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Introduction. Let A be a commutative Noetherian ring (with non-zero identity).
The Cousin complex C(A) for A is described in [6, §2]: it is a complex of A-modules and
A -homomorphisms

with the property that, for each n>0 ,

A"= ® (coker dn~\.
psSpec(A)

htp=n

Cohen-Macaulay rings may be characterized in terms of the Cousin complex: A is a
Cohen-Macaulay ring if and only if C(A) is exact [6, (4.7)]. Also the Cousin complex
provides a natural minimal injective resolution for a Gorenstein ring: see [6, (5.4)].

Various more general Cousin complexes can be constructed. If M is an A-module,
then we can construct the Cousin complex C(M) for M as in [6, §2]: for that we
concentrate attention on the prime ideals in Supp(M), the support of M. Again, for M
non-zero and finitely generated, we have that M is a Cohen-Macaulay A-module if and
only if C(M) is exact: see [7, (2.4)]. More generally still, we can, for any filtration SF [11,
1.1] of Spec(A) that admits M, construct the Cousin complex C(^, M) for M with respect
to SF 111, 1.3]. If we use for ^ the M-height filtration 9i?(M) of Spec(A) [11, 1.2], then
C(9£(M), M) is just the Cousin complex C(M) mentioned earlier. When A is local, use of
the dimension filtration 2)(A) [11, 1.2] of Spec(A) permits a characterization of balanced
big Cohen-Macaulay A-modules (a (not necessarily finitely generated) A-module X is a
balanced big Cohen-Macaulay A-module [10, p. 229] if every system of parameters for A
is an X-sequence). It turns out that M is a balanced big Cohen-Macaulay A-module if
and only if C(2)(A), M) is exact and Mj= mM (where m denotes the maximal ideal of A).

Although Cousin complexes do provide satisfactory characterizations of various
Cohen-Macaulay properties, they have the disadvantage that their construction is rather
complicated, and this perhaps makes them difficult to work with. The purpose of this
paper is to show that every Cousin complex for an A-module M which has only finitely
many minimal associated prime ideals may be described, up to isomorphism, as a complex
of modules of generalized fractions (such modules were introduced in [13]); this descrip-
tion is perhaps simpler and easier to work with.

Given a filtration & of Spec(A) that admits such an M we shall show that there is
induced a chain of triangular subsets on A. Such a chain is a family "U = (Ui)ieN (where M
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denotes the set of positive integers) for which the following conditions are satisfied:
(i) Ui is a triangular subset [13, 2.1] of A' for all ieN;

GO U ) e C7,;
(iii) whenever (u 1 ; . . . , 14) e Ut with ieN, then (u t , . . . , U,, l )e Ui+1;
(iv) whenever (uu ... ,ui)eUi with K i e M , then (wj , . . . , Uj_i)6 t/c_x.

Each L/j leads to a module of generalized fractions UJlM [13], and we can, in fact,
arrange these modules into a complex

denoted by C(% M), for which e°(m) = -^- for all meM and

i, . . . , U;)/ (Uj, . . . , Uj, 1)

for all i sM, x eiVf and (uj, . . . , u j e Ut: this is easy to verify ([13, 3.3(ii)] is helpful). In
the situation that concerns us here, we shall show that this complex C{°U, M) is, in fact,
isomorphic to the Cousin complex C(^, M). The exact definition of the chain "U will be
given in §2; however, in the special case in which M = A and & is the height filtration [11,
1.2] of Spec(A), it turns out that, for all ieN,

l / j = { ( u j , . . . , Uj) 6 A1:ht(Auj + . . . + A u , ) ^ / f o r a l l / = 1 , . . . , i } .

(We interpret ht A as °°.)
The existence of the above-mentioned isomorphism will be established in §3. Impetus

for the present work came from two results in Zakeri's Ph.D. thesis [15]: he established
results of a similar type in the special cases where (a) M is a non-zero finitely generated
Cohen-Macaulay A-module and ^ = §i?(M) [15, Chapter III, Theorem (3.7)] and (b) A is
local, M is a balanced big Cohen-Macaulay A-module and 2F = 3)(A) [15, Chapter IV,
Theorem (3.15)]. In both these situations the Cousin complex concerned is exact, and,
indeed, Zakeri's arguments depended on the results on the structure of certain exact
Cousin complexes in [12]. These results are phrased in terms of the concept of repeated
division in Cousin complexes. In fact, in §3 below we shall use repeated division to
provide a simple description of our main isomorphism.

This will enable us to show that special cases of the isomorphism lead to Zakeri's two
results cited above, and to extend one of the results on the structure of Cousin complexes
from [12] to more general, non-exact situations.

We believe that the results of this paper provide additional evidence in support of the
view that the concept of module of generalized fractions is worth further study.

1. Notation and preliminary results about Cousin complexes. Throughout the
paper, A will denote a commutative Noetherian ring (with non-zero identity) and M will
denote an A-module. We shall use the terminology of [11, §1] concerning the Cousin
complex for M with respect to a filtration of Spec(A) that admits M; in particular,
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= (fi)i»o wiU always denote a filtration of Spec(A) that admits M, and

will always denote the Cousin complex C(^, M) for M with respect to OF. We use N
(respectively No) to denote the set of positive (respectively non-negative) integers. Two
facts from [11, §1] will be crucial in the argument below, and are stated here for
convenience.

(1.1) PROPOSITION [11, 1.4(i)]. (i) For each neN0,

Supp(Mn) <= Supp(coker d"~2) s Fn.

(ii) For each neN0, Supp(ker d ^ / i m d"~2)cFB+1.

The proof of the following uses basic ideas concerning the Cousin complex.

(1.2) LEMMA. Let neN0-
(i) For each pedFn, there is an A-isomorphism

T)(p):(M")p^(cokerd-2)p

such that, for |3eM" with component /3p/sp in the summand (coker dn~\ (where |3P€
cokerd""2 and s p e A \ p ) and teA\p, we have

(ii) Since Supp(M")cFn (by (l.l)(i)) and dFn is low with respect to Fn, it follows from
[6, (2.2) and (2.3)] that there is an A-homomorphism

such that, for 0 e M " and vedFn, the component of a>"(/3) in (M")V is /3/1. In fact,

co" = © Tj(p) , and so is an isomorphism.
Uedfv J

Proof, (i) This follows from [6, (2.5)(ii)].
(ii) It is straightforward to check that

[ © T,(p)]oft,":j

is the identity mapping.

We shall need the concept of repeated division in Cousin complexes, introduced in
[12, §2]. We recall the main ingredients.

(1.3) LEMMA [12, (2.1)]. Let U, U' be subsets of Spec(A) such that U'^U and
U\U' is low with respect to U. Let X be an A-module with Supp(X)c[/ and put
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H = © Xp. Suppose that xeX and aeA are such that
peU\U'

ann(x)

for all qe U\U'. Then there is an element a = (ap)peu\Lr of H such that

10 for pE l / \ l / ' with ann(x)£p,
- /or pe U\U' with ann(x)cp.
a

We denote a by x -r- a.

This idea is extended to Cousin complexes as follows.

(1.4) DEFINITION. For each ieN0, let TT' :Ml —»coker d'"1 denote the canonical
epimorphism.

Let xeM and let a,, a 2 , . . . , a, e A. We say that x is dtuisibie by the sequence au

a2, • • •, at, or that a,, a2,..., a, divides x, with respect to 3F, if the following conditions are
satisfied:

(1) ann(x) + A a , £ p for each pedF0, so that the element x + ax of M° may be
constructed;

(2) ann(7r°(x-r-a,)) + Aa 2 ^p for each pedFj, so that, by (1.3), the element
ir°(x-^a,)-^a2 of M1 may be formed; this element is denoted by x-^-a,, a2;

(t) ann(7r' 2(x + al, a2, • • •, a,_})) + Aa,£p for each pedF,_,,

so that the element •nt~2{x^-ax, a 2 , . . . , <!,_,)-s-a, of M'"1 may be formed; this element is
denoted by x -^o,, a 2 , . . . , a, and is referred to as the result of dividing x by the sequence
a,, a2 , . . . ,a,.

Terminology and notation concerning triangular subsets of A" (for neN) and
modules of generalized fractions will be the same as that used in [13, §2]. In particular,
Dn(A) denotes the set of n x n lower triangular matrices over A. We include here for the
reader's convenience one basic lemma about generalized fractions.

(1.5) LEMMA. Let U be a triangular subset of A", and suppose that meM and

(u , , . . . , u j e U are such that -———- = 0 in U~nM. Then = 0.

(Ut , . . . , U J ( U j , . . . , U n )

Proof. There exist (w,, ...,wn)eU and H = [hi)]eD,,(A) such that

(n - l \

X Aw; 1M
i=i '

Hence
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Therefore, by [13, 2.2], hu ... hn^ln^wnm e ( £ AwAM; hence, by [13, 3.3(ii)],

(w, , . . . , wn_,,

in C/~"M It follows from this that

f lu ...hn_Xn^h

= 0

•=o,
(w, , . . . , w,,-!, wn)

and the desired conclusion is a consequence of this because

H[u 1 . . . u n ] T = [w 1 . . .wJ T .

2. The induced chain of triangular subsets. In this section we shall assume through-
out that Ass(M) contains only finitely many minimal members and we shall show that,
under this assumption, the filtration &* that admits M induces a chain of triangular subsets
on A. We shall also establish some properties of the resulting complex of modules of
generalized fractions.

For each neN, define

Un = \(uu ..., u j e A": for each i = 1, . . . , n, £ Au,<£pfor aWpedF,^ HSupp(M) 1,

and let °U denote the family (C/£)i&1. Our first aim is to show that % is a chain of triangular
subsets on A.

(2.1) LEMMA. (ASS(M) contains only finitely many minimal members.) Let neH and
n

(u 1 ; . . . , u,,)e Un. Let pedFnDSupp(M) with £ AUfSp. Let Min(M) denote the set of
i = l

minimal associated prime ideals of M. Then p is a minimal prime ideal of the ideal
n

a=Z^"i+ PI q-
i= l qeMin(M)

n

In particular, there are only finitely many primes in 3FnnSupp(M) that contain X ^"i-
Also dF0C\Supp(M)cMin(M), and so is finite. ' = 1

Proof. Suppose that there exists p'eSpec(A) with a s p ' s p. Then p' contains a
n

member of Min(M), and so p' 6 Supp(M) s Fo. Also, X Aiij sp ' , so that p' <£dFt for each
i = l

i = 0 , . . . , n - 1 . Thus p' s Fn. Since p is a minimal member of Fm we see that p=p'.

The final claim is an easy consequence of the hypotheses.
(2.2) REMARK. Note that the conclusion of (2.1) need not hold in the case of a

module which has infinitely many minimal associated prime ideals. For suppose that A is
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a regular local ring of dimension 3 with maximal ideal m = Aa1 + Aa2 + Aa3 and put

X= © A/p.
psSpec(A)\{Aa,}

htp=l

Then Supp(X) = {peSpec(A):htp^l and p ^ AaJ. Thus if cS = (Gi)i^0 is the filtration of
Spec(A) given by Gf ={peSpec(A):htp3=i + l} for each is^O, then ^ admits X. Now
a ^ p for each pedGonSupp(X), but there are infinitely many prime ideals in
dGi nSupp(X) which contain Aau because there are infinitely many primes of height 2
that contain

The concept of a chain of triangular subsets on A was defined in the introduction.

(2.3) PROPOSITION. (ASS(M) contains only finitely many minimal members.) °U. =
i is a chain of triangular subsets on A.

Proof. We show that Un is a triangular subset of A" for each neN.
Now Ux is a multiplicatively closed and hence [13, 3.1] triangular subset of A1.

Assume, inductively, that n>l and Un-t is known to be a triangular subset of A""1.
Clearly Unj=0 and, whenever (u 1 ; . . . ,un)eUn and au ..., an eN, then (u?\ . . . , u"-)e
Un also. Let (ux,..., iO> (vi,...,vn)eUn. By the inductive hypothesis, there exists
(w, , . . . , wn_!) e £/„_! such that, for all i = 1 , . . . , n — 1,

wf e (Aux + ... + Aitj) D (Av1 +... + Avt).
n-l

By (2.1), there are only finitely many primes in 3Fri_1 nSupp(M) that contain £ Awit and
n n 1 = 1

none of these primes can contain X AUJ or X Au,. Hence there exists
i ; i

n - l

such that wn^p for each p for which X Aw, c p 6 3Fn_!nSupp(M). It follows that
(w, , . . . ,wn)eUn. l = 1

Hence Un is a triangular subset of A", and the inductive step is complete. All the
remaining claims are clear.

(2.4) NOTATION. (ASS(M) contains only finitely many minimal members.) In view of
(2.3), we may form, in the manner indicated in the introduction, the complex C{% M): let
this be denoted by

It is convenient to make the convention whereby UQ°M is interpreted as M. For each
neN0, we shall use 0" : l/~"M —>• coker e""1 to denote the canonical epimorphism.

Our next step is to show that C(% M) has properties analogous to those of C(^, M)
described in (1.1) and (1.2)(ii).
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(2.5) THEOREM. (ASS(M) contains only finitely many minimal members.)
(i) For each neN, Ass(C/;"M)caFn_1nSupp(M) and Supp(U~nM)s

Fn_,nSupp(M).
(ii) For each neN0, Supp(coker e"~1)cFnnSupp(M).

(iii) For each n e Mo,

ker e"/im en~1 = {xe coker e""1: Supp(Ax) c Fn + 1 n Supp(M)},

so that Supp(kere7ime""1)sFn+1nSupp(M).

Proof, (i) Let n eN and pe Ass(U~nM). Thus there exist meM and (uu ..., un)e Un

I m \ "~1

such that p = ann -I. Hence, by [13, (3.3)(ii)], ann(m)+ £ Ait-gp. Thus
\ (u , , . . . , uJJ ,=i

p6 Supp(M)cFo, and £ Au,cp. Thus, if n > l , we have p^aFj_, for each i =
i=i

1 , . . . , n-1. Therefore, in any event, peFn_a DSupp(M).
Now suppose that p^dFn_i. By (2.1), there are only finitely many primes in

n - l

3Fn_,nSupp(M) which contain £ Aut: let these be q,,...^,.. Then there exists u'e
p \ U q,, so that u'Un e p \ U fl/- It follows that (u 1 ; . . . , un_l, u'Un)e Un. We have

• — - = - - = 0

since u' l^ep. Hence, by 1.5,

m u'm

This contradiction shows that pe3Fn_1nSupp(M).
Hence Ass(t/~"A^)saFn_1 nSupp(M). Let q6Supp(l/^"M), so that q2p for some

pe A.ss(U~"M). Since peFn_!, it follows that c\£dF{ for each i = 0, 1, . . . , n — 2. But
q e Supp(M) £ Fo, and so qeFn_, DSupp(M).

(ii) Let neN, and let a = -e U~nM (where meM and (u 1 ; . . . , u j e Un).
By [13, 3.3], ( U l ' ••••"»)

It follows that Supp(cokere"~1)sFnnSupp(M).
(iii) First of all, by [13, 3.1],

ker c° = {xeM:M!X = 0 for some (uj)e C/J

= {x 6 M: Supp(Ax) £ Fj C\ Supp(Af)}

since, by (2.1), dFonSupp(M) is finite.
For the remainder of the proof suppose that neN. Let meM, («, , . . . ,«„)£[/„ be
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such that y = - - eke re" . Set x = 0n(y). Now there exist H = [hj,]eDn +i(A) andm
(ux, . . . .

(u,, ...,vn, vn+l)eUn+l such that

. . u n l ] T = [ U l . . . U n o n + 1 ] T (1)

and / n \

|H| m e [Y. A«|JM. (2)

Now, by [13, 3.3], I Av-t £ £ AIM cann(x). Also, by (1) and (2),

hn+ln+im _ [Hi m m'

for some m ' e M Thus &„+,„.,.! eann(x); hence, by (1), un+1eann(x). Thus £ Auf c

ann(x). Thus ann(x)^p for each ped.Fj for each i = 0,. . . , n. Since ann(m)gann(x), it

follows that Supp(Ax)sFn+1 nSupp(M).
Conversely, let xecokere""1 be such that Supp(Ax)cFn+1 HSupp(M). Thus x =

6"[- -) for some meM, (uu ... ,un)eUn. By (2.1), there exists un+1eann(x)
\(Ui, . . . , UjJ

such that (u 1 ; . . . , un, U,,+1)G Un+l. Hence there exist m'&M, (vx,...,vn-\,\),
(w t > . . . , w j e Un and H = [hf|], K = [ki/]eDn(A) such that

HCu,... i ^ r = [w, . . . wJ T = K[«, . . . »„_, 1]T (3)

and / n -v N

iHliin^m-lKlm'el I AwjM (4)

n+l
By (3) and (2.1), there exists wn + 1e X Au; such that ( w 1 ; . . . , wm wn + ] )e l/n+1; we have

n + l i = 1

wn+i = E hn + 1 jUj with hn+1 j e A (for i = 1 , . . . , n +1). Set

I r r H i o -i
L"n + l l • • • '•n+ln "n + l n + l-I

so that H' e Dn+i(A) and H'[u, . . . «„ i^+J7" = [w, . . . wn wn+1]T. We have

|H'| Un^m = hB+ln+1(|H

by (3), (4) and [13, 2.2]. Thus

V 2 ^ ± l ! H = 0.(
\(U,, . . . , U j / ("I, • • • , "n, 1) ("l . • • • , "m "n + l)

Hence xekere7ime""1, as required.
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(2.6) THEOREM. (ASS(M) contains only finitely many minimal members.) Let
Since Supp(U~"M)cFn_{ (by (2.5)), it follows from [6, (2.2) and (2.3)] that there is an
A - homomorphism

such that, for a e U~nM and p s 3Fn_,, the component of yn(a) in the summand {U~"M)P is
a/1.

The homomorphism yn is an isomorphism.

Proof. By (2.5)(i), Ass(Ker yn)sdFn_u and so y" is injective.
Let p,edFn_,, m<=M, (u , , . . . , u,,)e [/„, s e A \ p , , and let 8 denote the element of

© (UJ,nM)v having component

m

in (1/~"M)P| and zero components in all the other summands. It is enough to show that
8 e im y", and we can assume that SPi £ 0.

Let x=- and a = ann(x). By (2.5)(i), every associated prime of a is in
(«„ ... , un)

3F,,_, nSupp(M); also, since a c p , and p1€3Fn_1, it now follows that p, is itself an
associated prime of a.

Let the associated primes of a be p 1 ; . . . , pk (k 3= 1) and let

a = q 1 n . . . n q l c

be a minimal primary decomposition of a, where r(qj) = Pj (i = 1 , . . . , k). Since
. . - 1

ann(m)+ £ Ai^ gann(x)cp,, it follows that un^p, . Also, in U~nM,

m \ / m \
r = si — I;

, , . . . , ujl \(ui u,,.,, 1)/
\(u,,

hence, in {U~n
nM)^,

m m
g P i = ( u 1 ; ...,un) = {uu . . . , t ^ , - ! ,

S SUn

k

Now there exists (€ f] qj\Pi, and, in (C/~"M)Pi, we have
i=2

m tm
gp- = (UU ..., Un_u 1) = ( « ! , . . . , t ^ - ! , 1) • (5)
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Also, it follows from (1.5) that

tm k/ tm \
annl- - ) = ann(tx) = (o:r)= fl (q{ :t) = qi- (6)

\(uu . . . ,1^-1, 1 ) / i = l

n - l

Next we note that, if Q denotes {p e dFn_t n Supp(M): £ A14 £ p}, then AtsUn + qt £ U p:
i = l peO

if this were not so, then, by (2.1), there would exist p o eQ such that tsu,,ep0 and
qt £ p0, and these relations would imply, respectively, that p0 f x>\ and p0 = Pi! Thus there
exist aeA and y€ql such that

atsu + y£ \J p;
peQ

thus u = afsMn + y is such that (uu ..., un_1, u)eUn. Note that, by (6) and (1.5),

tm
i, . . . , M,,,!, U)/

Thus, in C/~nM,

tm utm (atsiin + y)tm

(7)

(Uls . . . , !!„_!, 1) (Uj, . . . , !*„_!, U) (Ul5 . . . , !/„_!, U)

/ atm \
= tsuJ I

\(MI, . . . , Un-r, u)l

since yeq,. Hence, in (l/n"M)Pl, by (5),

atm

P| = (u t , . . . , ^ , , ! , u).
1

Moreover, it follows from (7) that

atm
(uu...,un_1,u) = 0

1

in (U~nM)p for all p e a F ^ i M p J . Thus 8 = yn{- — A and the proof is

finished.

3. The isomorphism. In this section we shall show that, when M has only finitely
many minimal associated primes, then, in the notation of §2, the complex C(%, M) of
(2.4) is isomorphic to the Cousin complex C(^, M). While doing so, we shall achieve
rather more, for we shall obtain a characterization of the Cousin complex C(2F, M). It will
be convenient to introduce the following definition.

https://doi.org/10.1017/S0017089500005772 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500005772


COUSIN COMPLEXES 61

(3.1) DEFINITION. (Recall that 2F = {F^0 is a filtration of Spec(A) that admits M; we
make no assumption here about Ass(M).) A complex X" (=(X')i^-2) ot A-modules and
A-homomorphisms is said to be of Cousin type for M with respect to SF if it has the form

d'.

and satisfies the following for each neN0-
(i) Supp(X")<=F,,;

(ii) Supp(coker d£~2) c Fn;
(iii) S u p p ( k e r ^ V i m d ^ 2 ) s F n + 1 ;
(iv) the natural A-homomorphism £(X"):X"-> © (X")p, such that, for xeX" and

pedFm the component of £{X")(x) in the summand (X")p is x/l (it follows from condition
(i) and [6, (2.2) and (2.3)] that there is such an A-homomorphism), is an isomorphism.

(3.2) REMARKS, (i) It follows from (1.1) and (1.2)(ii) that the Cousin complex
C{3F, M) is a complex of Cousin type for M with respect to &*.

(ii) It follows from (2.5) and (2.6) that, in the case when M has only finitely many
minimal associated primes, the complex C(%, M) of (2.4) is of Cousin type for M with
respect to 3>.

Our next result, when taken in conjunction with (3.2)(i), shows, among other things,
that every complex of Cousin type for M with respect to 3F is isomorphic to the Cousin
complex C(&, M).

(3.3) THEOREM. (3' = (Fi)is,0 is a filtration of Spec(A) that admits M; we make no
assumption here about Ass(M).) Let X' - (X');*-2 and Y' = (Y')is»-2 be complexes of
Cousin type for M with respect to 2F. Then there is exactly one morphism of complexes

which is such that <j>~i:M—*M is the identity mapping; moreover, this morphism is an
isomorphism.

Proof. Let neN0 and suppose that we have proved that there is exactly one family of
A-homomorphisms (4>')-2=si«n-i such that

(a) 4>{ :X' -> Yf for each i = - 2 , . . . , n-1,
(b) (fr^-.M—tM is the identity map, and
(c) the diagram

o —>M

0 > M -&* Y° > ... > Y"-2 ^ » Y""1

commutes; suppose also that we have proved that this family (</>')-2«i«n-i is s u c h that <f>'
must be an isomorphism for each i = -2,..., n -1.
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The above is certainly the case when n = 0.
Let pedF,,. By (3.1)(i), (ii), (iii), the commutative diagram

(x-2)p i E l * (x-1) , ^-±+ (x")p > o

has exact rows. Hence there is exactly one Ap-homomorphism n(n, p):(X")p-»(Y")p

which is such that, when it is inserted in (8), the extended diagram still commutes;
moreover /x(n, p) is an isomorphism. It thus follows that, if there exists an A-
homomorphism <£" :X" —»• Y" such that the diagram

"|*"" (9)

Y"

commutes, then (</>")„ = ft(n, p) for each pedFn. Moreover, it is clear that such a <£" must
have the property that the diagram

i =~^"6 3 F- |

Y»^gu e (Y-)P

commutes; it therefore follows that there is at most one A-homomorphism </>" :X" —» Y"
such that diagram (9) commutes and that, if one does exist, then it must be an
isomorphism.

Now define <£" :X" —* Y" to be the unique A-homomorphism such that the diagram
£(X")

-A ^ vI7 \-<̂ » ) p

© M-(«. p)

Y" - i i F L * © (Y")P
aF

commutes: it is not difficult to see that this <f>" makes the diagram (9) commute.
All the claims in the statement of the theorem now follow from the above inductive

argument.

The following corollary is now immediate from (3.3) and (3.2).

(3.4) COROLLARY. Assume that Ass(M) contains only finitely many minimal members.
Then the Cousin complex C{<F, M) is isomorphic to the complex C(% M) of modules of
generalized fractions of (2.4).

https://doi.org/10.1017/S0017089500005772 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500005772


COUSIN COMPLEXES 63

In fact, there is exactly one morphism of complexes

which is such that cf>~^:M—>M is the identity mapping, and, moreover, <I> is an
isomorphism.

It should be noted that the hypothesis on Ass(M) in (3.4) is satisfied not only when M
is finitely generated, but also when A is local and M is a balanced big Cohen-Macaulay
A-module: see [10, (2.4)].

We show next how the isomorphism of complexes $ of (3.4) may be described in
terms of repeated division.

(3.5) LEMMA. Assume that Ass(M) contains only finitely many minimal members. Let
n eN, let (u , , . . . ,un)eUn and let xeM. Then uu ... ,un divides x with respect to 9>.

Proof. We use induction on n; the assertion in the case when n = 1 is an immediate
consequence of the definition of [/,. Thus we suppose that n > 1 and the claim has been
proved for sequences in C/n_,. In particular, x is divisible by uu ..., un-1 with respect to
9. By [12, (2.4)(i)],

n— 1

ann(x) + £ A14 cann(ir"~2(x-j-u1,..., u,,-!));

it now follows from the definition of Un that x is divisible by uu ..., un with respect to SF.

(3.6) THEOREM. Assume that Ass(M) contains only finitely many minimal members.
Then the isomorphism of complexes

<D = (<fr')i»-2: C{% M) -> C(9, M)

of (3.4) is such that, for each nsN, xeM and (u l 5 . . . ,un)e Un, we have

Proof. It follows from the commutativity of the diagram

o

|L- 1*°

M -£i> M°

that Ui</>°(-—z) = <l>o(eo(x)) = d~\x) = (av)1>eaFo where ap = x/l for each pedF0. Write

Let p0 e dF0. If ann(x) c p0) then ut ^ p0 and u ^ = aPo: it follows that for such a p0 we
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must have |3Po=x/u1. On the other hand, if ann(x)^p0, choose seann(x)\p0; then

and it follows that in this case |3Po = 0. Thus

Now suppose, inductively, that n > 1 and that the claim in the statement of the
theorem has been proved for sequences in Un^. In particular,

Let z = vn 2(x-^Mj,..., Mn-i) (the notation is as in (1.4)). It follows from the com-
mutativity of the diagram

U-l^M '"" > U~nM

d"~

that

Ui, . . . , Uj

where a p = z / l for each pedFn^. Write <j>" 1{- -J = <

Let pn_1e3Fn_1. If ann(z)£pn_1) then un^pn^ by (3.5); also u , ,^ , , = aPn_t = j , and

so 6D =— in this case.

Now consider the remaining case, where ann(z)^pn_!. Choose ( G ann(z)\pn_!. It
follows from the facts that <5 is an isomorphism of complexes and

ct>n-2(- -) = x - u 1 , . . . , u n _ 1 that -eime"-2;

hence, on use of (1.5), it follows that
tx _

(Ul5 . . . , l^-j , Uj

in Un
nM. Now apply 4>n~l to this to see that t/3Pn t = 0; thus in this case ( 3 , ^ = 0. It

follows that

4>n'\, r) = x -s-u1;..., u^
as required. H M l ' • • • ' " " ^
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Let us now indicate how the two results of Zakeri mentioned in the introduction can
be deduced from Theorems (3.4) and (3.6).

(3.7) EXAMPLE. Consider the special case in which M is a non-zero finitely generated
Cohen-Macaulay A-module, and &=%(M), the M-height filtration of Spec(A). Then
the hypotheses of Theorems (3.4) and (3.6) are satisfied. It is not difficult to see that, in

is cas , ^ _ |^u^ . . . , Mj) € A1: u 1 ; . . . , M; is a poor M-sequence}

for each ieN. We obtain from (3.4) and (3.6) an isomorphism of complexes

M) -* C($e(M), M) = C(M)

which is such that <£-1 is the identity map on M and, for each neN, xeM and poor
M-sequence (u 1 ; . . . , u,,), we have

\(M1; . . . , lljj

This result was first obtained by Zakeri: see [15, Chapter III, Theorem (3.7)].

(3.8) EXAMPLE. NOW consider the special case in which A is local, with maximal ideal
m, and M is a balanced big Cohen-Macaulay A-module. Take for 3F the dimension
filtration 3)(A) of Spec(A). By [10, (2.4)], the hypotheses of (3.4) and (3.6) are satisfied.
This time,

Un={(ut, . . . , u n ) e A " : for each i = 1 , . . . , n,
J = I

for all p e Supp(M) for which dim A/p = dim A — i +1}

for each neN. It follows from [10, (2.4)] that each Un consists of poor M-sequences.
Note also that, if 1 ^ i ssdim A and s 1 ; . . . , s; form a subset of a system of parameters for
A, then (su . . . ,st)e Ut.

From (3.4) and (3.6) we obtain an isomorphism of complexes

<&: C(% M) -* C(2>(A), M).

However, in [15, Chapter IV, Theorem (3.15)] Zakeri obtained an apparently different
result. For each ieN, let

Ti ={(h,..., ti) € A ' : t 1 ; . . . , tj is a poor M-sequence}.

It is not difficult to use [13, (3.10)] and [10, (2.5), (2.7) and (2.8)] to see that Tt is a
triangular subset of A' for each i eN. In fact, 5" = (Tj)jsN is a chain of triangular subsets on
A, so that the complex C(ST, M) may be formed as explained in the introduction.

By [11, 3.7], C(3)(A),M) is exact, so that by [12, (4.3)] each poor M-sequence
divides each element of M with respect to 3)(A). In [15, Chapter IV, Theorem (3.15)],
Zakeri established the existence of an isomorphism of complexes

, M) -* C(2)(A), M)
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which is such that i/*"1 is the identity map on M and, for each neN, x e M and
(t1 ; . . . , tn) e Tm we have

In fact, it is possible to obtain Zakeri's isomorphism from our isomorphism <I> of (3.4) and
(3.6) by use of the following lemma, which can itself be proved by an extension of the
ideas of the proof of [10, (2.2)]. We omit the details; the interested reader will find [14,
3.15] helpful.

(3.9) LEMMA. Let A be local and let M be a balanced big Cohen-Macaulay A-
module. Then for each M-sequence xx,..., xr there exist bx,... ,breA such that
x1 + b1,... ,xr + br form a subset of a system of parameters for A and

c(X AX)M
\ = I /

for all i = 1 , . . . , r.

Our final result, which is immediate from (3.6), is a generalization of part of Theorem
(4.8) of [12], the very result that led to the discovery of modules of generalized fractions!

(3.10) COROLLARY (of (3.4) and (3.6)). Suppose that Ass(M) contains only finitely
many minimal members. Let qsN0 and let /3eMq. Then there exists yeM and
(u 1 ; . . . , uq+1) G UQ+1 such that P = m -=- ux,..., uq+1.

(3.11) CONCLUDING REMARKS. Although modules of generalized fractions are rela-
tively new, Cousin complexes have numerous interactions with topics that frequently
occur in the literature on commutative algebra. Not only can they be used to characterize
Cohen-Macaulay rings (as was mentioned in the introduction) and Gorenstein rings, but
they also reflect some of the structure of the minimal injective resolution of a Gorenstein
ring that is brought out in Bass's Fundamental Theorem [1]: see [6, (5.5)]. Their use in the
theory of Gorenstein modules [7] means that they have connections with the canonical
modules of Herzog and Kunz [3]. They can be used to characterize the (commutative
Noetherian) rings that satisfy the conditions (Sk) [5, p. 125]: see [8]. They have
connections with the local cohomology theory of Grothendieck and Hartshorne [2]: see
[9]. And, as was mentioned in the introduction, they may be used to characterize balanced
big Cohen-Macaulay modules: the relevance of big Cohen-Macaulay modules to the
homological conjectures in local algebra is explained in [4].

It is hoped that the results of this paper will make Cousin complexes easier to work
with; in any event, we believe that the relationships between Cousin complexes and
modules of generalized fractions established in this paper, and the above connections
between Cousin complexes and other topics in commutative algebra, provide evidence to
support our view that modules of generalized fractions are worth further investigation.
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