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Abstract

Ramanujan’s last letter to Hardy concerns the asymptotic properties of modular forms and his
‘mock theta functions’. For the mock theta function f (q), Ramanujan claims that as q approaches
an even-order 2k root of unity, we have

f (q)− (−1)k(1− q)(1− q3)(1− q5) · · · (1− 2q+ 2q4
− · · ·)= O(1).

We prove Ramanujan’s claim as a special case of a more general result. The implied constants
in Ramanujan’s claim are not mysterious. They arise in Zagier’s theory of ‘quantum modular
forms’. We provide explicit closed expressions for these ‘radial limits’ as values of a ‘quantum’
q-hypergeometric function which underlies a new relationship between Dyson’s rank mock theta
function and the Andrews–Garvan crank modular form. Along these lines, we show that the
Rogers–Fine false ϑ-functions, functions which have not been well understood within the theory
of modular forms, specialize to quantum modular forms.

2010 Mathematics Subject Classification: 11F99 (primary); 11F37, 33D15 (secondary)

Overview

In his 1920 deathbed letter to Hardy, Ramanujan gave examples of 17 curious q-series he referred
to as ‘mock theta functions’ [11]. In the decades following Ramanujan’s death, mathematicians
were unable to determine how these functions fit into the theory of modular forms, despite
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their rather ubiquitous nature. Finally, the 2002 Ph.D. thesis of Zwegers [45] showed that
while the mock theta functions were not modular, they could be ‘completed’ to produce real
analytic vector-valued modular forms. Zwegers’s breakthrough catalyzed the development of the
overarching theory of ‘weak Maass forms’ by Bringmann, Ono, and collaborators [15, 16, 35, 42].
Ramanujan’s mock theta functions, it turns out, are examples of ‘holomorphic parts’ of weak
Maass forms, originally defined by Bruinier and Funke [18].

While the theory of weak Maass forms has led to a flood of applications in many disparate areas
of mathematics (see [35, 42] and references therein), it is still not the case that we fully understand
the deeper framework surrounding the contents of Ramanujan’s last letter to Hardy. Here,
we revisit Ramanujan’s original claims and motivations. His last letter summarizes asymptotic
properties near roots of unity of modular ‘Eulerian’ series. Ramanujan asks whether other Eulerian
series with similar asymptotics are necessarily the sum of a modular theta function and a function
which is O(1) at all roots of unity. He writes: ‘The answer is it is not necessarily so . . . I have not
proved rigorously that it is not necessarily so . . .But I have constructed a number of examples . . . ’.
In fact, Ramanujan’s sole example and claim pertain to his third-order mock theta function f (q).

CLAIM (Ramanujan [11]). As q approaches an even-order 2k root of unity, we have

f (q)− (−1)k(1− q)(1− q3)(1− q5) · · · (1− 2q+ 2q4
− · · ·)= O(1).

Here, we prove (in Theorem 1.1) Ramanujan’s claim as a special case of a more general result
(Theorem 1.2). We provide an explicit closed formula for the implied constants in Ramanujan’s
claim, and show that they are values of a ‘quantum’ q-hypergeometric function which underlies
a new relationship between Dyson’s rank mock theta function and the Andrews–Garvan crank
modular form, two of the most studied q-series in the theory of partitions (see, for example, [5, 8,
16, 23, 33]).

In this paper, it is the new theory of quantum modular forms that serves as a foundation for
our main theorems. As defined by Zagier [43], a quantum modular form is (loosely) a C-valued
function defined on Q that exhibits usual modular transformation properties, up to the addition of
a ‘suitably’ continuous or analytic function. A crucial property we use is that quantum modular
forms make it possible to pass between the upper and lower halves of the complex plane. In doing
so, we are led to the Rogers–Fine ‘false’ ϑ-functions, functions which Ramanujan claimed ‘do not
enter into mathematics as beautifully as the ordinary theta functions.’ On the contrary, we prove
(in Theorem 1.3) that the Rogers–Fine false ϑ-functions specialize to quantum modular forms, and
that Ramanujan’s own mock functions play key roles.

1. Introduction and statement of results

Ramanujan’s enigmatic last letter to Hardy [11] gave tantalizing hints of his
theory of mock theta functions. Thanks to Zwegers [44, 45], it is now known that
these functions are specializations of nonholomorphic Jacobi forms. They are
holomorphic parts of certain weight-1/2 harmonic weakMaass forms of Bruinier
and Funke [18]. This realization has many applications in combinatorics, number
theory, physics, and representation theory (for example, see [35, 42]).

Here, we revisit Ramanujan’s original claims and motivation from his
deathbed letter [11]:
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‘ . . . I discovered very interesting functions recently which I call ‘‘Mock’’
ϑ-functions. Unlike the ‘‘False’’ ϑ-functions (studied partially by Prof.
Rogers in his interesting paper) they enter into mathematics as beautifully
as the ordinary theta functions . . . .’

The next page of the letter summarizes the asymptotic properties, near roots
of unity, of Eulerian series (also known as q-hypergeometric series) which are
modular theta functions. He then asks whether other Eulerian series with similar
asymptotics are necessarily the sum of a modular theta function and a function
which is O(1) at all roots of unity. He writes:

‘ The answer is it is not necessarily so. When it is not so I call the function
Mock ϑ-function. I have not proved rigorously that it is not necessarily so.
But I have constructed a number of examples in which it is inconceivable to
construct a ϑ-function to cut out the singularities of the original function.’

REMARK. Griffin, the second author, and Rolen [28] have confirmed
Ramanujan’s speculation. There are no weakly holomorphic modular forms
which exactly cut out the singularities of Ramanujan’s mock theta functions.

The only specific example Ramanujan offers pertains to the q-hypergeometric
function

f (q) := 1+
q

(1+ q)2
+

q4

(1+ q)2(1+ q2)2
+ · · ·. (1.1)

This function is convergent for |q|< 1 and those roots of unity q with odd order.
For even-order roots of unity, f (q) has exponential singularities. For example,
as q→−1, we have

f (−0.994)∼−1.08 · 1031, f (−0.996)∼−1.02 · 1046,

f (−0.998)∼−6.41 · 1090.

To cancel the exponential singularity at q = −1, Ramanujan found the
function b(q), which is modular (Here, q−

1
24 b(q) is modular with respect to z,

where q := e2π iz.) up to multiplication by q−
1
24 , defined in his notation by

b(q) := (1− q)(1− q3)(1− q5) · · · (1− 2q+ 2q4
− · · ·). (1.2)

The exponential behavior illustrated above is canceled in the numerics below.

q −0.990 −0.992 −0.994 −0.996 −0.998

f (q)+ b(q) 3.961 . . . 3.969 . . . 3.976 . . . 3.984 . . . 3.992 . . .
.
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It appears that limq→−1(f (q)+ b(q))= 4. More generally, as q approaches an
even-order 2k root of unity, Ramanujan claimed that

f (q)− (−1)kb(q)= O(1). (1.3)

REMARK. In his survey of Ramanujan’s ‘lost notebook’ [10], Berndt writes
eloquently about this claim and Ramanujan’s imprecise definition of a mock
theta function.

REMARK. Ramanujan’s last letter also inspired the problem of determining the
asymptotics of the coefficients of mock theta functions such as f (q). Andrews
[1] and Dragonette [22] obtained asymptotics for the coefficients of f (q), and
Bringmann and the second author [15] later obtained an exact formula for these
coefficients.

Watson [40] was the first to prove Ramanujan’s claim about f (q). We provide
a new proof of Ramanujan’s claim. Moreover, we obtain a simple closed formula
for the suggested O(1) constants as values of a ‘quantum’ q-hypergeometric
series.

THEOREM 1.1. If ζ is a primitive even-order 2k root of unity, then, as q
approaches ζ radially within the unit disk, we have that

lim
q→ζ
(f (q)− (−1)kb(q))=−4 ·

k−1∑
n=0

(1+ ζ )2(1+ ζ 2)2 · · · (1+ ζ n)2ζ n+1.

EXAMPLE. Since empty products equal 1, Theorem 1.1 confirms that
limq→−1(f (q)+ b(q))= 4.

EXAMPLE. For k = 2, Theorem 1.1 gives limq→i(f (q) − b(q)) = 4i. The table
below nicely illustrates this fact:

q 0.992i 0.994i 0.996i

f (q) ∼1.9 · 106
− 4.6 · 106i ∼1.6 · 108

− 3.9 · 108i ∼1.0 · 1012
− 2.5 · 1012i

f (q)− b(q) ∼0.0577+ 3.855i ∼0.0443+ 3.889i ∼0.0303+ 3.924i

REMARK. The values of f (q) at odd-order roots of unity are well defined, and
can be easily computed directly from (1.1).

It turns out that Theorem 1.1 is a special case of a much more general
theorem, one which surprisingly relates two of the most famous q-series in
the theory of partitions. To make it precise, we require Dyson’s rank function
R(w; q), the Andrews–Garvan crank function C(w; q), and the recently studied
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q-hypergeometric series U(w; q). The q-series R(w; q) and C(w; q) are among
the most important generating functions in the theory of partitions. These famous
series play a prominent role in the study of integer partition congruences (for
example, see [5, 8, 16, 23, 33]).

To define these series, throughout we let (a; q)0 := 1 and

(a; q)n :=

(1− a)(1− aq)(1− aq2) · · · (1− aqn−1) if n ∈ Z+,

(1− a)(1− aq)(1− aq2) · · · if n=∞.

Dyson’s rank function is given by

R(w; q)=
∞∑

n=0

∑
m∈Z

N(m, n)wmqn
:= 1+

∞∑
n=1

qn2

(wq; q)n · (w−1q; q)n
. (1.4)

Here, N(m, n) is the number of partitions of n with rank m, where the rank of a
partition is defined to be its largest part minus the number of its parts. If w 6= 1 is
a root of unity, then it is known that R(w; q) is (up to a power of q) a mock theta
function (i.e., the holomorphic part of a weight-1/2 harmonic Maass form) (for
example, see [16]). The Andrews–Garvan crank function is defined by

C(w; q)=
∞∑

n=0

∑
m∈Z

M(m, n)wmqn
:=

(q; q)∞
(wq; q)∞ · (w−1q; q)∞

. (1.5)

Here, M(m, n) is the number of partitions of n with crank m [5]. For roots of
unity w, C(w; q) is (up to a power of q) a modular form.

The series U(w; q) has recently been studied by several authors [2, 7, 19, 37]
in work related to unimodal sequences. This q-hypergeometric series is defined
by

U(w; q)=
∞∑

n=0

∑
m∈Z

u(m, n)(−w)mqn
:=

∞∑
n=0

(wq; q)n · (w
−1q; q)nqn+1. (1.6)

Here, u(m, n) is the number of strongly unimodal sequences of size n with rank
m [19].

REMARK. In terms of the standard notation for q-hypergeometric series (for
example, see [26, p. 4]), it turns out that U(w; q) is a 3φ2 q-hypergeometric series.
Namely, we have that

q−1U(w; q)= 3φ2(wq,w−1q, q; 0, 0; q, q).

Theorem 1.1 is a special case of the following general theorem which relates
the asymptotic behavior of these three q-series. Throughout, we let ζn := e2π i/n.
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THEOREM 1.2. Let 1 ≤ a < b and 1 ≤ h < k be integers with gcd(a, b) =
gcd(h, k) = 1 and b | k. If h′ is an integer satisfying hh′ ≡ −1 (mod k), then,
as q approaches ζ h

k radially within the unit disk, we have that

lim
q→ζh

k

(R(ζ a
b ; q)− ζ

−a2h′k
b2 C(ζ a

b ; q))=−(1− ζ
a
b )(1− ζ

−a
b ) · U(ζ a

b ; ζ
h
k ).

Five remarks.

(1) There is an integer c(a, b, h, k) such that the limit in Theorem 1.2 reduces to
the finite sum

−(1− ζ a
b )(1− ζ

−a
b )

c(a,b,h,k)∑
n=0

(ζ a
b ζ

h
k ; ζ

h
k )n · (ζ

−a
b ζ h

k ; ζ
h
k )n · ζ

h(n+1)
k .

(2) Theorem 1.1 is the a= 1 and b= 2 case of Theorem 1.2 because R(−1; q)=
f (q), combined with the well-known fact that C(−1; q)= b(q).

(3) A variant of Theorem 1.2 holds when b - k. This is obtained by modifying the
proof to guarantee that the two resulting asymptotic expressions match.

(4) At roots of unity where R(ζ a
b ; q) does not have a singularity, the value can

be computed directly. The remark after Theorem 1.1 is a special case of this
fact. Moreover, this value is related to the value of a partial theta function. See
the paper by Bringmann and the first and last authors [13] for more about the
relationship between partial theta functions and mock theta functions at roots
of unity where there are not singularities. Theorem 1.3 contains a result dealing
with the relation between mock theta functions and partial theta functions at roots
of unity where the mock theta function does not have singularities.

(5) It is natural to ask how Theorems 1.1 and 1.2 may generalize to Ramanujan’s
other mock theta functions. In this regard, we first note that Theorem 1.2
applies to many of Ramanujan’s mock theta functions using the relationship
R(w; q) = (1 − w) + w(1 − w)g3(w; q). Here, g3(w; q) is the ‘universal’ mock
theta function, aptly named, as it can be related to Ramanujan’s original mock
theta functions upon suitable specialization of its parameters (see [27]). See also
recent related works by the first author [25], as well as [9], for more along these
lines.

Recently, the second two authors, together with Bryson and Pitman [19],
investigated the q-series U(w; q) in connection with the theory of quantum
modular forms. Following Zagier (Zagier’s definition is intentionally vague, with
the idea that flexibility is required to allow for interesting examples. Here, we
modify his definition to include half-integral weights k and multiplier systems
ε(γ ).)[43], a weight k quantum modular form is a complex-valued function f on

Q, or possibly P1(Q) \ S for some set S, such that, for all γ = ( a b
c d ) ∈ SL2(Z),
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the function

hγ (x) := f (x)− ε(γ )(cx+ d)−kf

(
ax+ b

cx+ d

)
satisfies a ‘suitable’ property of continuity or analyticity. The ε(γ ) are suitable
complex numbers, such as those in the theory of half-integral-weight modular
forms when k ∈ 1

2Z \ Z. In particular, Zagier offered a number of examples of
such forms by making use of Dedekind sums, period polynomials, and a few
curious q-series identities. Particularly interesting examples of such forms relate
functions which are simultaneously defined on both H=H+ and H−, the upper
half and lower half of the complex plane, respectively. The quantum form is the
device which makes it possible to pass between the two half-planes.

Theorem 1.3 of [19] proves that φ(x) := e−π ix/12
· U(1; e2π ix) is a weight-3/2

quantum modular form on H+∪Q\{0} (meaning that φ(x) is quantum on Q\{0},
and this domain may be extended to include H+). Therefore, in view of the roles
that R(w; q) (which is essentially a mock modular form for roots of unity w 6= 1)
and U(w; q) play in Theorem 1.2, it is natural to ask about the more general
relationship between mock theta functions and quantum modular forms. To this
end, we seek q-hypergeometric series related to mock theta functions which are
defined on both H+ and H−. In doing so, we are led to the ‘False’ ϑ-functions of
Rogers and Fine, which Ramanujan claimed do not ‘enter into mathematics as
beautifully as the ordinary theta functions’.

We recall these functions. In 1917, Rogers [39] defined the important
q-hypergeometric series

F(α, β, t; q) :=
∞∑

n=0

(αq; q)ntn

(βq; q)n
. (1.7)

This series does not typically specialize to modular forms, but instead often gives
‘halves’ of modular theta functions. These include many of the primary examples
of ‘false’ and ‘partial’ ϑ-functions. For example, we have the following special
case of the work of Rogers and Fine [24]:

1
1+ w

· F(wq−1,−w,w; q) :=
1

1+ w
·

∞∑
n=0

(w; q)nwn

(−wq; q)n
=

∞∑
n=0

(−1)nw2nqn2
.

Here, we consider the following specializations, where q := e2π iz:

G(a, b; z) :=
qa2/b2

1− qa/b
· F(−qa/b−1, qa/b,−qa/b

; q), (1.8)

H(a, b; z) := q1/8
· F(ζ−a

b q−1, ζ−a
b , ζ−a

b q; q2). (1.9)
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We have the following false theta function identities, the second of which follows
from [39, equation (1)], and the first of which is in [6].

G(a, b; z) = qa2/b2
∞∑

n=0

(−qa/b
; q)n

(qa/b; q)n+1
· (−1)nqna/b

=

∞∑
n=0

(−1)nq(n+a/b)2, (1.10)

H(a, b; z) = q1/8
∞∑

n=0

(ζ−a
b q; q2)n

(ζ−a
b q2; q2)n

· (ζ−a
b q)n =

∞∑
n=0

ζ−an
b q(1/2)(n+1/2)2 . (1.11)

REMARK. The second equalities in (1.10) and (1.11) are only valid for |q|< 1.

These specializations satisfy the following nice properties often associated to
quantum modular forms: convergence in H±, a modular transformation law, and
asymptotic expansions which are generating functions for values of L-functions.
More precisely, we prove the following theorem.

THEOREM 1.3. Let 0< a< b be coprime integers, with b even, and let

Qa,b :=

{
h

k
∈Q : gcd(h, k)= 1, h> 0, b | 2h, b - h, k ≡ a (mod b), k ≥ a

}
.

The following are true.

(1) The functions G(a, b; z) and H(a, b; z) converge for z ∈H+ ∪H−.
(2) For x ∈ Qa,b ∪H+, we have that

G(a, b;−x)+
e−π ia/b

√
2ix
· H

(
a, b;

1
2x

)
=−

∫ i∞

0

(−iu)−3/2T(a, b;− 1
u ) du

√
−i(u+ x)

,

where T(a, b; z) is a weight- 3/2 modular form defined in (2.2). That
is, G(a, b; x) and H(a, b; x) are weight- 1/2 quantum modular forms on
Qa,b ∪H+.

(3) Let Br(n) be the rth Bernoulli polynomial. For h/k ∈ Qa,b, as t→ 0+, we
have

G

(
a, b;
−h

k
+

it

2π

)
∼

∞∑
r=0

L(−2r, cG) ·
(−t)r

r! · b2r
,

H

(
a, b;

k

2h
+

it

2π

)
∼

∞∑
r=0

L(−2r, cH) ·
(−t)r

r! · 8r
,

where

L(−r, cG) = −
(2kb2)r

r + 1

2kb2∑
n=1

cG(n)Br+1

(
n

2kb2

)
,
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L(−r, cH) = −
(16h)r

r + 1

16h∑
n=1

cH(n)Br+1

(
n

16h

)
,

cG(n) :=


ζ−hn2

kb2 if n≡ a (mod 2b),

−ζ−hn2

kb2 if n≡ a+ b (mod 2b),

0 otherwise,

(1.12)

cH(n) :=

ζ
−a((n−1)/2)
b ζ kn2

16h if n≡ 1 (mod 2),

0 otherwise.
(1.13)

Four remarks.

(1) In Section 2.1, we will prove a lemma (see Lemma 2.1) which implies, for
x= h/k ∈ Qa,b, that G(a, b;−x) and H(a, b; 1/2x) converge. Moreover, they
are explicitly given by the finite sums

G

(
a, b;−

h

k

)
= ζ−a2h

b2k

m∑
n=0

(−ζ−ah
bk ; ζ

−h
k )n(−ζ

−ah
bk )n

(ζ−ah
bk ; ζ

−h
k )n+1

, (1.14)

H

(
a, b;

k

2h

)
= ζ k

16h

`∑
n=0

(ζ−a
b ζ k

2h; ζ
k
h )n(ζ

−a
b ζ k

2h)
n

(ζ−a
b ζ k

h ; ζ
k
h )n

, (1.15)

where the nonnegative integers ` and m satisfy b(2`+1)= 2h and a+bm= k,
respectively.

(2) In Theorem 1.3(2), we are using the vector-valued notion of a quantum
modular form.

(3) Theorem 1.2(3) gives generating functions for values of L-functions. Similar
theorems have been previously discovered by Zagier and others (for example,
see [6, 21, 29, 31, 32, 41]).

(4) The series G(a, b; z) and H(a, b; z) are related to mock modular forms when
z ∈H− (see Section 2). The idea to pass between half-planes to relate mock
theta functions and partial theta functions has been observed previously. For
example, Zwegers observed and Lawrence and Zagier reported on such a
relationship in [31]. The relationship is also discussed at length in work of
the third author [38] and Mortenson [34].

EXAMPLE. Here, we will illustrate how the different parts of Theorem 1.3 may
be used to understand the Rogers–Fine functions (1.10) and (1.11), and relations
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between them, at rational numbers z by way of an example. If a = 1 and b = 2,
then (1.10) and (1.11) give the identities

G(1, 2; z) := q1/4
∞∑

n=0

(−q1/2
; q)n(−1)nqn/2

(q1/2; q)n+1
=

∞∑
n=0

(−1)nq(2n+1)2/4,

H(1, 2; z) := q1/8
∞∑

n=0

(−q; q2)n(−q)n

(−q2; q2)n
=

∞∑
n=0

(−1)nq(2n+1)2/8,

so G(1, 2; z) = H(1, 2; 2z). For simplicity, we consider the rational number
h/k = 1/1 ∈ Q1,2.

On one hand, from Theorem 1.3(3), we find that, asymptotically, as t→ 0+,
we have

G

(
1, 2;−1+

it

2π

)
∼

∞∑
r=0

L(−2r, cG) ·
(−t)r

r! · b2r
.

We compute (using that B1(x) = x − 1/2) that L(0, cG) = −i/2, and so
G(1, 2;−1)∼−i/2. On the other hand, Theorem 1.3 gives G(1, 2;−1) exactly,
as a finite sum, using (1.14) (see also Lemma 2.1). In particular, we have m= 0
for (a, b, h, k) = (1, 2, 1, 1), and hence we compute that, at the root of unity
−1, the function G(1, 2;−1) is exactly equal to G(1, 2;−1)= ζ−1

4 /(1− ζ−1
2 )=

−i/2.
Similarly, using Theorem 1.3(3), we find that, asymptotically, H(1, 2; 1

2 ) ∼

ζ16. On the other hand, we may evaluate H(1, 2; 1
2 ) exactly as a finite sum using

(1.15) (see also Lemma 2.1). Indeed, we find that H(1, 2; 1
2 )= ζ16.

We may combine these calculations with Theorem 1.3(2), to find an exact
value for the integral expression appearing in Theorem 1.3(2). Namely, we have
that

i

4

∫ i∞

0

(−iu)−
3
2Θ1,4(−

1
u ) du

√
−i(u+ 1)

=
i

2
−

√
i

2
· ζ16,

where Θ1,4(z) :=
∑

n≡1 (mod 4) nqn2/16.

AMUSING REMARK. The theorems in this paper bring together some of most
interesting objects which appear in Ramanujan’s legacy to mathematics. Indeed,
Dyson’s rank, the Andrews–Garvan crank, the mock theta functions, and early
examples of quantum modular forms appear as four different items in the top
(These objects appear in the formulas ranked #1, #2, #3, and #5.) five of the ‘ten
most fascinating formulas’ from Ramanujan’s ‘lost notebook’ as tabulated [3]
by Andrews and Berndt in 2008. Surprisingly, the theorems here now reveal that
these objects are in fact tightly intertwined in the quantum world.
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We shall prove Theorem 1.3 first. The proof will require a discussion of the
convergence of the relevant Rogers–Fine series at roots of unity, the calculation
of asymptotic expansions in terms of values of L-functions, and the mock
modularity of two families of q-hypergeometric series. We shall use results of
Lawrence and Zagier [31] and work of Bringmann and the second two authors
[17] in this regard. These results are recalled in Section 2.1, and the proof of
Theorem 1.3 is then given in Section 2.2.

To prove Theorem 1.2, which in turn implies Theorem 1.1, we make use of a
beautiful identity of Choi [20] and Ramanujan (see [4, Entry 3.4.7]). This identity
reduces the proof of Theorem 1.2 to the claim, upon appropriate specialization
of variables, that a certain mixed mock modular form is asymptotic to a suitable
multiple of the modular crank function. To establish this claim, we carry out a
careful analysis of the asymptotic properties of modular Klein functions, certain
Lerch-type series, and Mordell integrals. This is done in Section 3.

2. Proof of Theorem 1.3

Here, we prove Theorem 1.3 after first proving a lemma about the convergence
of relevant q-hypergeometric series at roots of unity, and after recalling important
results of Lawrence and Zagier [31] and Bringmann and the second two
authors [17].

2.1. Preliminaries for the proof of Theorem 1.3. We begin with a simple
lemma.

LEMMA 2.1. Let 0 < a < b be coprime integers, where b is even, and let Qa,b

be as in the statement of Theorem 1.3. If x = h/k ∈ Qa,b, then G(a, b;−x) and
H(a, b; 1/2x) converge. Moreover, they are explicitly given by the finite sums

G

(
a, b;−

h

k

)
= ζ−a2h

b2k

m∑
n=0

(−ζ−ah
bk ; ζ

−h
k )n(−ζ

−ah
bk )n

(ζ−ah
bk ; ζ

−h
k )n+1

,

H

(
a, b;

k

2h

)
= ζ k

16h

`∑
n=0

(ζ−a
b ζ k

2h; ζ
k
h )n(ζ

−a
b ζ k

2h)
n

(ζ−a
b ζ k

h ; ζ
k
h )n

,

where the nonnegative integers ` and m satisfy b(2`+ 1)= 2h and a+ bm= k,
respectively.

Proof. By the definition of Qa,b, there is an integer ` ≥ 0 such that (2` + 1) =
2h/b, and so a/b≡ (k(2`+ 1)/2h) (mod 1). Using this, the fact that k ≥ a, k ≡
a (mod b), and (1.9), we see that, for n≥ `+1, the numerator of the nth summand
in the series defining H(a, b; k/2h) will be zero. Next, it is not difficult to show
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that there are no integers s for which a/b ≡ (k/h)s (mod 1). This implies that
none of the denominators vanish. This proves the claim for H(a, b; k/2h). Next,
by the definition of Qa,b, there is a nonnegative integer m for which a+ bm= k.
Arguing as above, one easily arrives at the conclusion for G(a, b;−h/k). �

Theorem 1.3(2) concerns the quantum modularity of the functions
G(a, b; x) and H(a, b; x). To derive this, we make use of earlier work of
Bringmann and the second two authors. We summarize the required results
from [17, Theorem 4.3 and Lemma 4.5] in the theorem below. These results
involve the q-hypergeometric functions (These functions were also studied by
Gordon and McIntosh in [27]. In [17, §4.1], the function g(a, b; z) is shown to
be equal to what the authors call H(a, 0, b; z). We do not use this notation, to
avoid confusion.)

g(a, b; z) :=
∞∑

n=0

(−q; q)nqn(n+1)/2

(qa/b; q)n+1(q−a/bq; q)n+1
,

h(a, b; z) :=
∞∑

n=0

(−1)nqn2
(q; q2)n

(ζ a
b q2; q2)n(ζ

−a
b q2; q2)n

,

(2.1)

and the important theta function

T(a, b; z) := i
∞∑

n=−∞

(
n+

1
4

)
cosh

(
2π i

(
n+

1
4

)(
2a

b
− 1
))

q(n+
1
4 )

2
. (2.2)

Equations (2.7) and (2.8) will give explicit identities relating these functions to
G and H.

THEOREM 2.2 [17, Theorem 4.3 and Lemma 4.5]. Let z ∈ H, and suppose that
0< a< b are coprime integers. We have that

qa/b(1−a/b)g(a, b; z) =

√
2i

z

eπ i/8z

4 sin(πa/b)
h

(
a, b;
−1
2z

)
+

∫ i∞

0

(−iu)−3/2T(a, b;− 1
u ) du

√
−i(u+ z)

.

Theorem 1.3(3) relates asymptotic expansions to values of L-functions. To
obtain our result in this direction, we make use of the following proposition of
Lawrence and Zagier [31].

PROPOSITION 2.3 [31, p. 98]. Let C : Z→ C be a periodic function with mean
value 0. Then the associated L-series L(s,C) =

∑
∞

n=1 C(n)n−s ( Re(s) > 1)
extends holomorphically to all of C, and the function

∑
∞

n=1 C(n)e−n2t ( t > 0)
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has the asymptotic expansion
∞∑

n=1

C(n)e−n2t
∼

∞∑
r=0

L(−2r,C) ·
(−t)r

r!

as t→ 0+. The numbers L(−r,C) are given explicitly by

L(−r,C)=−
Mr

r + 1

M∑
n=1

C(n)Br+1

(
n

M

)
(r = 0, 1, . . .),

where Bk(x) denotes the kth Bernoulli polynomial and M is any period of the
function C(n).

2.2. Proof of Theorem 1.3. We first prove (1). Let ρ := q−1, where q = e2π iz

and z ∈H. We compute

−ρa/b−a2/b2
G(a, b;−z) = −ρa/b

∞∑
n=0

(−ρa/b
; ρ)n

(ρa/b; ρ)n+1
(−ρa/b)n

=

∞∑
n=0

(−qa/b
; q)n

(qa/b; q)n+1
qn(1−a/b)

=: G∗(a, b; z), (2.3)

where we use the fact that

(a; ρ)n = (−a)nq−n(n−1)/2(a−1
; q)n. (2.4)

Thus, from (1.8) and (2.3), we see that the series defining G(a, b; z) is defined
for z ∈H ∪H−. Similarly, using (2.4), it is not difficult to show that

q
1
8 H(a, b;−z)= F(q−1ζ a

b , ζ
a
b , ζ

−a
b ; q

2), (2.5)

and hence that H(a, b; z) is defined for z ∈ H ∪ H−. We justify the convergence
of the series F(q−1ζ a

b , ζ
a
b , ζ

−a
b ; q

2) in (2.5) as follows. By considering the
Rogers–Fine series F(α, β, t; q) purely formally, we have the functional equation

F(q−1ζ a
b , ζ

a
b , ζ

−a
b ; q

2)=−ζ a
b

(
1−

ζ a
b − q

ζ a
b − 1

F(q−1ζ a
b , ζ

a
b , ζ

−a
b q2
; q2)

)
.

(See also [24, (2.4)].) Iterating this recurrence relationship, it follows that
F(α, β, t; q) converges for all t 6= q−n, n ∈ N0. (See also [24, page 2].) This
proves (1).

We now prove (2). We relate G∗(a, b; z) to the mock modular form g(a, b; z).
The identity

(1− t)F(α, β; t)=
∞∑

n=0

( β
α
; q)n

(βq; q)n(tq; q)n
· (−αt)nqn(n+1)/2 (2.6)
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(see [24, (12.2)]) with α =−qa/b−1, β = qa/b, t = q1−a/b shows that

G∗(a, b; z)= g(a, b; z). (2.7)

We use (2.6) again with α = q−1ζ a
b , β = ζ a

b , t = ζ−a
b , and q→ q2, and find that

h(a, b; z)= (1− ζ−a
b )F(q−1ζ a

b , ζ
a
b , ζ

−a
b ; q

2)= (1− ζ−a
b )q

1
8 H(a, b;−z), (2.8)

where the last equality in (2.8) follows from (2.5). The proof of part (2)
now follows from part (1), (2.3), (2.5), (2.7), (2.8), and Theorem 2.2. While
Theorem 2.2 gives a transformation law for z ∈ H, we have continuation to
x ∈ Qa,b by Lemma 2.1. As argued in [41] and [19], the integral appearing in
(2) of Theorem 1.3 is real analytic.

We now prove part (3). The conclusion of part (3) follows from Proposition 2.3
once the hypotheses are confirmed for certain L-functions related to G(a, b; z)
and H(a, b; z).

To this end, we let cG(n) and cH(n) be as defined in (1.12) and (1.13),
respectively. Then, using (1.10) and (1.11), we have

G

(
a, b;
−h

k
+

it

2π

)
=

∞∑
n=0

cG(n)e
−n2t/b2

,

H

(
a, b;

k

2h
+

it

2π

)
=

∞∑
n=0

cH(n)e
−n2t/8.

It is clear that cG is 2kb2 periodic, and cH is 16h periodic. To prove that cG

and cH have mean value zero, we establish the following claim. Let a and b be
positive integers satisfying gcd(a, b) = 1, with b even. Let h and k be integers
such that h/k ∈ Qa,b. Then cG and cH have mean value zero with periods 2kb2 and
16h, respectively. The truth of this claim, then combined with Proposition 2.3,
gives part (3).

We begin with cG. Because gcd(a, b) = 1, there is some integer a such that
aa≡ 1 (mod b). We have ∑

n (mod 2kb2)

cG(n)=Σ1 −Σ2,

where

Σ1 :=

∑
n (mod 2kb2)
n≡a (mod 2b)

ζ−hn2

kb2 , Σ2 :=

∑
n (mod 2kb2)

n≡a+b (mod 2b)

ζ−hn2

kb2 .
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We have

Σ1 =

∑
n (mod 2kb2)
n≡a (mod 2b)

ζ−hn2

kb2 =

2kb2
−bka∑

n=1−bka
n≡a (mod 2b)

ζ−hn2

kb2 =

2kb2∑
n=1

n≡a+bka (mod 2b)

ζ
−h(n−bka)2

kb2 . (2.9)

Now, by hypothesis, there exists some integer s (namely, s = 2` + 1) such that
h= bs/2. Thus,

ζ
−h(n−bka)2

kb2 = ζ−hn2

kb2 ζ 2hna
b = ζ−hn2

kb2 ζ bsna
b = ζ−hn2

kb2 . (2.10)

There also is an integer m for which k = a+bm, and an integer v with aa= 1+bv,
so that

a+ bka = a+ b(a+ bm)a= a+ aab+ amb2

= a+ (1+ bv)b+ amb2
= a+ b+ b2(v + am)≡ a+ b (mod 2b),

(2.11)

where the last equivalence follows because b is even. We use (2.10) and (2.11)
to rewrite (2.9) as ∑

n=1
n≡a+b (mod 2b)

2kb2

ζ−hn2

kb2 ,

which is precisely equal to Σ2.
To prove that cH has mean value with the given period, we use that ` is the

nonnegative integer such that b(2`+ 1)= 2h, and write∑
n (mod 16h)

cH(n)=
8b(2`+1)∑

n=1
n odd

ζ
−a((n−1)/2)
b ζ kn2

8b(2`+1) =Σ3 +Σ4,

where

Σ3 :=

4b(2`+1)∑
n=1

n odd

ζ
−a((n−1)/2)
b ζ kn2

8b(2`+1), Σ4 :=

8b(2`+1)∑
n=4b(2`+1)+1

n odd

ζ
−a((n−1)/2)
b ζ kn2

8b(2`+1).

By replacing n by N+4b(2`+1) inΣ4 and summing on N, we find thatΣ4 =Σ3,
and hence

∑
n (mod 16h) cH(n)= 2Σ3. Next, we rewrite Σ3 as Σ31 +Σ32, where

Σ31 :=

2b(2`+1)∑
n=1

n odd

ζ
−a((n−1)/2)
b ζ kn2

8b(2`+1), Σ32 :=

4b(2`+1)∑
n=2b(2`+1)+1

n odd

ζ
−a((n−1)/2)
b ζ kn2

8b(2`+1).
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We rewrite Σ32 as

Σ32 =

2b(2`+1)∑
n=1

n odd

ζ
−a((n−1)/2+b(2`+1))
b ζ

k(n+2b(2`+1))2

8b(2`+1) =

2b(2`+1)∑
n=1

n odd

ζ
−a((n−1)/2)
b ζ kn2

8b(2`+1)ζ
nk
2 .

Because k ≡ a (mod b), b is even, and gcd(a, b)= 1, we must have that k is odd.
Thus, Σ32 = −Σ31, and hence cH(n) has mean value zero with period 16h, as
claimed.

3. Proof of Theorem 1.2

To prove Theorem 1.2, we will require some preliminary results pertaining
to ordinary modular forms, modular units, mock modular forms, and Jacobi
theta functions. We describe these results in the following subsection. We then
conclude with the proof of Theorem 1.2.

3.1. Preliminaries for the proof of Theorem 1.2.

3.1.1. Special modular forms. A modular form we require is the Dedekind
η-function, defined for q= e2π iz, z ∈H, by

η(z) := q
1
24

∞∏
n=1

(1− qn).

It is well known [36] that η(z) is modular of weight 1/2, and that it transforms

under γ = ( a b
c d ) ∈ SL2(Z) by

η(γ z)= ψ(γ )(cz+ d)
1
2 η(z), (3.1)

where ψ(γ ) is a 24th root of unity.
We will also require the Klein forms t(r,s)(z)= t(N)(r,s)(z) defined for pairs (r, s) ∈

Z2 with respect to a positive integer level N, such that (r, s) 6≡ (0, 0) (mod N ×
N). These functions are defined using the Weierstrass σ -function, and they were
studied originally by Klein and Fricke. Here, we give some of their key properties
as summarized in a more modern source [30]:

t(r,s)(γ z)= (cz+ d)−1t(r,s)γ (z), for all γ =
(

a b

c d

)
∈ SL2(Z), (3.2)

t(r,s)(z)=−
ζ

s(r−N)
2N2

2π i
qr(r−N)/2N2

(1− ζ s
Nqr/N)

∞∏
n=1

(1− ζ s
Nqn+r/N)(1− ζ−s

N qn−r/N)

(1− qn)2
,

(3.3)

where q= e2π iz, and (r, s)γ denotes matrix multiplication.
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3.1.2. Mock Jacobi forms. In his celebrated Ph.D. thesis [45], Zwegers defined
the Appell–Lerch sums for q= e2π iz, z ∈H, and u, v ∈ C \ (Zz+ Z) by

µ(u, v; z) :=
eπ iu

ϑ(v; z)

∑
n∈Z

(−1)nqn(n+1)/2e2π inv

1− e2π iuqn
.

Here, the Jacobi theta function is defined by

ϑ(v; z) := i
∑
n∈Z

(−1)nq
1
2 (n+

1
2 )

2
e2π iv(n+ 1

2 )

= −iq
1
8 e−π iv

∞∏
n=1

(1− qn)(1− e2π ivqn−1)(1− e−2π ivqn). (3.4)

The last equality in (3.4) is the well-known Jacobi product identity. The Jacobi
form ϑ(v; z) transforms as follows [36]:

ϑ(v + αz+ β; z) = (−1)α+βq−α
2/2e−2π iαvϑ(v; z), (3.5)

ϑ

(
v

cz+ d
; γ z

)
= ρ(γ )(cz+ d)1/2eπ icv2/(cz+d)ϑ(v; z), (3.6)

for all α, β ∈ Z and γ = ( a b
c d ) ∈ SL2(Z), where ρ(γ ) = (ψ(γ ))3 is an eighth

root of unity.
A result for the mock Jacobi forms µ(u, v; z) that we will make use of is the

following beautiful and important identity of Choi [20].

THEOREM 3.1 (Choi [20]). Let q = e2π iz, where z ∈ H. For suitable complex
numbers α = e2π iu and β = e2π iv, we have

∞∑
n=0

(αβ)nqn2

(αq; q)n(βq; q)n
+

∞∑
n=1

qn(α−1
; q)n(β

−1
; q)n

= iq
1
8 (1− α)(βα−1)

1
2 (qα−1

; q)∞(β
−1
; q)∞µ(u, v; z).

REMARK. We note that Theorem 3.1 can be obtained from Entry 3.4.7 of
Ramanujan’s ‘Lost Notebook’ (see [4, p. 67]).

REMARK. We point out that the left-hand side of the displayed identity
in Theorem 3.1 may also be rewritten as

∑
∞

n=−∞(αβ)
nqn2

/(αq; q)n(βq; q)n;
however, the relevant expression here is the one given in Theorem 3.1.

To make use of Theorem 3.1, we shall require the modular transformation
properties of µ(u, v; z). Multivariable generalizations of the function
A(u, v; z) := ϑ(v; z)µ(u, v; z) were studied by Zwegers [46] and the first author
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and Bringmann [12]. A ‘completion’ of this function is defined by Zwegers as

Â(u, v; z) := A(u, v; z)+
i

2
ϑ(v; z)R(u− v; z), (3.7)

where

R(v; z) :=
∑
n∈Z

{
sgn
(

n+
1
2

)
− E

((
n+

1
2
+

Im(v)
Im(z)

)√
2 · Im(z)

)}
× (−1)nq−

1
2 (n+

1
2 )

2
e−2π iv(n+ 1

2 ),

and for w ∈ C we have

E(w) := 2
∫ w

0
e−πu2

du.

The functions R(v; z) transform as follows [45] under the generators of
SL2(Z):

R(v; z+ 1)= e−π i/4R(v; z), (3.8)
1
√
−iz

eπ iv2/zR

(
v

z
;−

1
z

)
+ R(v; z)= h(v; z), (3.9)

where the Mordell integral h(v; z) is defined by

h(v; z) :=
∫
∞

−∞

eπ izu2
−2πvu

cosh(πu)
du.

Using the transformation properties of the functions µ (see [45]) and ϑ (see

(3.5) and (3.6)), we have, for integers m, n, r, s, and γ = ( a b
c d ) ∈ SL2(Z), that

Â(u+ mz+ n, v + rz+ s; z) = (−1)m+ne2π iu(m−r)e−2π ivmqm2/2−mrÂ(u, v; z),

(3.10)

Â

(
u

cz+ d
,

v

cz+ d
; γ z

)
= (cz+ d)eπ ic(−u2

+2uv)/(cz+d)Â(u, v; z). (3.11)

3.2. Proof of Theorem 1.2. To prove Theorem 1.2, we will first make use
of Choi’s identity in Theorem 3.1 with α = ζ−a

b and β = ζ a
b (hence u = −a/b,

v = a/b), and q replaced by e(2π i/k)(h+iz). We define

m(a, b; u) := ieπ iu/4(1− ζ−a
b )ζ a

b (ζ
a
b e2π iu

; e2π iu)∞(ζ
−a
b ; e

2π iu)∞. (3.12)
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To prove Theorem 1.2, noting that the function U(ζ a
b ; ζ

h
k ) is a finite convergent

sum when b|k, by the argument above, it thus suffices to prove that, upon
appropriate specialization of variables, the mixed mock modular form m · µ is
asymptotic to a suitable multiple of the modular crank-generating function C.

To be precise, let b|k, gcd(a, b) = 1, gcd(h, k) = 1, where a, b, h, k are
positive integers. By comparing the asymptotics in Theorem 3.2 and
Proposition 3.3 below, we immediately find that, as z→ 0+,

m

(
a, b;

1
k
(h+ iz)

)
µ

(
−

a

b
,

a

b
;

1
k
(h+ iz)

)
∼ ζ−a2h′k

b2 C

(
ζ a

b ;
1
k
(h+ iz)

)
.

(3.13)

The error terms in Theorem 3.2 and Proposition 3.3 complete the proof.

REMARK. Above, and in what follows, we let z ∈ R+, and let z→ 0+. This
corresponds to q = e(2π i/k)(h+iz)

→ ζ h
k from within the unit disk, as described in

the statements of Theorems 1.1 and 1.2.

Therefore, it remains to obtain these two separate asymptotic results for the
crank function and the mixed mock modular form in question. To describe this,
we let

q := e(2π i/k)(h+iz), q1 := e(2π i/k)(h′+i/z). (3.14)

For the mixed mock modular m · µ, we obtain the following asymptotics.

THEOREM 3.2. Let b|k, gcd(a, b) = 1, gcd(h, k) = 1, where a, b, h, k are
positive integers, and let b′ and h′ be positive integers such that bb′ = k
and hh′ ≡−1 (mod k). For z ∈ R+, as z→ 0+, we have that

m

(
a, b;

1
k
(h+ iz)

)
µ

(
−

a

b
,

a

b
;

1
k
(h+ iz)

)
=

(
i

z

) 1
2

(ψ(γ ))−1q
1
24 q
−

1
24

1 (−1)ab′ζ ah′−a
2b ζ−3a2kh′

2b2

ζ a
b − 1

1− ζ ah′
b

(1+ O(qα1 )),

for some α > 1/24.

Combining Theorem 3.2 with the following asymptotics for the modular crank
function then gives (3.13), which in turn then implies Theorem 1.2 as argued
above. The reader should note the multiplicative constant in front of C(ζ a

b ; q) in
the statement of Theorem 1.2.

PROPOSITION 3.3. Let b|k, gcd(a, b) = 1, gcd(h, k) = 1, where a, b, h, k are
positive integers, and let b′ and h′ be positive integers such that bb′ = k
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and hh′ ≡−1 (mod k). For z ∈ R+, as z→ 0+, we have that

C

(
ζ a

b ;
1
k
(h+ iz)

)
=

(
i

z

) 1
2

(ψ(γ ))−1q
1
24 q
−

1
24

1 (−1)ab′ζ ah′−a
2b ζ−a2kh′

2b2

×
ζ a

b − 1

1− ζ ah′
b

(1+ O(qβ1 )),

for some β > 1/24.

3.3. Proof of Theorem 3.2. We define

Z :=
1
k
(h+ iz), Z′ :=

1
k

(
h′ +

i

z

)
, γ :=

h −

(
hh′ + 1

k

)
k −h′

 .
Thus, we have that γZ′ = Z, and, because z ∈ R+, we have that Z ∈ H,Z′ ∈ H.
Using (3.4), (3.5), and the fact that ϑ(v; z) is an odd function with respect to v,
we find that

m(a, b;Z)= q
1

24 ζ−a
2b (ζ

a
b − 1)

ϑ( a
b ;Z)

η(Z)

(where we recall that q= e2π iZ). Using this, we find that

m(a, b;Z)µ

(
−

a

b
,

a

b
;Z

)
:= m(a, b;Z)

A(− a
b ,

a
b ;Z)

ϑ( a
b ;Z)

=
q

1
24 ζ−a

2b (ζ
a
b − 1)

η(Z)
A

(
−

a

b
,

a

b
;Z

)
, (3.15)

where we recall that

A(u, v;Z) := eπ iu
∑
n∈Z

(−1)nq(n(n+1)/2)e2π inv

1− e(u)qn
.

Using the fact that Z = γZ′, together with (3.11), we find that the completed
function Â (defined in (3.7)) satisfies

Â

(
−

a

b
,

a

b
;Z

)
= Â

(
−

a

b
,

a

b
; γZ′

)
=

(
i

z

)
e−(3π ika2/b2)·(i/z)Â

(
−

ai

bz
,

ai

bz
;Z′
)
.
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Next, by hypothesis, there exists some positive integer b′ such that bb′ = k. Thus,
we rewrite(

i

z

)
e−(3π ika2/b2)·(i/z)Â

(
−

ai

bz
,

ai

bz
;Z′
)

=

(
i

z

)
e−(3π ika2/b2)·(i/z)Â

(
ab′h′

k
− ab′Z′,−

ab′h′

k
+ ab′Z′;Z′

)

=

(
i

z

)
(−1)ab′ζ−3a2kh′

2b2 Â

(
ah′

b
,−

ah′

b
;Z′
)
, (3.16)

where we have made use of (3.10).
From (3.15) and (3.16), also using the definition (3.7), we rewrite

m(a, b;Z)µ

(
−

a

b
,

a

b
;Z

)

=
q

1
24 ζ−a

2b (ζ
a
b − 1)

η(Z)

(
i

z

)
(−1)ab′ζ−3a2kh′

2b2 A

(
ah′

b
,−

ah′

b
;Z′
)

+
q

1
24 ζ−a

2b (ζ
a
b − 1)

η(Z)

(
i

z

)
(−1)ab′ζ−3a2kh′

2b2

(
i

2

)
×R

(
2ah′

b
;Z′
)
ϑ

(
−

ah′

b
;Z′
)

−
q

1
24 ζ−a

2b (ζ
a
b − 1)

η(Z)

(
i

2

)
R

(
−

2a

b
;Z

)
ϑ

(
a

b
; γZ′

)
. (3.17)

LEMMA 3.4. With hypotheses as above, we have that

R

(
−

2a

b
;Z

)
=

e−π ihk/4+π i(k−1)(−2a/b+1/2)(−1)(k−1)(h−1)/2

√
kz

×

k−1∑
`=0

e−(π ih/k)(`−(k−1)/2)2ζ 2a`
b (−1)`(h+1)

×

(
−R

(
`− k−1

2

k
;

i

kz

)
+ h

(
`− k−1

2

k
;

i

kz

))
.

Proof of Lemma 3.4. We first apply a dissection result for the functions R(v; z)
proved by the first author and Bringmann in [12, Proposition 2.3]. A direct
application to the function R(−2a/b; (h + iz)/k) results in a sum on `, where `
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ranges from 0 to k − 1, of terms involving the function

R

(
−

2ak

b
+ `h−

(k − 1)(h− 1)
2

+ iz

(
`−

k − 1
2

)
; kh+ ikz

)
.

Now, because h and k are relatively prime, at least one of h and k must be odd.
Moreover, we recall that b|k. Together, these facts imply that

−
2ak

b
+ `h−

(k − 1)(h− 1)
2

∈ Z.

Next, we use that R(v + 1; z) = −R(v) [45], as well as (3.8) and (3.9). A short
calculation gives the desired result. �

Resuming the proof of Theorem 3.2, we apply Lemma 3.4 to (3.17) and find
that

m(a, b;Z)µ

(
−

a

b
,

a

b
;Z

)
=Σ1 +Σ2 +Σ3 +Σ4, (3.18)

where

Σ1 :=
q1/24ζ−a

2b (ζ
a
b − 1)

η(Z)

(
i

z

)
(−1)ab′ζ−3a2kh′

2b2 A

(
ah′

b
,−

ah′

b
;Z′
)
,

Σ2 :=
q1/24ζ−a

2b (ζ
a
b − 1)

η(Z)

(
i

z

)
(−1)ab′ζ−3a2kh′

2b2

(
i

2

)
R

(
2ah′

b
;Z′
)
ϑ

(
−

ah′

b
;Z′
)
,

Σ3 :=
q1/24ζ−a

2b (ζ
a
b − 1)

η(Z)

(
i

2

)
ϑ

(
a

b
; γZ′

)
×

e−π ihk/4+π i(k−1)(−2a/b+1/2)(−1)(k−1)(h−1)/2

√
kz

×

k−1∑
`=0

e−(π ih/k)(`−(k−1)/2)2ζ 2a`
b (−1)`(h+1)R

(
`− k−1

2

k
;

i

kz

)
,

Σ4 := −
q1/24ζ−a

2b (ζ
a
b − 1)

η(Z)

(
i

2

)
ϑ

(
a

b
; γZ′

)
×

e−π ihk/4+π i(k−1)(−2a/b+1/2)(−1)(k−1)(h−1)/2

√
kz

×

k−1∑
`=0

e−(π ih/k)(`−(k−1)/2)2ζ 2a`
b (−1)`(h+1)h

(
`− k−1

2

k
;

i

kz

)
.
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LEMMA 3.5. With hypotheses as above, we have that Σ2 +Σ3 = 0.

Proof. We prove this by first using the fact that

ϑ

(
a

b
; γZ′

)
= ρ(γ )

(
i

z

) 1
2

ζ h′a2k
2b2 (−1)ab′ϑ

(
−

ah′

b
;Z′
)
, (3.19)

where ρ(γ ) is an eighth root of unity. This follows after applying (3.5) and (3.6),
using that ai/bz= ab′Z′ − ah′/b. Using (3.19), it suffices to show that

iζ−3a2kh
2b2 R

(
2ah′

b
;Z′
)

(3.20)

equals √
i

k
e−π ihk/4eπ i(k−1)(−2a/b+1/2)(−1)(k−1)(h−1)/2ρ(γ )ζ h′a2k

2b2

×

k−1∑
`=0

e−(π ih/k)(`−(k−1)/2)2ζ 2a`
b (−1)`(h+1)R

(
`− k−1

2

k
;

i

kz

)
. (3.21)

This follows in a similar manner to the argument used by the third author and
Bringmann and Mahlburg to prove Proposition 2.7 in [14]. Namely, all other
terms in (3.18) are meromorphic; thus it suffices to show that each term in (3.20)
and (3.21) has a Fourier expansion of the form∑

n∈Q\{0}

a(n)Γ ( 1
2 ; 4π |n|y)q

−n,

where Γ (α; x) :=
∫
∞

x e−ttα−1 dt. This follows according to the argument
given [14]. �

LEMMA 3.6. With hypotheses as above, we have that

Σ4 = q
1
24 q

1
12
1 κ(1+ O(qα1 ))

for some constant κ , and some α > 0 as z→ 0+.

Proof. We first note, using (3.1) and the definition of η(z), that

η−1(γZ′)=

(
i

z

)− 1
2

(ψ(γ ))−1η−1(Z′)=

(
i

z

)− 1
2

q
−

1
24

1 (ψ(γ ))−1(1+ O(qα2
1 )),

(3.22)

for some α2 > 1/24 as z→ 0+. Next, let c ∈Q. Then, by definition,

h

(
c;

i

kz

)
=

∫
∞

−∞

e−πx2/kz−2πcx

cosh(πx)
dx.
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We have that e−2πcx/ cosh(πx)= O(1) on R, so

h

(
c;

i

kz

)
= O

(∫
∞

−∞

e−πx2/kz dx

)
= O(
√

z),

where we have used the fact that z ∈ R+. The proof of Lemma 3.6 now follows
after a short calculation from this fact, the transformations (3.19) and (3.22), and
from the series expansion for ϑ(x;Z′) for x ∈Q given in (3.4). �

LEMMA 3.7. With hypotheses as above, we have that

A

(
ah′

b
,−

ah′

b
;Z′
)
=

ζ ah′
2b

1− ζ ah′
b

(1+ O(qα1
1 )), (3.23)

for some α1 > 0 as z→ 0+.

Proof. This follows easily using the definition of A(u, v; z). �

Theorem 3.2 now follows after combining (3.18), Lemma 3.5, and Lemma 3.6,
noting that Σ4→ 0 as z→ 0+, as well as Lemma 3.7, and (3.22) to obtain

m(a, b;Z)µ

(
−

a

b
,

a

b
;Z

)
=

(
i

z

) 1
2

(ψ(γ ))−1q
1
24 q
−

1
24

1 (−1)ab′ζ ah′−a
2b ζ−3a2kh′

2b2

×
ζ a

b − 1

1− ζ ah′
b

(1+ O(qα3
1 )),

for some α3 > 1/24 as z→ 0+.

3.4. Proof of Proposition 3.3. We use the product expansion for the Klein
forms t(r,s)(z) = t(b)(r,s)(z) with respect to the modulus b given in (3.3) and the
definition of η(z) to rewrite the crank-generating function as

C(ζ−a
b ;Z)=−

q
1
24 ζ−a

2b (1− ζ
a
b )

(2π i)η(Z)t(0,a)(Z)
=−

q
1
24 ζ−a

2b (1− ζ
a
b )

(2π i)η(γZ′)t(0,a)(γZ′)
, (3.24)

where we again use the fact that Z = γZ′ to obtain the last equality above. Next,
we apply (3.2) and (3.22) to (3.24), and find that

C(ζ−a
b ;Z)=−

q
1
24 q
−

1
24

1 ζ−a
2b (1− ζ

a
b )

(2π i)t(ak,−ah′)(Z′)

(
i

z

) 1
2

(ψ(γ ))−1(1+ O(qα2
1 )) (3.25)

https://doi.org/10.1017/fmp.2013.3 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2013.3


Mock theta functions and quantum modular forms 25

for some α2 > 1/24 as z→ 0+. We next use (3.3)–(3.6) to rewrite

t(ak,−ah′)(Z
′) = −

iζ−a2h′k
2b2 qa2k2/2b2

1 ϑ(− ah′

b +
a
b (h
′
+

i
z );Z

′)

(2π i)η3(Z′)

= (−1)ab′+1
iζ a2h′k

2b2 ϑ(− ah′

b ;Z
′)

(2π i)η3(Z′)

= (−1)ab′
ζ a2h′k

2b2 (ζ−ah′
2b − ζ ah′

2b )(1+ O(qα3
1 ))

(2π i)
, (3.26)

for some α3 > 0 as z→ 0+. Thus, from (3.25) and (3.26), we have that

C(ζ−a
b ;Z)=

(
i

z

) 1
2

ψ(γ )−1q
1
24 q

−1
24

1 (−1)ab′+1ζ−a
2b ζ

−a2h′k
2b2

1− ζ a
b

ζ−ah′
2b − ζ ah′

2b

(1+ O(qβ1 ))

for some β > 1/24 as z → 0+. After some simplification, we obtain the
proposition.
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