(fe^{\circ})^{\circ}f = fe^{\circ}(fe^{\circ})^{\circ}f = f^{\circ}f = f$ and $(fe^{\circ})^{\circ}f(fe^{\circ})^{\circ} = (fe^{\circ})^{\circ}fe^{\circ}(fe^{\circ})^{\circ} = (fe^{\circ})^{\circ}$, so that $f^{\circ} = (fe^{\circ})^{\circ}$. Thus $f^{\circ} = (fe^{\circ})^{\circ\circ}$. (5) By (1.5), this is clear. (6) Since $(fe)^{\circ} = (f^{\circ}fee^{\circ})^{\circ} \in E^{\circ}$, $(fe)^{\circ\circ} \in E^{\circ}$. (7) Since $fe = f^{\circ} fee^{\circ} \in S^{\circ}SS^{\circ} \subseteq S^{\circ}$, $(fe)^{\circ\circ} = fe$. (8) By Proposition 1.8, this is clear.

Lemma 2.4. For each $(x, y) \in S^{\circ} \times S^{\circ}$, let $\alpha_{(x, y)}: R_{x^{-1}x} \times L_{yy^{-1}} \rightarrow I$ and $\beta_{(x, y)}: R_{x^{-1}x} \times L_{yy^{-1}}$ $L_{yy^{-1}} \rightarrow \Lambda$ be mappings defined by $(f, e)\alpha_{(x, y)} = x f e y(x f e y)^{\circ}$ and $(f, e)\beta_{(x, y)} = (x f e y)^{\circ} x f e y$, respectively. Then:

$$(1) (f, e)\alpha_{(x, y)} \in L_{x(fe)^{\infty}y(x(fe)^{\infty}y)^{-1}} and (f, e)\beta_{(x, y)} \in R_{(x(fe)^{\infty}y)^{-1}x(fe)^{\infty}y},$$

$$(2) if f \in R_{x^{-1}x}, g \in L_{yy^{-1}}, h \in R_{y^{-1}y} and k \in L_{zz^{-1}}, then$$

$$(f, g)\alpha_{(x, y)}((f, g)\beta_{(x, y)}h, k)\alpha_{(x(fg)^{\infty}y, z)} = (f, g(h, k)\alpha_{(y, z)})\alpha_{(x, y(hk)^{\infty}z)},$$

$$(f, g(h, k)\alpha_{(y, z)})\beta_{(x, y(hk)^{\infty}z)}(h, k)\beta_{(y, z)} = ((f, g)\beta_{(x, y)}h, k)\beta_{(x(fg)^{\infty}y, z)}$$

1 / 6 > 0

and

$$(fg)^{\circ\circ}y((f,g)\beta_{(x,y)}hk)^{\circ\circ} = (fg(h,k)\alpha_{(y,z)})^{\circ\circ}y(hk)^{\circ\circ}$$

(3) $(x^{-1}x, yy^{-1})\alpha_{(x,y)} = xy(xy)^{-1}$ and $(x^{-1}x, yy^{-1})\beta_{(x,y)} = (xy)^{-1}xy$, and (4) if S° is an S-inverse transversal of S, then $(f^{\circ}, e)\alpha_{(f^{\circ}, e^{\circ})} = f^{\circ}e$ and $(f, e^{\circ})\beta_{(f^{\circ}, e^{\circ})} = fe^{\circ}$.

Proof. (1) Let $(f, e) \in R_{x^{-1}x} \times L_{yy^{-1}}$. Then, by (1.1), we have

$$(xfey)^{\circ} = y^{-1}(x^{-1}xfeyy^{-1})^{\circ}x^{-1} = y^{-1}(f^{\circ}fee^{\circ})x^{-1} = y^{-1}(fe)^{\circ}x^{-1} = (x(fe)^{\circ\circ}y)^{-1},$$

so that

$$((f,e)\alpha_{(x,y)})^{\circ} = (xfey(xfey)^{\circ})^{\circ} = (efey)^{\circ\circ}(xfey)^{\circ} = x(fe)^{\circ\circ}y(x(fe)^{\circ\circ}y)^{-1}.$$

(2) By using (1.1), we can tediously but easily show that

$$(f,g)\alpha_{(x,y)}((f,g)\beta_{(x,y)}h,k)\alpha_{(x(fg)^{\infty}y,z)}$$

= $x f g y h k z (x f g y h k z)^{\circ} = (f,g(h,k)\alpha_{(y,z)})\alpha_{(x,y(hk)^{\infty}z)}, (f,g(h,k)\alpha_{(y,z)})\beta_{(x,y(hk)^{\infty}z)}(h,k)\beta_{(y,z)}$
= $(x f g y h k z)^{\circ} x f g y h k z = ((f,g)\beta_{(x,y)}h,k)\beta_{(x(fg)^{\infty}y,z)}$

and

$$(fg)^{\circ\circ}y((f,g)\beta_{(x,y)}hk)^{\circ\circ} = (fgyhk)^{\circ\circ} = (fg(h,k)\alpha_{(y,z)})^{\circ\circ}y(hk)^{\circ\circ}.$$

(3) By the definition, this can be easily proved.

(4) By using (1.5), this can be easily proved.

Let M and N be two sets. A partial mapping from M to N is a mapping from a subset C of M into N. The set of all partial mappings form M to N is denoted by PT(M, N). Then, by Lemma 2.4, $\alpha_{(x,y)} \in PT(\Lambda \times I, I)$ and $\beta_{(x,y)} \in PT(\Lambda \times I, \Lambda)$ with dom $(\alpha_{(x,y)}) = dom(\beta_{(x,y)}) = R_{x^{-1}x} \times L_{yy^{-1}}$.

Theorem 2.5. Let S° be an inverse semigroup with the semilattice E° of idempotents, and let I be a lower partial chain of left zero semigroups $\{L_a: a \in E^{\circ}\}$ and Λ an upper partial chain of right zero semigroups $\{R_a; a \in E^{\circ}\}$. Suppose that I and Λ have a common semilattice transversal E° . Let $\Lambda \times I \rightarrow S^{\circ}$, $(f, e) \rightarrow f * e$ be a mapping satisfying:

(1*)
$$f^{\circ}(f * e)e^{\circ} = f * e,$$

(2*) $f^{\circ} * e^{\circ} = f^{\circ}e^{\circ},$
(3*) $f * f^{\circ} = f^{\circ}$ and $e^{\circ} * e = e^{\circ}$ and

(4*) if $f^{\circ} = (f * e^{\circ})(f * e^{\circ})^{-1}$, then $f^{\circ} = f * e^{\circ}$, and if $e^{\circ} = (f^{\circ} * e)^{-1}(f^{\circ} * e)$, then $e^{\circ} = f^{\circ} * e$.

Suppose that, for each $(x, y) \in S^{\circ} \times S^{\circ}$, there exist $\alpha_{(x, y)} \in PT(\Lambda \times I, I)$ and $\beta_{(x, y)} \in PT(\Lambda \times I, \Lambda)$ satisfying:

(a*) dom $(\alpha_{(x,y)}) =$ dom $(\beta_{(x,y)}) = R_{x^{-1}x} \times L_{yy^{-1}}, (f, e)\alpha_{(x,y)} \in L_{x(f * e)y(x(f * e)y)^{-1}} and (f, e)\beta_{(x,y)} \in R_{(x(f * e)y)^{-1}x(f * e)y},$ (b*) if $f = R_{x^{-1}x} + L_{x^{-1}x} + L_{x^{-1}x$

(b*) if $f \in R_{x^{-1}x}$, $g \in L_{yy^{-1}}$, $h \in R_{y^{-1}y}$ and $k \in L_{zz^{-1}}$, then

$$(f,g)\alpha_{(x,y)}((f,g)\beta_{(x,y)}h,k)\alpha_{(x(f*g)y,z)} = (f,g(h,k)\alpha_{(y,z)})\alpha_{(x,y(h*k)z)},$$

$$(f,g(h,k)\alpha_{(y,z)})\beta_{(x,y(h+k)z)}(h,k)\beta_{(y,z)} = ((f,g)\beta_{(x,y)}h,k)\beta_{(x(f+g)y,z)}$$

and

$$(f * g)y((f,g)\beta_{(x,y)}h * k) = (f * g(h,k)\alpha_{(y,z)})y(h * k), and$$

$$(\mathbf{c}^*) \ (x^{-1}x, yy^{-1})\alpha_{(x,y)} = xy(xy)^{-1} \ and \ (x^{-1}x, yy^{-1})\beta_{(x,y)} = (xy)^{-1}xy.$$

Define a multiplication on the set $W = \{(e, x, f) \in I \times S^{\circ} \times \Lambda : e \in L_{xx^{-1}}, f \in R_{x^{-1}x}\}$ by $(e, x, f)(g, y, h) = (e(f, g)\alpha_{(x, y)}, x(f * g)y, (f, g)\beta_{(x, y)}h)$. Then W is a regular semigroup with an inverse transversal isomorphic to S° .

Conversely, every regular semigroup with an inverse transversal can be constructed in this way.

Proof. We can easily show, by using (a*) and (b*), that W is a semigroup. Let $W^{\circ} = \{(e, x, f) \in W: e, f \in E^{\circ}\}$. Then $(e, x, f) \in W^{\circ}$ if and only if $e = xx^{-1}$ and $f = x^{-1}x$. By (2*) and (c*), we obtain $(xx^{-1}, x, x^{-1}x)(yy^{-1}, y, y^{-1}y) = (xy(xy)^{-1}, xy, (xy)^{-1}xy)$, which shows $W^{\circ} \simeq S^{\circ}$, so that W° is an inverse subsemigroup of W.

For $(e, x, f) \in W$, by (3*), we have $x(f * f^{\circ})x^{-1} = xf^{\circ}x^{-1} = xx^{-1} = e^{\circ}$, so that $(f, f^{\circ})\alpha_{(x, x^{-1})} \in L_{e^{\circ}}$ and $(f, f^{\circ})\beta_{(x, x^{-1})} \in R_{e^{\circ}}$. Thus we have $(e, x, f)(f^{\circ}, x^{-1}, e^{\circ}) = (e(f, f^{\circ})\alpha_{(x, x^{-1})}, e^{\circ}, (f, f^{\circ})\beta_{(x, x^{-1})}e^{\circ}) = (e, e^{\circ}, e^{\circ})$. Again by (3*), $e^{\circ}(e^{\circ} * e)x = x$, so that $(e^{\circ}, e)\alpha_{(e^{\circ}, x)} \in L_{e^{\circ}}$ and $(e^{\circ}, e)\beta_{(e^{\circ}, x)} \in R_{f^{\circ}}$. Thus we have $(e, x, f)(f^{\circ}, x^{-1}, e^{\circ})(e, x, f) = (e, e^{\circ}, e^{\circ})(e, x, f) = (e(e^{\circ}, e)\alpha_{(e^{\circ}, x)}, x, (e^{\circ}, e)\beta_{(e^{\circ}, x)}f) = (e, x, f)$ Similarly we obtain $(f^{\circ}, x^{-1}, e^{\circ})(e, x, f)(f^{\circ}, x^{-1}, e^{\circ}) = (f^{\circ}, x^{-1}, e^{\circ})$. Consequently $(f^{\circ}, x^{-1}, e^{\circ})$ is an inverse of (e, x, f) in W° .

Let $(g^{\circ}, y, h^{\circ}) \in W^{\circ}$ be an inverse of $(e, x, f) \in W$. Then

$$(e, x, f) = (e, x, f)(g^{\circ}, y, h^{\circ})(e, x, f) = (\dots, x(f * g^{\circ})y, (f, g^{\circ})\beta_{(x, y)}h^{\circ})(e, x, f)$$
$$= (\dots, x(f * g^{\circ})y((f, g^{\circ})\beta_{(x, y)}h^{\circ} * e)x, \dots).$$

Thus we have

$$xx^{-1} \ge x(f * g^{\circ})y(x(f * g^{\circ})y)^{-1}$$

TATSUHIKO SAITO

$$\ge x(f * g^{\circ})y((f, g^{\circ})\beta_{(x, y)}h^{\circ} * e)x(x(f * g^{\circ})y((f, g^{\circ})\beta_{(x, y)}h^{\circ} * e)x)^{-1}$$

= xx^{-1} ,

so that $xx^{-1} = x(f * g^{\circ})y(x(f * g^{\circ})y)^{-1}$. By (1*)

$$x^{-1}x = x^{-1}xx^{-1}x = x^{-1}x(f * g^{\circ})yy^{-1}(f * g^{\circ})^{-1}x^{-1}x$$

$$= f^{\circ}(f * g^{\circ})g^{\circ}(f * g^{\circ})^{-1}f^{\circ} = (f * g^{\circ})(f * g^{\circ})^{-1}$$

By (4*), we obtain $f^{\circ} = f * g^{\circ}$, and similarly $e^{\circ} = h^{\circ} * e$. Since

$$e^{\circ} = xx^{-1} = x(f * g^{\circ})y(x(f * g^{\circ})y)^{-1},$$

 $(f, g^{\circ})\alpha_{(x, y)} \in L_{e^{\circ}}$. Thus we have

$$(g^{\circ}, y, h^{\circ}) = (g^{\circ}, y, h^{\circ})(e, x, f)(g^{\circ}, y, h^{\circ}) = (g^{\circ}, y, h^{\circ})(e(f, g^{\circ})\alpha_{(x, y)}, x(f * g^{\circ})y, \dots)$$
$$= (g^{\circ}, y, h^{\circ})(e, xf^{\circ}y, \dots) = (g^{\circ}, y, h^{\circ})(e, xy, \dots) = (\dots, y(h^{\circ} * e)xy, \dots)$$
$$= (\dots, ye^{\circ}xy, \dots) = (\dots, yxy, \dots),$$

so that y = yxy. Since $y^{-1}y \ge (xy)^{-1}xy \ge (yxy)^{-1}yxy = y^{-1}y, y^{-1}y = (xy)^{-1}xy$ and $(f,g^{\circ})\beta_{(x,y)} \in R_{h^{\circ}}$. Thus we have $(e,x,f) = (e,x,f)(g^{\circ},y,h^{\circ})(e,x,f) = (e,xy,h^{\circ})(e,x,f) = (\dots, xyx,\dots)$, so that x = xyx. Consequently $y = x^{-1}$. Thus each element $(e,x,f) \in W$ has the unique inverse $(f^{\circ}, x^{-1}, e^{\circ})$ in W° .

Conversely, let S be a regular semigroup with an inverse transversal S°. By Lemma 2.1, I_S and Λ_S are a lower partial chain of left zero semigroups $\{L_a: a \in E^\circ\}$ and an upper partial chain of right zero semigroups $\{R_a: a \in E^\circ\}$, respectively. For $(f, e) \in \Lambda_S \times I_S$, put $f * e = (fe)^{\circ\circ}$. Then, by Lemma 2.3, * is a mapping from $\Lambda_S \times I_S$ into S° satisfying the conditions $(1^*)-(4^*)$. For each $(x, y) \in S^\circ \times S^\circ$ and for every $(f, e) \in R_{x^{-1}x} \times L_{yy^{-1}}$, put $(f, e)\alpha_{(x,y)} = xfey(xfey)^\circ$ and $(f, e)\beta_{(x,y)} = (xfey)^\circ xfey$. Then, $\alpha_{(x,y)} \in PT(\Lambda \times I, I)$ and $\beta_{(x,y)} \in PT(\Lambda \times I, \Lambda)$, and by Lemma 2.4, they satisfy the conditions $(a^*)-(c^*)$. Thus we can construct a semigroup $W = \{(e, x, f) \in I_S \times S^\circ \times \Lambda_S: e \in L_{xx^{-1}}, f \in R_{x^{-1}x}\}$ under the multiplication $(e, x, f)(g, y, h) = (exfgy(xfgy)^\circ, x(fg)^{\circ\circ}y, (xfgy)^\circ xfgyh)$. Then, by (1.6), $W \simeq S$. The proof is complete.

3. Application to special cases

(1) S-inverse transversals

Lemma 3.1. In Theorem 2.5, if the mapping * satisfies the condition (1*), and (2°) $f * e^\circ = f^\circ * e = f^\circ e^\circ$ instead of the conditions (2*), (3*) and (4*), then W is a regular

semigroup with an S-inverse transversal isomorphic to S° . Conversely, every such semigroup can also be so constructed.

Furthermore, if a binary operation \circ is defined on I [resp. Λ] by $e \circ g = e(e^{\circ}, g) \alpha_{(e^{\circ}, g^{\circ})}$ for $e, g \in I$ [resp. $h \circ g = (f, h^{\circ}) \beta_{(f^{\circ}, h^{\circ})} h$ for $f, h \in \Lambda$], then $I(\circ) \simeq I_{W}$ [resp. $\Lambda(\circ) \simeq \Lambda_{W}$].

Proof. It is clear that (2°) implies (2^{*}) , (3^{*}) and (4^{*}) . Thus, it is enough to show that W° is an S-inverse transversal of W. Let $(e, x, f), (g, y, h) \in W$, Then, by (2°) , we have

$$((e, x, f)^{\circ}(g, y, h))^{\circ} = ((f^{\circ}, x^{-1}, e^{\circ})(g, y, h))^{\circ}$$

= $(\dots, x^{-1}(e^{\circ} * g)y, \dots)^{\circ}$
= $(\dots, x^{-1}e^{\circ}g^{\circ}y, \dots)^{\circ} = (\dots, x^{-1}y, \dots)^{\circ}$
= $((x^{-1}y)^{-1}x^{-1}y, (x^{-1}y)^{-1}, x^{-1}y(x^{-1}y)^{-1})$
= $(y^{-1}x(y^{-1}x)^{-1}, y^{-1}x, (y^{-1}x)^{-1}y^{-1}x)$
= $(y^{-1}y, y^{-1}, yy^{-1})(xx^{-1}, x, x^{-1}x)$
= $(g, y, h)^{\circ}(e, x, f)^{\circ \circ}$,

and similarly $((e, x, f)(g, y, h)^{\circ})^{\circ} = (g, y, h)^{\circ \circ}(e, x, h)^{\circ}$, so that, by (1.5), W° is an S-inverse transversal. By (5) of Lemma 2.3, the converse assertion is clear.

For the last assertion, by a part of the proof of Theorem 2.5, $(e, x, f)(e, x, f)^\circ = (e, e^\circ, e^\circ)$, which shows that $(e, x, f) \in I_W$ if and only if $x = f = e^\circ$. Let (e, e°, e°) , $(g, g^\circ, g^\circ) \in I_W$. Then, by (1*) and (2°), $e^\circ(e^\circ * g)g^\circ = e^\circ * g = e^\circ g^\circ$, so that $(e, e^\circ, e^\circ)(g, g^\circ, g^\circ) = (e(e^\circ, g)\alpha_{(e^\circ, g^\circ)}, e^\circ g^\circ, (e^\circ, g)\beta_{(e^\circ, g^\circ)}g^\circ)$. Since I_W is a sub-band of W, $(e(e^\circ, g)\alpha_{(e^\circ, g^\circ)}, e^\circ g^\circ, (e^\circ, g)\beta_{(e^\circ, g^\circ)}g^\circ) = e^\circ g^\circ$. Consequently $(e, e^\circ, e^\circ)(g, g^\circ, g^\circ) = (e \circ g, e^\circ g^\circ, e^\circ g^\circ)$, which shows that $I_W \simeq I(\circ)$.

By Lemmas 2.2 and 3.1, we obtain:

Theorem 3.2. Let S° be an inverse semigroup with the semilattice E° of idempotents, and let I be a semilattice of left zero semigroups $\{L_a: a \in E^{\circ}\}$ and Λ a semilattice of right zero semigroups $\{R_a: a \in E^{\circ}\}$. Suppose that I and Λ have a common semilattice transversal E° . Let $\Lambda \times I \to S^{\circ}, (f, e) \to f * e$ be a mapping satisfying:

(1*)
$$f^{\circ}(f * e)e^{\circ} = f * e$$
 and (2°) $f^{\circ} * e = f * e^{\circ} = f^{\circ}e^{\circ}$.

Suppose that, for each $(x, y) \in S^{\circ} \times S^{\circ}$, there exist $\alpha_{(x, y)} \in PT(\Lambda \times I, I)$ and $\beta_{(x, y)} \in PT(\Lambda \times I, \Lambda)$ satisfying the conditions (a^*) , (b^*) , and (c^*) in Theorem 2.5, and (d^*) $(f^{\circ}, e)\alpha_{(f^{\circ}, e^{\circ})} = f^{\circ}e$ and $(f, e^{\circ})\beta_{(f^{\circ}, e^{\circ})} = fe^{\circ}$. Define a multiplication on the set $W = \{(e, x, f) \in I \times S^{\circ} \times \Lambda : e \in L_{xx^{-1}}, f \in R_{x^{-1}x}\}$ as in Theorem 2.5. Then W is a regular semigroup with an S-inverse transversal isomorphic to S° , and $I_W \simeq I$ and $\Lambda_W \simeq \Lambda$. Conversely, every such semigroup can be so constructed.

TATSUHIKO SAITO

Proof. It is enough to show that $I_W \simeq I$ and $\Lambda_W \simeq \Lambda$. Let $e, g \in I$. Then, by (d*), $e(e^\circ, g)\alpha_{(e^\circ, g^\circ)} = ee^\circ g = eg$, so that the binary operation \circ in Lemma 3.1 coincides with the product in *I*. Thus $I_W \simeq I$, and similarly $\Lambda_W \simeq \Lambda$.

(2) Weakly multiplicative inverse transversals

Lemma 3.3. In Theorem 2.5, if the mapping * is $\Lambda \times I \rightarrow E^{\circ}$ instead of $\Lambda \times I \rightarrow S^{\circ}$, then W is a regular semigroup with a weakly multiplicative inverse transversal isomorphic to S° . Conversely, every such semigroup can be so constructed.

Proof. It is enough to show that W° is weakly multiplicative. Let $(e, x, f), (g, y, h) \in W$. Then, since $f * g \in E^{\circ}$, we have

$$((e, x, f)^{\circ}(e, x, f)(g, y, h)(g, y, h)^{\circ})^{\circ} = ((f^{\circ}, f^{\circ}, f)(g, g^{\circ}, g^{\circ}))^{\circ} = (\dots, f^{\circ}(f * g)g^{\circ}, \dots)^{\circ}$$
$$= (\dots, f * g, \dots)^{\circ} = (f * g, f * g, f * g) \in E(W^{\circ}),$$

so that W° is weakly multiplicative. By (6) of Lemma 2.3, the converse assertion is clear.

By Theorem 3.2 and Lemma 3.3, we obtain:

Theorem 3.4. Let S° , E° , I and Λ be as in Theorem 3.2, Let $\Lambda \times I \to E^{\circ}$, $(f, e) \to f * g$ be a mapping satisfying the condition (1^*) and (2°) . Suppose that, for each $(x, y) \in S^{\circ} \times S^{\circ}$, there exist $\alpha_{(x,y)} \in PT(\Lambda \times I, I)$ and $\beta_{(x,y)} \in PT(\Lambda \times I, \Lambda)$ satisfying the conditions $(a^*)-(d^*)$. Define a multiplication on the set $W = \{(e, x, f)\} \in I \times S^{\circ} \times \Lambda : e \in L_{xx^{-1}}, f \in R_{x^{-1}x}\}$ as in Theorem 2.5. Then W is a regular semigroup with a weakly multiplicative inverse transversal isomorphic to S° , and $I_W \simeq I$ and $\Lambda_W \simeq \Lambda$. Conversely, every such semigroup can be so constructed.

(3) Orthodox semigroups

Lemma 3.5. In Theorem 2.5, if the mapping * satisfies (1°) $f * e = f^{\circ}e^{\circ}$ instead of (1*)–(4*), then W is an orthodox semigroup with an inverse transversal isomorphic to S°. Conversely, every such semigroup can be so constructed.

Proof. It is clear that (1°) implies $(1^{*})-(4^{*})$. Thus, it is enough to show that W is orthodox. Let $(e, x, f), (g, y, h) \in W$. Then we have

$$((e, x, f)(g, y, h))^{\circ} = (\dots, x(f * g)y, \dots)^{\circ} = (\dots, xf^{\circ}g^{\circ}y, \dots) = (\dots, xy, \dots)^{\circ}$$
$$= ((xy)^{-1}xy, (xy)^{-1}, xy(xy)^{-1})$$
$$= (y^{-1}x^{-1}(y^{-1}x^{-1})^{-1}, y^{-1}x^{-1}, (y^{-1}x^{-1})^{-1}y^{-1}x^{-1})$$

$$=(y^{-1}y, y^{-1}, yy^{-1})(x^{-1}x, x^{-1}, xx^{-1}) = (g, y, h)^{\circ}(e, x, f)^{\circ}.$$

By Proposition 1.8, W is orthodox. By (8) of Lemma 2.3, the converse assertion is clear.

If the mapping * in Theorem 2.5 satisfies the condition (1°), then x(f * e)y = xy for $(f, e) \in R_{x^{-1}x} \times L_{yy^{-1}}$, so that we can omit the mapping *. Thus, by Theorem 3.2 and Lemma 3.5, we obtain:

Theorem 3.6. Let S° , E° , I and Λ be as in Theorem 3.2. Suppose that, for each $(x, y) \in S^{\circ} \times S^{\circ}$, there exist $\alpha_{(x, y)} \in PT(\Lambda \times I, I)$ and $\beta_{(x, y)} \in PT(\Lambda \times I, \Lambda)$ satisfying:

 $(a^{\circ}) \operatorname{dom} (\alpha_{(x,y)}) = \operatorname{dom} (\beta_{(x,y)}) = R_{x^{-1}x} \times L_{yy^{-1}}, \quad \operatorname{ran} (\alpha_{(x,y)}) \subseteq L_{xy(xy)^{-1}} \quad and \quad \operatorname{ran} (\beta_{(x,y)}) \subseteq R_{(xy)^{-1}xy},$

$$(b^{\circ})$$
 if $f \in R_{x^{-1}x}, g \in L_{yy^{-1}}, h \in R_{y^{-1}y}$ and $k \in L_{zz^{-1}}$, then

 $(f,g)\alpha_{(x,y)}((f,g)\beta_{(x,y)}h,k)\alpha_{(xy,z)} = (f,g(h,k)\alpha_{(y,z)})\alpha_{(x,yz)},$

$$(f, g(h, k)\alpha_{(y, z)})\beta_{(x, yz)}(h, k)\beta_{(y, z)} = ((f, g)\beta_{(x, y)}h, k)\beta_{(xy, z)},$$

and (c*) and (d*) in Theorem 3.2. Define a multiplication on the set

$$W = \{(e, x, f)\} \in I \times S^{\circ} \times \Lambda : e \in L_{xx^{-1}}, f \in R_{x^{-1}x}\}$$

by $(e, x, f)(g, y, h) = (e(f, g)\alpha_{(x, y)}, xy, (f, g)\beta_{(x, y)}h)$. Then W is an orthodox semigroup with an inverse transversal isomorphic to S°, and $I_W \simeq I$ and $\Lambda_W \simeq \Lambda$. Conversely, every such semigroup can be so constructed.

A left [resp. right] inverse semigroup is an orthodox semigroup whose band of idempotents is left [resp. right] regular.

Lemma 3.7. In Theorem 3.2, if each right zero semigroup R_a , $a \in E^\circ$, is trivial, that is, $\Lambda = E^\circ$, then W is a left inverse semigroup with an inverse transversal isomorphic to S° , and $I_W \simeq I$. Conversely, every such semigroup can be so constructed.

Proof. Let $(e, x, f) \in W$. Since $f \in E^\circ$, $f = x^{-1}x$. Let $(e, x, x^{-1}x) \in W$ be an idempotent. Then $(e, x, x^{-1}x) = (e, x, x^{-1}x)(e, x, x^{-1}x) = (\dots, x(x^{-1}x * e)x, \dots) = (\dots, xx^{-1}xe^\circ x, \dots) = (\dots x^2, \dots)$, so that $x = x^2 \in E^\circ$. Thus, $(e, x, x^{-1}x) = (e, e^\circ, e^\circ)$, which shows $E(W) = I_W$. Consequently, the set E(W) of idempotents of W is left regular, so that W is a left inverse semigroup.

In Lemma 3.7, for $g \in L_{yy^{-1}}$, we have $x(x^{-1}x * g)y = xx^{-1}xg^{\circ}y = xy$, so that the mapping * can be omitted.

Corollary 3.8 ([8, Theorem 1]). Let S° and I be as in Theorem 3.2. Let σ be an antihomomorphism S° into End(I), $x \to \sigma(x)$ satisfying (1) $L_{yy^{-1}}\sigma(x) \subseteq L_{xy(xy)^{-1}}$, (2) $(yy^{-1})\sigma(x) = xy(xy)^{-1}$ and (3) $e\sigma(f^{\circ}) = ef^{\circ}$.

TATSUHIKO SAITO

Define a multiplication on the set $W = \{(e, x) \in I \times S^\circ: e \in L_{xx^{-1}}\}$ by $(e, x)(g, y) = (e(g\sigma(x)), xy)$. Then W is a left inverse semigroup with an inverse transversal isomorphic to S° , and $I_W \simeq I$. Conversely, every such semigroup can be so constructed.

Proof. For each $(x, y) \in S^{\circ} \times S^{\circ}$ and for every $e \in L_{yy^{-1}}$, we take $(x^{-1}x, e)\alpha_{(x, y)} = e\sigma(x)$ and $(x^{-1}x, e)\beta_{(x, y)} = (xy)^{-1}xy$. Then we can show that $\alpha_{(x, y)}$ and $\beta_{(x, y)}$ satisfy the condition $(a^*)-(d^*)$ in Theorem 3.2. Thus, by Lemma 3.7, we can construct a left inverse semigroup $W' = \{(e, x, x^{-1}x) \in I \times S^{\circ} \times E^{\circ} : e \in L_{xx^{-1}}\}$ under the multiplication

$$(e, x, x^{-1}x)(g, y, y^{-1}y) = (e(x^{-1}x, g)\alpha_{(x, y)}, xy, (x^{-1}x, g)\beta_{(x, y)}y^{-1}y) = (e(g\sigma(x)), xy, (xy)^{-1}xy).$$

Let $W' \to W$ be a mapping given by $(e, x, x^{-1}x) \to (e, x)$. Then the mapping is clearly an isomorphism. Thus W is a left inverse semigroup with an inverse transversal isomorphic to S°, and $I_W \simeq I$. The proof of the converse is the same as in [8].

(4) Quasi-ideal inverse transversals

Corollary 3.9. ([3, Theorem 4.2]). Let S° , I and Λ be as in Theorem 3.2., and let $\Lambda \times I \rightarrow S^{\circ}$, $(f, e) \rightarrow f * e$ be a mapping satisfying the conditions (1^*) and (2°) in Theorem 3.2. Suppose that, for each $(x, y) \in S^{\circ} \times S^{\circ}$, there exist $\alpha_{(x, y)}$ and $\beta_{(x, y)}$ in $PT(\Lambda \times I, E^{\circ})$ satisfying the condition (a^*) in Theorem 3.2. Define a multiplication on the set $W = \{(e, x, f)\} \in I \times S^{\circ} \times \Lambda : e \in L_{xx^{-1}}, f \in R_{x^{-1}x}\}$ as in Theorem 3.2. Then W is a regular semigroup with a quasi-ideal inverse transversal isomorphic to S° , and $I_W \simeq I$ and $\Lambda_W \simeq \Lambda$. Conversely, every such semigroup can be so constructed.

Proof. For $(f, e) \in R_{x^{-1}x} \times L_{yy^{-1}}$, since $(f, e)\alpha_{(x,y)} \in E^{\circ}, (f, e)\alpha_{(x,y)} = x(f * e)y(x(f * e)y)^{-1}$ and similarly $(f, e)\beta_{(x,y)} = (x(f * e)y)^{-1}x(f * e)y$. Then we can easily show that $\alpha_{(x,y)}$ and $\beta_{(x,y)}$ satisfy the conditions $(b^*)-(d^*)$ in Theorem 3.2. Thus W is a regular semigroup with an S-inverse transversal isomorphic to S°, and $I_W \simeq I$ and $\Lambda_W \simeq \Lambda$. For $(e, x, f) \in W$ and for $(g^{\circ}, y, h^{\circ}), (k^{\circ}, z, m^{\circ}) \in W^{\circ}$, we can show that $(g^{\circ}, y, h^{\circ})(e, x, f)(k^{\circ}, z, m^{\circ}) =$ $(yxz(yxz)^{-1}, yxz, (yxz)^{-1}yxz) \in W^{\circ}$, so that W° is a quasi-ideal of W. By (7) of Lemma 2.3, the converse assertion is clear.

Corolloray 3.10 ([9, Theorem 2]). In Corollary 3.9, if the mapping * is $\Lambda \times I \rightarrow E^{\circ}$ instead of $\Lambda \times I \rightarrow S^{\circ}$, then W is a regular semigroup with a multiplicative inverse transversal isomorphic to S° , and $I_{W} \simeq I$ and $\Lambda_{W} \simeq \Lambda$. Conversely, every such semigroup can be so constructed.

Proof. For $(f,e) \in R_{x^{-1}x} \times L_{yy^{-1}}$, since $f * e \in E^\circ$, we have $(f,e)\alpha_{(x,y)} = x(f * e)x^{-1}$ and $(f,e)\beta_{(x,y)} = y^{-1}(f * e)y$. From this fact, we have $(e,x,f)^\circ(e,x,f)(g,y,h)(g,y,h)^\circ = (f^\circ f^\circ, f)(g,g^\circ,g^\circ) = (f * g, f * g, f * g) \in E(W^\circ)$, so that W° is multiplicative.

By (1.2), I_W [resp. Λ_W] in Corollaries 3.9 and 3.10 is a left [resp. right] normal band. Since $I_W \simeq I$ [resp. $\Lambda_W \simeq \Lambda$], I [resp. Λ] is necessarily a left [resp. right] normal band. Though the condition (1) $g^{\circ}(f * e) = g^{\circ}f * e$ and $(f * e)h^{\circ} = f * eh^{\circ}$ has been used instead of (1*) $f^{\circ}(f * e)e^{\circ} = f * e$ in [3] and [9], Corollaries 3.9 and 3.10 can be obtained under the condition (1*) which is weaker than (1).

Moreover, we can obtain construction theorems on idempotent-generated regular semigroups with inverse transversals and bands with inverse transversals, by taking $S^{\circ} = E^{\circ}$ in Theorem 3.4 and Theorem 3.6, respectively.

REFERENCES

1. T. S. BLYTH and R. McFADDEN, Regular semigroups with a multiplicative inverse transversal, *Proc. Roy. Soc. Edinburgh* 92A (1982), 253-270.

2. D. B. MCALISTER and T. S. BLYTH, Split orthodox semigroups, J. Algebra 51, (1978), 491-525.

3. D. B. MCALISTER and R. MCFADDEN, Regular semigroups with inverse transversals, Quart. J. Math. Oxford 34 (1983), 459–474.

4. D. B. MCALISTER and R. MCFADDEN, Semigroups with inverse transversals as matrix semigroups, *Quart. J. Math. Oxford* 35 (1984), 455–474.

5. TATSUHIKO SAITO, Construction of a class of regular semigroups with an inverse transversal, to appear.

6. TATSUHIKO SAITO, Regular semigroups with a weakly multiplicative inverse transversal. Proc. 8th Symposium on Semigroups, Shimane Univ. (1985), 22-25.

7. M. YAMADA, Introduction to Semigroup Theory (Maki-Shoten, Tokyo, 1979), in Japanese.

8. R. YOSHIDA, Left inverse semigroups with inverse transversals, preprint.

9. R. YOSHIDA, Regular semigroups with multiplicative inverse transversals II, preprint.

DEPARTMENT OF GENERAL EDUCATION SHIMONOSEKI UNIVERSITY OF FISHERIES YOSHIMI, SHIMONOSEKI 759–65 JAPAN