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ABSTRACT

Survivor funds are financial arrangements where participants agree to share
the proceeds of a collective investment pool in a predescribed way depending
on their survival. This offers investors a way to benefit from mortality cred-
its, boosting financial returns. Following Denuit (2019, ASTIN Bulletin, 49,
591–617), participants are assumed to adopt the conditional mean risk shar-
ing rule introduced in Denuit and Dhaene (2012, Insurance: Mathematics and
Economics, 51, 265–270) to assess their respective shares in mortality credits.
This paper looks at pools of individuals that are heterogeneous in terms of
their survival probability and their contributions. Imposing mild conditions,
we show that individual risk can be fully diversified if the size of the group tends
to infinity. For large groups, we derive simple, hierarchical approximations of
the conditional mean risk sharing rule.
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1 INTRODUCTION

Survivor funds are investment pools where participants’ contributions are
re-distributed ex-post, according to the mortality experienced by the group.
Precisely, participants agree to share the proceeds of a collective investment
pool favoring those who survive in application of a specified mutual inheri-
tance rule. The latter boosts the performance of investments, making survivor
funds particularly attractive because of their greater return. Survivor funds
are named after Forman and Sabin (2016). Several variants exist and they are
also known under various appellations, such as individual tontine accounts
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(Fullmer and Sabin, 2019) or pooled-survival funds (Newfield, 2014), for
instance.

Survivor funds run over one period of time. The latter is henceforth referred
to as the reference period. According to the agreed mutual inheritance rule,
the initial contributions are lost in case of death during the reference period.
Mortality credits correspond to the decedents’ contributions and are shared
among all participants (to reward them for having put their contribution to
the fund at risk of being lost in case of death during the reference period).
Precisely, survivors get financial return plus mortality credits generated by the
mutual inheritance rule, while decedents lose their initial contribution but their
beneficiaries still receive mortality credits. Even if no participants die, survivors
never get less than the return on the underlying investment. The way mortality
credits are distributed must account for the possibly unequal death probabili-
ties and contributed amounts. In that respect, participants assuming more risk,
because of higher death probability or higher amount of contribution, should
receive a higher share of these credits.

Survivor funds are currently offered by Le Conservateur in France.
Founded in 1844 and established as a mutual insurance association (under
the brand name “Les Associations Mutuelles Le Conservateur”), the aim was
to develop and modernize the tontine mechanism created by Italian banker
Lorenzo Tonti in 1653. Survivor funds proposed by Le Conservateur are
described on their website (see www.conservateur.fr/nos-produits/tontine/).
Each year, a new tontine association is created for the next 25 years.
Participants can enroll for that duration, or join an existing tontine if they pre-
fer a shorter duration. Contributions can thus be invested in the long term. At
maturity, the proceeds of the collective investment pool are distributed accord-
ing to a predefined rule taking into account participant’s age and amount
invested. The present paper aims to study the way mortality credits are shared,
as well as their behavior in large pools.

Within a homogeneous group (in terms of mortality and amount of con-
tribution), it suffices to distribute mortality credits uniformly over all par-
ticipants, so that each of them receives an equal share of the total amount
of decedents’ contributions. However, the restriction to homogeneous groups
limits the number of participants which inevitably increases the volatility of the
final payout. Allowing for heterogeneity in death probabilities and contributed
amounts avoids this drawback and makes the participation in such investment
more attractive (especially at old ages), provided mortality credits are shared
in an understandable, acceptable and transparent way.

Several proposals for mutual inheritance schemes have been made in the
literature, see for example Donnelly and Young (2017). Denuit (2019) pro-
posed to adopt the conditional mean risk sharing rule introduced in Denuit
and Dhaene (2012) to share mortality credits among participants within a
survivor fund. This rule extends the uniform allocation rule applying within
homogeneous groups to heterogeneous situations, where participants differ
in terms of mortality and/or amounts of invested assets. According to this
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rule, each participant receives the conditional expectation of the individual
account value, given the total mortality credits experienced by the entire pool.
Calculations are carried out as if we knew beforehand the total value of mor-
tality credits to be distributed over the entire pool, but not who actually died.
The expected value of the invested amount lost by each participant in case of
death is then computed, given each possible realization of total mortality cred-
its. Explained differently, each participant gets the average share of mortality
credits corresponding to his or her risk profile so that participants with higher
death probabilities or larger amounts of investment get a comparatively larger
share of mortality credits.

The conditional mean risk sharing rule satisfies the risk exchange fairness
condition and enjoys many theoretical properties (Denuit, 2020, Denuit and
Robert, 2021a,d). Mortality credits provided by survivor funds improve in
convex order when the size of the pool increases. This ensures that the vari-
ance of mortality credits decreases when the number of participants gets larger
while their expected value stays constant, whatever the individual death prob-
abilities and initial contributions as long as participants’ lifetimes are mutually
independent and the sharing is operated according to the conditional mean
risk allocation rule. This paper shows that the variance of mortality credits
tends to zero when the size of the group tends to infinity provided the amounts
contributed by participants satisfy some mild assumptions. This means that
individual risk can be fully diversified within infinitely large pools under the
conditional mean risk sharing rule. Some simple, hierarchical approximations
are proposed for mortality credits within large pools.

Survivor funds are fixed-term investment vehicles operating in a one-period
setting, as opposed to the multi-period analysis developed in modern ton-
tines or pooled annuity funds. It is nevertheless possible to generate lifelong
incomes by investing in survivor funds over successive time intervals. This
offers an alternative to group self-annuitization schemes of Piggott et al. (2005)
as well as to modern tontines or pooled annuity funds developed for example
by Bernhardt and Donnelly (2021), Chen et al. (2021), and Hieber and Lucas
(2022).

Modern tontines receive a lot of interest these days. They offer many advan-
tages compared to classical retirement products. See for example Winter and
Planchet (2021) as well as the practical solutions designed by the pensiontech
Nuovalo Ltd (www.nuovalo.com). The present paper proposes an alternative
to generate lifelong incomes by investing accumulated savings at retirement in
survivor funds running over several periods. Decomposing the pooled annu-
ity fund into a sequence of survivor funds is also more transparent, allowing
participants to keep control of the remaining part of their assets, and eases
investment policies since each survivor fund operates over a fixed time horizon.
To end with, let us notice that the results derived in this paper are also useful
for death benefits, when participants contribute ex post in function of prema-
ture deaths. A similar concept was successfully introduced by Xianghubao, a
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mutual aid platform in China. Here, payments are not triggered by death but
by a critical illness diagnosis, see also Abdikerimova and Feng (2022).

The remainder of this paper is organized as follows. In Section 2, we recall
the definition of survivor funds and apply the conditional mean risk sharing
rule to allocate mortality credits to each participant. Section 3 establishes the
behavior of individual mortality credits within large pools when participants
are subject to different death probabilities but contribute the same amount
(heterogeneity in mortality but homogeneity with respect to invested contribu-
tions). It is demonstrated that the variance of mortality credits decreases with
the size of the group, tending to zero when the number of participants tends
to infinity so that individual risk can be fully eliminated at the limit under the
conditional mean risk sharing rule. It is also shown how to supplement the
system with minimum guarantees. Section 4 allows for different amounts of
contribution selected from a predefined menu. Imposing mild conditions, it is
shown that the variance of mortality credits still tends to zero when the size of
the group increases. A hierarchical approximation is also proposed, to ease the
calculations within large pools. Section 5 discusses the results and concludes
the paper. It is shown there that lifelong incomes can be obtained by com-
bining investments in survivor funds over several periods of time. Hence, cash
flows similar to those provided by modern tontines or pooled annuity funds
can be generated with survivor funds in a simple and transparent way.

The supplementary material that is available online studies a risk transfer
network structure allowing participants to restrict sharing to a community of
individuals with whom they are connected. It is common in peer-to-peer insur-
ance to divide participants into teams, corresponding to members of the same
family or friends, for instance, see for example Denuit and Robert (2021e).
It is therefore useful to adapt sharing rules to this particular case. Precisely,
we assume that participants are only willing to share mortality credits within
possibly overlapping subpools. Connections among participants are described
by an undirected graph, where the presence of an edge between two individu-
als indicates privileged relationships between them. In case of death, mortality
credits are then shared within the subpool to which participants belong. The
supplementary material assesses risk-reducing effects within large pools when
participants are grouped in teams or families modeled by a network structure.

2 SURVIVOR FUNDS

2.1 Notation

Forman and Sabin (2016) and Donnelly and Young (2017) introduced a pool-
ing mechanism where (surviving) participants can increase their income by
sharing their mortality risk and agreeing about a mutual inheritance scheme.
Precisely, the pool operates over one period, starting at time t= 0 to end at
time t= 1, say. At time 0, participant i contributes to the fund an amount ci,
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i= 1, 2, . . . , n. This amount is invested and accumulates to ai at time 1 (with the
same deterministic accumulation rate for all participants). Contrarily to regu-
lar investments, the terminal amount

∑n
i=1 ai is divided among participants or

beneficiaries at time 1, according to some agreed mutual inheritance rule.
The respective death probabilities before time 1 are denoted as qx1 , qx2 ,

. . . , qxn where the sequence of probabilities qxi is contained in a closed subin-
terval of [0,1] and xi refers to age for participant i. These values are assumed
to account for the effects of age, gender, socio-economic profile, etc. and
all participants agree about them. Notice that no guarantee is offered with
respect to the life table. Probabilities qxi are only used to distribute mortality
credits among participants, their values entering the sharing formula (see e.g.
formula (2.2) below). The mechanisms discussed in this paper thus account
for heterogeneity among participants as different probabilities qxi and initial
contributions ci are permitted, under mild conditions. The terminal payout
depends on participants’ actual mortality experience.

Let Ii denote the survival indicator for individual i, that is

Ii =
⎧⎨
⎩
1 , if individual i survives up to time 1,

0 , otherwise.

Thus, P[Ii = 0]= qxi = 1− P[Ii = 1]. Throughout the paper, we assume that the
random variables I1, . . . , In are mutually independent.

2.2 Mutual inheritance scheme

Participants agree about a mutual inheritance scheme defining the final payout
to each of them or to their designated beneficiaries in case of death. The latter
can be members of participant’s family or a charity, for instance. Survivors get
back at least their accumulated assets ai while the mutual inheritance agree-
ment embedded in the survivor fund provides them with an extra return above
the purely financial one. Let us denote as

Xi = (1− Ii)ai

the accumulated contribution ai lost in case participant i dies. The amount

Sn =
n∑
i=1

Xi

is the total amount of mortality credits to be distributed among the n partici-
pants (or their beneficiaries) according to a predefined rule.

Denuit (2019) proposed to adopt the conditional mean risk sharing rule
to define the mutual inheritance scheme so that participant i receives an
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amount E[Xi|Sn] corresponding to his or her expected share in mortality cred-
its. Precisely, the terminal cash flow Wi,n for participant i (or his or her
beneficiaries) at time t= 1 is equal to

Wi,n =
⎧⎨
⎩
ai +E[Xi|Sn], if participant i survives

E[Xi|Sn], if participant i dies.

This can be rewritten as

Wi,n = aiIi +E[Xi|Sn] .
Clearly,

n∑
i=1

Wi,n =
n∑
i=1

E[Xi|Sn]+
n∑
i=1

aiIi =
n∑
i=1

(1− Ii)ai +
n∑
i=1

aiIi =
n∑
i=1

ai

so that the entire resources are pooled within the group. Moreover,

E[Wi,n]= (1− qxi )ai +E[Xi]= (1− qxi )ai + qxiai = ai

so that the gain is zero, on average, for each participant. The game is thus fair
and does not transfer money from some participants to other ones, on average
(ex ante). There is thus no donation embedded in the survivor fund as long as
the death probabilities truly reflect participants’ mortality.

Since

X1,X2, . . . ,Xn identically distributed⇒E[Xi|Sn]= 1
n

n∑
i=1

Xi (2.1)

we recover the uniform allocation of mortality credits as a particular case when
the group is homogeneous with respect to mortality as well as contributed
amounts. The conditional mean risk sharing rule thus extends the uniform
allocation applying in the homogeneous case to heterogeneous pools.

Let

Sn =
{

n∑
i=1

jiai, ji ∈ {0, 1}, i= 1, . . . , n

}

be the set of values of the random variable Sn. The conditional expectation
E[Xi|Sn = s] is defined for s ∈ Sn, but not for s /∈ Sn, so that their properties
are only discussed within Sn. Clearly, 0 ∈ Sn and E[Xi|Sn = 0]= 0 while for all
positive s ∈ Sn, we exploit the independence together with the discreteness of
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Xi to obtain

E[Xi|Sn = s]= E[Xi1Sn=s]
P[Sn = s]

= 1
P[Sn = s]

(∫
R

E
[
x1x+∑j �=i Xj=s

]
dPXi (x)

)

= 1
P[Sn = s]

⎛
⎝∫

R

x · P
⎡
⎣x+

∑
j �=i

Xj = s

⎤
⎦ dPXi (x)

⎞
⎠

= 1
P[Sn = s]

ai · P
⎡
⎣ai +∑

j �=i
Xj = s

⎤
⎦ · qxi . (2.2)

Formula (2.2) provides the actuary with a practical way to compute condi-
tional expectations E[Xi|Sn = s]. Computation time nevertheless grows with
the number n of participants. Henceforth, we assume that ai = a+ ki · h, i=
1, 2, . . . , n for ki ∈N and a, h ∈R

+.

2.3 Comonotonic mortality credits

2.3.1 Definition
A common property for a mortality risk sharing scheme is that the extra
amount paid to participant i if he or she survives increases with the amount
Sn of mortality credits to be distributed at maturity. This property is referred
to as the comonotonicity property and means for the conditional mean risk
sharing rule that

s �→E[Xi|Sn = s] is nondecreasing over Sn for every i . (2.3)

If (2.3) holds true then mortality credits all move in the same direction with
Sn, increasing when Sn increases and decreasing when Sn decreases, and the
random vector (E[X1|Sn = s], . . . , E[Xn|Sn]) is said to be comonotonic. We
refer the reader to Dhaene et al. (2002a,b) for a general presentation of
comonotonicity. It is important to stress that (2.3) is not in general valid (coun-
terexamples are easy to build, as shown next), but some important cases for
which the property holds have been studied in Denuit and Robert (2021b).

2.3.2 Comonotonicity and heterogeneity in invested amounts
It is easy to see that the dispersion of the accumulated distributions
a1, a2, . . . , an plays a crucial role in that respect. To see why this is the case,
assume that all a1, a2, . . . , an are different. If ai cannot be written as a sum of
some other aj’s, then the event {Sn = ai} is equivalent to the event {Ii = 0, Ij = 1
for j �= i} and it follows that E[Xi|Sn = ai]= ai. If all participants die, then
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we have

E

⎡
⎣Xi ∣∣∣ Sn =

n∑
j=1

aj

⎤
⎦= ai .

Therefore, for a finite pool size n and a1, a2, . . . , an as described before,
comonotonicity cannot hold unless conditional expectations are actually con-
stant. Heterogeneity in invested amounts thus impacts on survivor funds.
Sections 3 and 4 study the case where all contributed amounts ai are equal
but participants are subject to different death probabilities, and the case where
different contributions are allowed but selected from a predefined menu (lim-
ited heterogeneity). Before proceeding with this analysis, let us explain why
comonotonic mortality credits ease the management of survivor funds by
considering possible guarantees that may be offered to participants.

2.3.3 Minimum guarantees
Participants to survivor funds are exposed to randomness in mortality credits.
This is generally the case with tontine-like arrangements. The need for protec-
tion has been addressed in several papers and resulted for instance in hybrid
schemes such as the tonuity proposed by Chen et al. (2019) and the tontine
with minimum guarantee in Chen and Rach (2019).

In order to ensure that participants get a minimum payoff, it seems to be
desirable to reinsure the lower layer of Sn: if Sn falls below a given thresh-
old w then the (re-)insurer covers the shortfall (w− Sn)+ =max{w− Sn, 0}. A
natural candidate for w consists in a given percentage of E[Sn]=∑n

i=1 qxiai.
For instance, one could set w= 0.9 ·E[Sn] if pool members are ready to accept
mortality credits that are at most 10% below their expected value for the entire
pool.

When mortality credits are comonotonic, the global threshold w on the
aggregate mortality credits Sn to be shared among participants can eas-
ily be split into individual amounts wi. Here, wi is the minimal guarantee
on the share of mortality credits allocated to participant i, as shown next.
Under assumption (2.3), there exist w1, . . . ,wn such that

∑n
i=1 wi =w and the

identities

(w− Sn)+ =
n∑
i=1

(wi −E[Xi|Sn])+ and (Sn −w)+ =
n∑
i=1

(E[Xi|Sn]−wi)+ (2.4)

both hold true. Formula (2.4) can be found in the proof of Theorem 6 in
Kaas et al. (2002); see the first formula on p. 78. The decomposition of
(w− Sn)+ appearing in (2.4) allows us to charge each participant with his or
her own contribution to the (re-)insurance premium, based on the respective
(wi −E[Xi|Sn])+ entering the decomposition of the lower layer (w− Sn)+. The
price of the (re-)insurance treaty can thus be split according to (2.4), partic-
ipant i paying (1+ θ)E[(wi −E[Xi|Sn])+] summing up to (1+ θ)E[(w− Sn)+]
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where θ is the loading applied by the reinsurer. Although proportional load-
ings are common in practice, notably when expenses are referred to, a safety
loading could rely on diversification arguments, then being based on some risk
measure. The results of this section still apply in that case provided the selected
risk measure is additive for comonotonic risks. All spectral risk measures enjoy
this property, including Value-at-Risk or Tail-Value-at-Risk.

Identities (2.4) also provide the analyst with the right way to allocate
max{Sn,w} among participants:

max{Sn,w} = w+ (Sn −w)+

=
n∑
i=1

(wi + (E[Xi|Sn]−wi)+)

=
n∑
i=1

max{E[Xi|Sn],wi}. (2.5)

Then, max{Sn,w} is distributed among participants according to formula (2.5).
Precisely, participant i gets mortality credits max{E[Xi|Sn],wi} when the pool
buys protection ensuring mortality credits max{Sn,w}.

3 IDENTICAL AMOUNTS OF CONTRIBUTION

In this section, we consider the case where participants’ accumulated assets are
identical across the pool, that is, ai = a for some a> 0.

3.1 Risk elimination

We know from Denuit and Robert (2021c) that the income E[Xi|Sn] decreases
in convex order with the size n of the pool. This ensures that the variance of
E[Xi|Sn] is nonincreasing when n gets larger. In that respect, conditional mean
risk sharing offers a way to distribute the total mortality credits Sn among the
n participants so that enlarging the pool is always beneficial and participants
thus prefer joining the larger pool. It is therefore interesting to study mortality
credits when n becomes large. The following result shows that diversification
operates within survivor funds, under the conditional mean risk sharing rule.

Proposition 3.1. If ai = a for all i and the sequence of probabilities qxi is
contained in a closed subinterval of [0,1], then we have

Var [E[Xi|Sn+1]]≤Var [E[Xi|Sn]] for all n and lim
n→∞ Var [E[Xi|Sn]]= 0 .

Proof. The inequality for the variance of mortality credits directly follows
from a general result in Denuit and Robert (2021c). Proposition 2.1 in that
paper shows that E[Xi|Sn] decreases in the convex order for any indepen-
dent random variables Xi, which implies the announced ranking for variances.
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The mean-squared convergence of E[Xi|Sn] to E[Xi] can be deduced from
Strasser (2012) who derived large-pool approximations for E[Xi|Sn] in the par-
ticular case when ai = 1 for all i. In Theorem 2.1 of this paper, it is indeed
proved that

E[Xi|Sn]= qxi +
qxi (1− qxi )√

Var[Sn]
Zn + τi,n

Var[Sn]
(Z2

n − 1)+ rni (Zn)

where

Zn = Sn −E[Sn]√
Var[Sn]

, τi,n = qxi (1− qxi )

⎛
⎝qxi − 1

Var[Sn]

n∑
j=1

q2xj (1− qxj )

⎞
⎠ ,

and E[|rni (Zn) |]=O
(
n−3/2

)
. Using Corollary 5.2 and Lemma 5.3 of the same

paper, it is also true that E[|rni (Zn) |2]=O
(
n−3/2

)
. Since

(
E[Xi|Sn]− qxi

)2 ≤ 4
(
qxi (1− qxi )√

Var[Sn]
Zn

)2

+ 4
(

τi,n

Var[Sn]
(Z2

n − 1)
)2

+ 4 (rni (Zn))2 ,

we deduce that the variance of E[Xi|Sn] tends to 0 as n→ ∞. This ends the
proof.

The limit in Proposition 3.1 extends the classical weak law of large num-
bers for averages of independent and identically distributed Xi corresponding
to mortality credits allocations within homogeneous pools as shown in (2.1).
Proposition 3.1 shows that individual risk can generally be fully eliminated in
an infinitely large pool.

The following numerical example illustrates the results derived in
Proposition 3.1. All calculations are carried out with the distr package
available in R, see distr.r-forge.r-project.org/.

Example 3.2. Consider n participants partitioned into two groups: 60% of
them are subject to a death probability equal to 0.1 and the remaining 40% of
them to a death probability equal to 0.2. All values ai are set to 1. The left panel
in Figure 1 shows the variance of E[Xi|Sn]/ai for n ∈ {10, 20, 30, . . . , 1000}. The
decreasing trend to 0 established in Proposition 3.1 is clearly visible there. The
lower quartile, the median and the upper quartile (that is, quantiles associ-
ated to probability levels 0.25, 0.5 and 0.75) of E[Xi|Sn]/ai are displayed in
the other two panels of Figure 1 for n ∈ {100, 200, 300, . . . , 1000} for a par-
ticipant in group 1 in the middle panel and for a participant in group 2
in the right panel. We can see there that the interquartile range narrows at
speed n−1/2.
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FIGURE 1. Variance of E[Xi|Sn]/ai as a function of n ∈ {10, 20, 30, . . . , 1000} (left panel) for a participant in
group 1 (continuous line) and in group 2 (broken line), median and interquartile range (IQR) of E[Xi|Sn]/ai
for n ∈ {100, 200, 300, . . . , 1000} in group 1 (middle panel) and in group 2 (right panel) for the pool described
in Example 3.2. Horizontal lines in the central and right panels correspond to expected mortality credits.

3.2 Comonotonic mortality credits

If all the contributions are equal, then the comonotonicity property (2.3)
always holds true, as formally shown next.

Proposition 3.3. If ai = a for all i, then the comonotonicity property (2.3) holds
true over Sn = {0, a, 2a, . . . , na}.
Proof. We can assume without loss of generality that a= 1. Considering (2.2)
with ai = 1 for all i, we can see that

E[Xi|Sn = s]= qxi
P
[∑

j �=i Xj + 1= s
]

P [Sn = s]
.

Hence, comonotonicity holds provided the ratio of probabilities appear-
ing in the latter expression is nondecreasing. This means that Sn is smaller
than

∑
j �=i Xj + 1 in the sense of the likelihood ratio order. The announced

result then follows from stochastic inequality (1.5) in Xu and Balakrishnan
(2011). Precisely, these authors established that given two sets of independent
Bernoulli random variables {J1, J2, . . . , Jn} and {K1,K2, . . . ,Kn} with respec-
tive means qJ,1, qJ,2, . . . , qJ,n and qK ,1, qK ,2, . . . , qK ,n such that qJ,1 ≤ qJ,2 ≤
. . . ≤ qJ,n and qK ,1 ≤ qK ,2 ≤ . . . ≤ qK ,n,
m∑
l=1

1
qJ,l

≤
m∑
l=1

1
qK ,l

for m= 1, . . . , n⇒ s �→ P
[∑n

l=1 Jl = s
]

P
[∑n

l=1 Kl = s
] is nondecreasing.

It suffices to apply this result here with qJ,l = qK ,l = qxl for l �= i, qJ,i = 1 and
qK ,i = qxi (with appropriate re-indexing). This ends the proof.

The following numerical example illustrates the comonotonicity property
established in Proposition 3.3.

Example 3.4. Let us consider the same pool as in Example 3.2 with participants
partitioned into two groups: 60% of them are subject to a death probability
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FIGURE 2. Functions s �→E[Xi|Sn = s] for n= 10 (left panel) and n= 100 (right panel) for a participant in
group 1 (continuous line) and in group 2 (broken line) in the pool described in Example 3.2.

equal to 0.1 and the remaining 40% of them to a death probability equal to 0.2,
with ai = 1 for all i. The functions s �→E[Xi|Sn = s] are displayed in Figure 2
for n ∈ {10, 100} for a participant in group 1 or in group 2. The increasingness
established in Proposition 3.3 is clearly visible there.

4 VARYING AMOUNTS OF CONTRIBUTION

4.1 Risk elimination

When contributions vary among participants, some structure must be imposed
on a1, . . . , an to get diversification within the survivor fund, as shown by the
following example which appears to be similar to developments in Section
2.3.2.

Example 4.1. Let ai be even integers except for the odd integer a1. Then, X1 =
a1 when Sn is odd and X1 = 0 when Sn is even so that E[X1|Sn]=X1 and no
diversification operates for participant 1.

The difference between the present paper and the previous works devoted
to conditional mean risk sharing rule appears to be the knowledge of amounts
that could be lost and can identify the participant who died in some extreme
cases. To solve this issue, we assume in this section that only a limited choice is
offered to participants for the amounts of contribution. Precisely, we assume
that participants choose their level of contributions within a predefined menu
bj = a+ kj · h, for j= 1, 2, . . . , p, for consecutive kj ∈N and p ∈N. The num-
ber of possible contributions p in this predefined menu {b1, . . . , bp} does not
vary with n. Theoretical results are valid for any p but diversification is bet-
ter and the proposed approximations are more accurate when p is smaller.

https://doi.org/10.1017/asb.2022.13 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.13


MORTALITY CREDITS WITHIN LARGE SURVIVOR FUNDS 825

The predefined menu still contains Example 4.1 as special case. However,
participant 1 is now part of a pool of others with the same accumulated
distribution a1.

Let Gj = {i|ai = bj} be the group of participants with accumulated contribu-
tion equal to bj, j= 1, 2, . . . , p. Then,

Sj,n =
∑
i∈Gj

Xi = bj
∑
i∈Gj

(1− Ii) (4.1)

is the total amount of mortality credits generated by group Gj. Henceforth, we
denote as nj =#Gj the number of participants in group j, with accumulated
contribution ai = bj.

We are now in a position to assess diversification effects within sur-
vivor funds, under conditional mean risk sharing rule when contributions are
selected from a predefined menu (limited heterogeneity) by keeping p fixed
when n increases. In this way, we can show that full risk elimination is still
possible provided all group sizes nj tend to infinity. This is precisely stated
next.

Proposition 4.2. Let p be a fixed integer and the sequence of probabilities qxi is
contained in a closed subinterval of [0,1]. If ai ∈ {b1, . . . , bp} for all i, then we
have

Var [E[Xi|Sn+1]]≤Var [E[Xi|Sn]] for all n and lim
n1,n2,...,np→∞ Var [E[Xi|Sn]]= 0.

Proof. The inequality for the variance of mortality credits again follows from
Denuit and Robert (2021c). The mean-squared convergence of E[Xi|Sn] to
E[Xi] can be deduced from the following property established by Denuit
and Robert (2021f): for any independent random variables U , V and W ,
E[U|U +V +W ] is smaller or equal than E[U|U +V ] in the sense of the
convex order so that

Var [E[U|U +V +W ]]≤Var [E[U|U +V ]] .

Without the loss of generality, we can set i= 1 and assume that a1 = b1.
Applying this result to U =X1, V = S1,n andW =∑p

j=2 Sj,n shows that

Var [E[X1|Sn]]≤Var
[
E[X1|S1,n]

]
.

Since the variance appearing on the right-hand side tends to 0 when n1 tends
to infinity by Proposition 3.1, this ends the proof.

Example 4.3 illustrates the convergence established in Proposition 4.2.

Example 4.3. Consider the pool described in Example 3.2 but assume now that
ai = 1 for the participants subject to death probability 0.1 (60% of the pool)
and ai = 3 for the participants subject to death probability 0.2. Figure 3 shows
the variance of E[Xi|Sn]/ai for n ∈ {10, 20, 30, . . . , 1000}. The decreasing trend

https://doi.org/10.1017/asb.2022.13 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.13


826 M. DENUIT, P. HIEBER AND C.Y. ROBERT

0 200 400 600 800 1000

0.
00

0.
02

0.
04

Number n of participants

Va
ria

nc
e 

of
 E

[X
i|S

n]/
a i group 1

group 2

0.
08

5
0.

09
5

0.
10

5
0.

11
5

Number n of participants

IQ
R

 o
f E

[X
1|S

n]/
a 1

200 400 600 800 1000

0.
16

0.
20

0.
24

Number n of participants

IQ
R

 o
f E

[X
2|S

n]/
a 2

200 400 600 800 1000

FIGURE 3. Variance of E[Xi|Sn]/ai as a function of n ∈ {10, 20, 30, . . . , 1000} (left panel) for a participant in
group 1 (continuous line) and in group 2 (broken line), median and interquartile range (IQR) of E[Xi|Sn]/ai
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FIGURE 4. Variance of E[Xi|Sn]/ai as a function of n ∈ {10, 20, 30, . . . , 500} for a participant in group 1
(black) and in group 2 (grey). We compare the case where the two groups are treated separately (broken line)

to the case where both groups are pooled together (continuous line).

to 0 established in Proposition 4.2 is clearly visible there. The lower quartile,
the median and the upper quartile (that is, quantiles associated to probability
levels 0.25, 0.5 and 0.75) of E[Xi|Sn]/ai are displayed in the other two pan-
els of Figure 2 for n ∈ {100, 200, 300, . . . , 1000} for a participant in group 1
in the middle panel and for a participant in group 2 in the right panel. We
can see there that the interquartile range narrows at speed n−1/2. Compared to
Example 3.2, we can see here that the mean and medians differ in smaller pools
while the medians converge to the mean within larger pools.

Figure 4 compares the variance of the case where groups 1 and 2 are pooled
together (continuous line) as a function of the pool size n to the case where
group 1 (pool size 40% · n) and group 2 (pool size 60% · n) are treated sep-
arately. We observe that pooling the two heterogeneous groups reduces the
variance and is beneficial for both groups.
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FIGURE 5. Functions s �→E[Xi|Sn = s] for n= 10 (upper left panel), n= 20 (upper right panel), n= 50
(lower left panel), and n= 100 (lower right panel), for a participant in group 1 (continuous line) and in

group 2 (broken line) in the pool described in Example 7.

4.2 Comonotonicity

In the general case of heterogeneous ai, comonotonicity property (2.3) does
not necessarily hold as shown by the following example.

Example 4.4. Consider again the pool described in Example 4.3. The functions
s �→E[Xi|Sn = s] are displayed in Figure 5 for n ∈ {10, 20, 50, 100} for a partic-
ipant in group 1 or in group 2. We can see there that (2.3) does not hold for
every i when n is small. Interestingly, when the size of the pool increases while
keeping the same structure, the functions s �→E[Xi|Sn = s] ultimately become
monotonic.

The next section derives accurate approximations for mortality credits
within large pools.
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4.3 Large-pool comonotonic approximations to mortality credits

Within the groups Gj, we can apply the results of Section 3 since ai = bj for all i.
The idea is thus to distribute the mortality credits among the different groups
Gj and then within each group. The amount Sj,n of mortality credits generated
by Gj has been defined in (4.1). The first two moments of this random variable
are given by

E[Sj,n]= bj
∑
i∈Gj

qxi and Var[Sj,n]= b2j
∑
i∈Gj

(
1− qxi

)
qxi . (4.2)

The total amount of mortality credits to be distributed among the n partici-
pants can be decomposed into Sn =∑p

j=1 Sj,n.
We propose a hierarchical mortality credit sharing to distribute Sn that pro-

ceeds in two steps. First, the total amount of mortality credits is shared between
the groups G1, G2, . . . , Gp with the help of the linear regression sharing rule hlinj,n.
The latter only uses the two first moments of Sj,n and attributes to group Gj the
amount of mortality credits

E[Sj,n|Sn = s]≈ hlinj,n(s)=E[Sj,n]+ Var[Sj,n]∑p
j=1 Var[Sj,n]

(s−E[Sn]) .

This approximation can be justified by the fact it is asymptotically equivalent
to the conditional mean risk sharing rule as n and the numbers nj of partici-
pants in groups Gj are large. In such a case, the amounts Sj,n are approximately
normally distributed with expected values E[Sj,n] and variance Var[Sj,n] given
in (4.2). The proposed approximation hlinj,n(s) corresponds to the conditional
expectation of Sj,n given Sn = s in that limiting case. Notice that the functions
s �→ hlinj,n(s) are also increasing in s so that the allocation of mortality credits
between groups results in comonotonic shares.

For s ∈ Sn, let us define the vector
(
n1(s), n2(s), . . . , np(s)

) ∈N
p as(

n1(s), n2(s), . . . , np(s)
)

= arg min
(k1,...,kp)∈Np

p∑
j=1

∣∣kjbj − hlinj,n(s)
∣∣ such that

p∑
j=1

kjbj ≤ s .

For a realization s of Sn, nj(s) provides a number of participants such that
nj(s) · bj is very close to the mortality credits hlinj,n(s) allocated to group j. This
allocation cannot distribute more than the realized mortality credits, that is it
needs to satisfy the budget constraint

∑p
j=1 kjbj ≤ s. Notice that the functions

s �→ nj(s) are nondecreasing in s. The mortality credits allocated to participant i
in group j are then defined as E

[
Xi | Sj,n = nj(Sn) · bj

]
. This procedure is in fact

similar to the approach developed in Denuit and Robert (2021e) when pools
are partitioned into teams and we end up with a comonotonic mortality credit
allocation.
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The conditional expectation involved in the second step can be computed
directly or the following approximation can be applied. Using Theorem 2.1 in
Strasser (2012), we obtain1

E[Xi|Sj,n]= qxibj +
qxi (1− qxi )b

2
j√

Var[Sj,n]
Zj,n + τi,j,n(Z2

j,n − 1)+OP(n
−3/2
j ) ,

where

Zj,n = Sj,n −E[Sj,n]√
Var[Sj,n]

,

τi,j,n = qxi (1− qxi )b
3
j

Var[Sj,n]

⎛
⎝qxi − b2j

Var[Sj,n]

∑
l∈Gj

q2xl (1− qxl )

⎞
⎠ .

Letting

Hj,n:=
hlinj,n(Sn)−E[Sj,n]√

Var[Sj,n]
=

√
Var[Sj,n]∑p

j=1 Var[Sj,n]
(Sn −E[Sn]) ,

we finally obtain that

E
[
Xi|Sj,n = nj(Sn) · bj

]
= qxibj +

qxi (1− qxi )b
2
j√

Var[Sj,n]
Hj,n + τi,j,n(H2

j,n − 1)+OP(n
−3/2
j )

= qxibj +
qxi (1− qxi )b

2
j∑n

i=1 qxi (1− qxi )a
2
i

(Sn −E[Sn])

+qxi (1− qxi )b
3
j

⎛
⎝qxi − b2j

Var[Sj,n]

∑
l∈Gj

q2xl (1− qxl )

⎞
⎠

×
⎛
⎝
(

Sn −E[Sn]∑n
i=1 qxi (1− qxi )a

2
i

)2

− 1
Var[Sj,n]

⎞
⎠

+OP(n
−3/2
j ).

Example 4.5 illustrates the accuracy of the proposed approximation.

Example 4.5. Consider the pool described in Example 4.3 consisting of two
groups: group 1 (60% of the pool) with ai = 1 and death probability 0.1 and
group 2 (40% of the pool) with ai = 3 and death probability 0.2. Figure 6
shows the functions s �→E[Xi|Sn = s] for n ∈ {100, 500, 1000} together with
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FIGURE 6. Functions s �→E[Xi|Sn = s] (continuous line) and their large-pool approximation (broken line)
for n= 100 (left panels), n= 500 (middle panels), and n= 1000 (right panels), and a participant in group 1

(upper panels) and in group 2 (lower panels) for the pool described in Example 4.3.

their large-pool approximations. For n= 100, we can see there that the approx-
imation is accurate in the central region but deteriorates in the tail. For larger
pool sizes, the quality of the approximation seems to be excellent in this
example.

5 DISCUSSION

This paper studies large survivor funds where the number of participants tends
to infinity, and the conditional mean risk sharing rule is adopted for the distri-
bution of mortality credits. It has been shown that individual risk can be fully
diversified within an infinitely large community, whatever the heterogeneity
in mortality provided the amounts of contribution are selected from a pre-
defined menu and pool sizes approach nj ↑ ∞. Comonotonic approximations
have been proposed for large pools.

The great advantage of survivor funds is that all groups are open to new
members, as it is the case with products sold by Le Conservateur in France.
This sharing mechanism indeed allows that each year new participants can
enter survivor funds. Since heterogeneity is allowed for both mortality and
contributions as long as the latter are selected from a predefined menu, pools
can gather large numbers of participants.

Survivor funds offer a single terminal payout to participants. This is in con-
trast to modern tontines or pooled annuity funds considered for instance by
Bernhardt and Donnelly (2021) in the homogeneous case, by Bernhardt and
Qu (2021) with heterogeneous contributions and by Chen et al. (2021) with
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multiple cohorts. Since survivor funds correspond to pure endowment insur-
ance contracts without the life table guarantee and since life annuities can be
obtained as a sequence of pure endowment contracts with increasing matu-
rities, lifelong incomes can be generated by investing in survivor funds with
different time horizons. It turns out that there are several strategies to generate
lifelong income with the help of survivor funds, as discussed next.

Assume that participant i wishes to convert at retirement his or her accu-
mulated savings into an income for life, offering periodic payments of amount
bi. The first strategy consists in assembling investments in survivor funds of
increasing maturities, exactly as pure endowments are bundled into life annu-
ities. To get an average benefit amount bi at the end of each year, as long as he
or she is alive, participant i should contribute

cit = bi(1+ r)−t

1+ tqxi
to a survivor fund with maturity t, for t= 1, 2, . . . ,ω − xi, where ω is the
assumed ultimate age, tqxi is the probability that participant i dies before age
xi + t, and r is the yearly discount rate (assumed to be constant, for simplicity).
The total amount invested at time 0 is thus equal to

ci =
ω−x∑
t=1

cit.

With the proposed strategy, participant i is sure to receive at least the amount
bi/(1+ tqxi ) if he or she is still alive at age xi + t. This amount tends to bi/2
as t approaches ω − xi, the remaining part of benefit coming from mortality
credits. In this first strategy, participants abandon the amount ci at time 0
and beneficiaries continue to receive mortality credits after participant’s death,
until time ω − xi, which may not be desirable.

Another possibility is to renew membership in one-year survivor funds over
time intervals (0,1), (1,2), . . ., investing each year the amount of contribution
providing the expected benefit bi targeted by participant i in case of survival.
This means that the contribution cit to the survivor fund running over time
interval (t− 1, t) is

cit = bi(1+ r)−1

1+ qxi+t−1

Under this second strategy, participant i is still sure to receive at least the
amount bi/(1+ qxi+t−1) if he or she is still alive at age x+ t. Again, this amount
tends to bi/2 as t approaches ω − xi, the remaining part of benefit coming from
mortality credits. But participant i is now free to manage his or her savings
beyond the yearly contributions cit to the survivor fund. In case of death at age
xi + k, future contributions ci,k+t, t= 1, . . . ,ω − xi − k, remain with partici-
pant’s estate. This is important since bequest motives often play an important
role when planning retirement. Another possibility is to contribute bi each year
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to the survivor fund so that participant i is certain to get the targeted amount of
benefit, supplemented with mortality credits. In the absence of bequest motive,
participant i could invest his or her total savings in the survivor fund to get
maximum extra return from mortality credits.

Further analysis is required to compare the respective costs of these strate-
gies to create lifelong income compared to conventional life annuities. The
latter only grant mortality credits to survivors, thus increasing the income
in retirement compared to survivor funds. But conventional annuities require
expensive capital charges because of the guarantees they comprise. Survivor
funds do not require any such charges but the benefits are not guaranteed.
It has been shown that volatility can be lowered by enlarging the number of
participants, but there always remains a risk that mortality credits are lower
than expected. In that respect, minimum guarantees can be attractive to par-
ticipants who could be protected against extreme situations where the number
of survivors is much larger than expected.

Especially for small communities, the assumption of independence of
remaining lifetimes may be violated. It is possible to take into account
dependencies between the Bernoulli variables Ii. However, the calculations of
conditional expectations quickly become very complicated. The easiest way
to account for dependence for small groups may be a conditional indepen-
dence model, where the Bernoulli variables are independent given a common
factor.
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NOTE

1 For a (random) sequence Zn, we write that Zn =OP(n−k), if, for k ∈R
+ and any ε > 0, there

exists finite C > 0 and finite N > 0 such that P[|Zn| >C · n−k]< ε for all n>N.
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