
P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

A Meeting of the Nutrition Society, hosted by the Scottish Section, was held at the Royal Society of Edinburgh, Edinburgh

on 7 and 8 April 2009

Symposium on ‘Frontiers in adipose tissue biology’

Chemotactic cytokines, obesity and type 2 diabetes: in vivo and in vitro
evidence for a possible causal correlation?

Henrike Sell and Jürgen Eckel*
Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany

A strong causal link between increased adipose tissue mass and insulin resistance in tissues
such as liver and skeletal muscle exists in obesity-related disorders such as type 2 diabetes.
Increased adipose tissue mass in obese patients and patients with diabetes is associated with
altered secretion of adipokines, which also includes chemotactic proteins. Adipose tissue
releases a wide range of chemotactic proteins including many chemokines and chemerin, which
are interesting targets for adipose tissue biology and for biomedical research in obesity and
obesity-related diseases. This class of adipokines may be directly linked to a chronic state of
low-grade inflammation and macrophage infiltration in adipose tissue, a concept intensively
studied in adipose tissue biology in recent years. The inflammatory state of adipose tissue in
obese patients may be the most important factor linking increased adipose tissue mass to
insulin resistance. Furthermore, chemoattractant adipokines may play an important role in this
situation, as many of these proteins possess biological activity beyond the recruitment of
immune cells including effects on adipogenesis and glucose homeostasis in insulin-sensitive
tissues. The present review provides a summary of experimental evidence of the role of adipose
tissue-derived chemotactic cytokines and their function in insulin resistance in vivo and
in vitro.

Chemokine: Chemerin: Insulin resistance: Adipose tissue: Obesity

Obesity with increased adipose tissue mass is associated
with insulin resistance, hyperglycaemia, dyslipidaemia,
hypertension and other components of the metabolic syn-
drome(1,2). Type 2 diabetes has markedly increased in
prevalence; 50% of men and 70% of women with diabetes
are obese and obesity predisposes strongly to diabetes(3).
Furthermore, type 2 diabetes is becoming a serious health
issue in overweight or obese children and adolescents(4).
Indeed, there is clearly a strong causal link between
increased adipose tissue mass and insulin resistance in
tissues such as liver and skeletal muscle in patients with
diabetes(5,6).

Adipocytes, the predominant cell type in adipose tissue,
are insulin-sensitive cells that store TAG, but in addition
to their storage function they are also active endocrine
cells that produce and release various proteins termed

adipokines. Increased adipose tissue mass in obese patients
and patients with diabetes has been found to be associated
with altered secretion of adipokines, the most important of
which are TNFa, IL-6 and adiponectin(7). Adipose tissue
also releases a wide range of chemotactic proteins includ-
ing many chemokines, which are becoming increasingly
interesting in relation to adipose tissue biology as well as
biomedical research in obesity and obesity-related dis-
eases. This class of adipokines may be directly linked to a
chronic state of low-grade inflammation and macrophage
infiltration in adipose tissue, a concept that has been
intensively studied in adipose tissue biology in recent
years. The inflammatory state of adipose tissue in obese
patients may be the most important factor linking increased
adipose tissue mass to insulin resistance, and chemo-
attractant adipokines might play an important role in this
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scenario. The present review provides a summary of
experimental evidence of the role of adipose tissue-derived
chemoattractant proteins and their function in insulin resis-
tance in vivo and in vitro. The aim is to provide an overview
of known relationships between the chemokines and chemo-
tactic cytokines being released from adipose tissue and
obesity and type 2 diabetes. Mechanisms of obesity-related
disorders that underlie adipose tissue inflammation and that
may be related to chemotactic cytokines are also discussed.

Chemotactic proteins in obesity and type 2 diabetes

Chemotactic proteins, particularly those of the chemokine
family, have been shown to be related in vivo to the
metabolic syndrome, obesity and type 2 diabetes (Table 1)
and to be adipokines secreted from adipocytes or other cell
types residing in adipose tissue. Chemokines are small
proteins that attract various immune cells such as mono-
cytes, neutrophils, T lymphocytes, basophils or eosinophils
(each chemokine activating one or more target cell
types)(8). Chemokines are characterized by the presence of
four highly-conserved cysteine residues. CXC chemokines
have two amino-terminal cysteine residues separated by
only one amino acid. In CC chemokines, the other main
subfamily of chemokines, the amino-terminal cysteine
residues are adjacent(8). In addition, other chemoattractant
proteins such as chemerin, which has been shown to attract
macrophages and dendritic cells but is not structurally
related to any chemokine family, comprise the adipokines
and factors shown to be involved in obesity and obesity-
related pathologies(9).

Monocyte chemoattractant protein (MCP)-1 is a chemo-
kine and a member of the small inducible cytokine family
that plays a role in the recruitment of monocytes and T
lymphocytes to sites of injury and infection(10). Its main
receptor is the chemokine CC motif receptor (CCR) 2.
Plasma MCP-1 levels are markedly higher in obese
patients(11,12) and patients with diabetes(13), and in relation
to these pathologies MCP-1 is one of the most studied
chemokines. In obese patients different depots of adipose

tissue such as visceral, subcutaneous and epicardial adi-
pose tissue show increased expression of MCP-1(14,15).
Clinical data provide good evidence for a relationship
between serum MCP-1 levels and insulin resistance, as
well as type 2 diabetes. Several studies have demonstrated
that patients with type 2 diabetes display elevated MCP-1
levels(13,16,17). High MCP-1 levels have been shown to
contribute to diabetes risk independently of previously-
described clinical, metabolic and immunological risk
factors(13). Conversely, diabetes treatments such as exer-
cise(18), pioglitazone(19) and weight loss(20), all of which
improve insulin sensitivity in obese patients, reduce MCP-1
plasma concentrations. Expression of MCP-1 has been
found to be higher in visceral adipose tissue than in sub-
cutaneous tissue and is closely related to the number of
resident macrophages(21). Conversely, obese patients that
lose weight after bariatric surgery show decreased levels of
MCP-1(20), probably in parallel with lower macrophage
infiltration in adipose tissue(22).

Fewer data are available for other MCP such as MCP-2,
-3 and -4 but it is clear that these adipokines are elevated
in obese patients(15,23–25). Measurement of these factors in
adipose tissue has shown a marked increase in expression
together with an increased expression of the corresponding
receptors in obese patients(15).

Other CC chemokines such as RANTES (or chemokine
CC motif ligand 5) and eotaxin (or chemokine CC motif
ligand 11) are also elevated in the serum of obese patients
as compared with lean controls(23,26,27). Eotaxin is over-
expressed in visceral adipose tissue of obese patients as
compared with lean controls and subcutaneous fat. While
RANTES has also been found to be associated with type 2
diabetes in a large German study cohort, eotaxin is not
associated with insulin resistance(26).

IL-8 and 10 kDa interferon g-induced protein (or chemo-
kine CXC motif ligand (CXCL) 10) are CXC chemokines.
IL-8 is secreted from adipose tissue and its plasma levels
are increased in obesity(28–30). However, a correlation
between higher levels of IL-8 in obesity and increased
insulin resistance has not yet been fully established, as the
association between IL-8 and diabetes(13) is attenuated by

Table 1. Clinical data showing the association between chemotactic cytokines and obesity and type 2 diabetes

Chemotactic cytokine Clinical data related to obesity and type 2 diabetes References

MCP-1 (CCL2) Increased in obesity and diabetes Christiansen et al.(11), Kim et al.(12), Herder et al.(13),

Malavazos et al.(14), Huber et al.(15), Piemonti et al.(16),

Simeoni et al.(17)

RANTES (CCL5) Associated with diabetes Herder et al.(26)

MCP-3 (CCL7) Elevated in obesity Jiao et al.(25)

MCP-2 (CCL8) Elevated in obesity Huber et al.(15), Murdolo et al.(24)

Eotaxin (CCL11) Increased in obesity but not associated with

insulin resistance

Hashimoto et al.(23), Vasudevan et al.(27)

MCP-4 (CCL13) Elevated in obesity Hashimoto et al.(23)

CXCL5 Linking obesity and insulin resistance Chavey et al.(32)

IL-8 (CXCL8) Increased in obesity and diabetes Kim et al.(12), Herder et al.(13)

IP-10 (CXCL10) Increased in obesity but not associated with

insulin resistance

Herder et al.(26,31)

Chemerin Increased in obesity but not related to

type 2 diabetes

Bozaoglu et al.(9)

MCP, monocyte chemoattractant protein; CCL, chemokine CC motif ligand; CXCL, chemokine CXC motif ligand; IP-10, 10 kDa interferon g-induced protein.
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multivariable adjustment for BMI and other metabolic and
immunological risk factors. Another study has demon-
strated that IL-8 expression is markedly increased in
human fat cells from individuals who are insulin-
resistant(30). Serum levels of 10 kDa interferon g-induced
protein are increased in obese patients but are not asso-
ciated with insulin resistance(26,31). CXCL5 has very
recently been revealed to be a new adipokine that is pre-
sent in markedly increased levels in obese subjects as
compared with lean controls(32). The same study has also
shown that the serum concentration of this chemokine
decreases in obese subjects after weight reduction.

Recently, the rapidly-growing adipokine family has
expanded to include chemerin, a secretory chemoattractant
protein. Initially discovered in body fluids associated
with inflammatory processes(33), chemerin and its receptor
chemokine-like receptor 1 (CMKLR1) (or ChemR23) are
also highly expressed in adipose tissue(9,34). In vivo data
have shown that chemerin is elevated in adipose tissue of
diabetic Psammomys obesus (sand rat; an animal model of
obesity and type 2 diabetes) compared with controls(9).
However, there is no difference in chemerin levels between
patients with diabetes and control patients despite a corre-
lation between chemerin levels and BMI, blood TAG and
blood pressure(9).

Chemotactic adipokines: data from animal models
and cell culture

Many chemokines have been shown to possess biological
activity beyond the recruitment of immune cells, which
also applies to adipose tissue-derived chemokines such as
MCP-1, for which insulin resistance-inducing capacity is
postulated(35,36) (Table 2). MCP-1 is secreted from adipo-
cytes in rodents(35,37) and human subjects(11,38). Large
adipocytes release higher levels of MCP-1 together with
other pro-inflammatory cytokines(39). It appears, however,
that adipocytes only partly contribute to the MCP-1 output
from adipose tissue(40). In vitro, MCP-1 expression and
secretion is highly regulated in adipocytes, i.e. increased

by insulin, TNFa, growth hormone and IL-6(41), all of
which are increased in obese patients. Conversely, treat-
ment of 3T3-L1 adipocytes with MCP-1 impairs glucose
uptake, indicating that this cytokine may contribute to
the pathogenesis of insulin resistance(35). MCP-1 does not,
however, cause insulin resistance by acting only in an
autocrine or paracrine manner. In primary human skeletal
muscle cells it has been shown that even hypophysiological
levels of MCP-1 induce robust insulin resistance(36).

The use of mouse models has revealed that specific
overexpression of MCP-1 in adipose tissue alone can
mimic the effects of diet-induced obesity such as insulin
resistance, macrophage infiltration into adipose tissue and
liver steatosis, which occurs in the absence of any increase
in body weight(42). The same study has also shown that in
contrast to MCP-1 overexpression, MCP-1 deficiency in
diet-induced obese mice or inhibition of MCP-1 expression
in db/db mice ameliorates insulin resistance and reduces
the number of macrophages in adipose tissue(42). On the
other hand, conflicting data from another group suggest
that MCP-1 deficiency does not reduce obesity-induced
inflammation in adipose tissue(43). Another study using
mice with adipose tissue overexpression of MCP-1 has
demonstrated that MCP-1 can reduce insulin sensitivity in
an endocrine manner in skeletal muscle(44).

Thus, the role of MCP-1 in adipose tissue inflammation
is not fully understood, which is also the case for its
receptor CCR2. One study with CCR2-knock-out mice has
demonstrated that disruption of MCP-1 signalling does not
prevent obesity induced by a high-fat diet(45). Another
study, however, has found that when CCR2 is lacking
the efficiency of diet-induced obesity is decreased con-
comitantly with reduced macrophage number and an ame-
liorated inflammatory profile together with reduced insulin
resistance(46). Furthermore, pharmacological inhibition of
CCR2 has been shown to improve glucose homeostasis and
inflammatory markers both dependently and independently
of adipose tissue(47,48).

The release of the chemokines MCP-1, macrophage
inflammatory protein 1a and b, growth-regulated oncogene
a and IL-8 is inhibited by adiponectin(38). Adiponectin is a

Table 2. In vitro evidence that chemotactic cytokines are adipokines with a possible role in insulin resistance

Chemotactic cytokine Adipokine In vitro evidence for a relationship with insulin resistance References

MCP-1 (CCL2) Yes Linked to insulin resistance in mouse models,

adipocytes and skeletal muscle cells

Sell et al.(36), Gerhardt et al.(37),

Kanda et al.(42), Kamei et al.(44)

MIP-1a (CCL3) Yes Regulated by adiponectin Gerhardt et al.(37),

Dietze-Schroeder et al.(38)

MIP-1b (CCL4) Yes Regulated by adiponectin and inducer of

insulin resistance in skeletal muscle cells

Sell et al.(36),

Dietze-Schroeder et al.(38)

RANTES (CCL5) Yes Increased in visceral adipocytes Skurk et al.(73), Madani et al.(75)

Eotaxin (CCL11) Yes (SV fraction) Increased release in obesity Vasudevan et al.(27)

GRO-a (CXCL1) Yes Regulated by adiponectin Dietze-Schroeder et al.(38)

CXCL5 Yes (SV fraction) Induces insulin resistance in skeletal muscle Chavey et al.(32)

IL-8 (CXCL8) Yes Regulated by adiponectin and induces insulin

resistance in skeletal muscle cells

Sell et al.(36),

Dietze-Schroeder et al.(38)

IP-10 (CXCL10) Yes Regulated by interferon-g Herder et al.(76)

Chemerin Yes Induces insulin resistance in adipocytes Kralisch et al.(55)

MCP, monocyte chemoattractant protein; CCL, chemokine CC motif ligand; MIP-1, macrophage inflammatory protein 1; GRO-a, growth-regulated oncogene a; SV,
stroma vascular; CXCL, chemokine CXC motif ligand; IP-10, 10 kDa interferon g-induced protein.
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prominent adipokine that is decreased in obesity and that
positively influences insulin sensitivity(49). Accordingly,
low plasma adiponectin levels observed in obesity are good
indicators of insulin resistance and the development of
diabetes(50). It has been demonstrated that adiponectin acts
as an autocrine regulator of adipocyte secretion and by
decreasing the release of adipokines simultaneously pre-
vents insulin resistance in myocytes undergoing co-culture
with adipocytes(38). In addition, several chemokines, in-
cluding IL-8, macrophage inflammatory protein 1b and
MCP-1, induce insulin resistance in skeletal muscle
cells(36) and thereby may represent a link between obesity
and type 2 diabetes. In the case of eotaxin there are no data
to suggest that it is regulated by adiponectin, but one
clinical study has demonstrated a link between high
eotaxin levels and hypoadiponectinaemia(51). Eotaxin is
also released from adipose tissue but stroma vascular cells
appear to be the major source of this chemokine(27).

CXCL5, a very recent addition to the adipokines(32), is
mainly secreted by the macrophage fraction of adipose
tissue. Like MCP-1 this chemokine induces insulin resis-
tance in muscle, pointing to a link between adipose tissue
inflammation and insulin resistance in peripheral tissues. In
addition, blocking CXCL5 signalling in insulin-resistant
mice using either an anti-CXCL5 antibody or an antagonist
for the corresponding receptor, chemokine CXC motif
receptor 2, improves insulin sensitivity without changing
body weight or food intake. Also, chemokine CXC motif
receptor 2-knock-out mice display enhanced insulin res-
ponsiveness when compared with wild-type mice. It should
be mentioned that CXCL5 has only been studied by one
group so far, so these results need verification by other
studies. Furthermore, in light of the varying phenotypes of
CCR2-knock-out mice it is difficult to discuss the role of
CXCL5 and its receptor chemokine CXC motif receptor 2
definitively at this point.

Chemerin and CMKLR1 are necessary for adipogenesis,
as viral knockdown of expression of both proteins com-
pletely inhibits this process(34). Chemerin mRNA expres-
sion increases with adipogenesis(9,34,52). In human
adipocytes a comparison of chemerin and CMKLR1
mRNA expression before and after differentiation shows
a more pronounced increase in CMKLR1 than in che-
merin(34). Human adipocytes also release measurable
amounts of chemerin, the secretion of which is up regu-
lated by TNFa (H Sell and J Eckel, unpublished results).
In adipose tissue chemerin can also be found in the stroma
vascular fraction, suggesting a contribution of various
adipose tissue cell types to chemerin production. It has
been demonstrated that macrophages express CMKLR1
and are chemerin responsive(53). A comparison of different
animal models of obesity and diabetes reveals that che-
merin expression is not increased in adipose tissue of
genetically-obese mice(34), is lower in db/db mice(54) but is
higher in obese insulin-resistant P. obesus(9). A single
study in human subjects has reported a correlation between
blood chemerin levels and BMI that is independent of
glucose tolerance(9). However, it is difficult to speculate on
the overall contribution of adipocyte-derived chemerin
to serum levels of this chemokine. Concentrations and
the origin of chemerin in the liver, lung and other

chemerin-producing organs have to be taken into account.
Surprisingly, chemerin itself increases glucose uptake in
3T3-adipocytes(54), although another study has reported the
opposite effect on adipocytes(55) and it has been demon-
strated that chemerin induces insulin resistance in skeletal
muscle cells (H Sell and J Eckel, unpublished results).
Chemerin expression in adipocytes is up regulated by
IL-1b(55). Thus, chemerin may exert different effects by
its endocrine and paracrine or autocrine actions.

The current knowledge of chemerin is complicated
because the actions of this protein involve targets other
than chemerin and its receptor CMKLR1. New receptors
have been identified as well as peptides derived from
chemerin that have been shown to have completely dif-
ferent modes of action. Chemerin is synthesized as pro-
chemerin, which has a low affinity to CMKLR1(33).
Prochemerin is converted rapidly to a CMKLR1 agonist by
proteolytic cleavage of a carboxy-terminal peptide invol-
ving serine proteases of the coagulation and inflammation
cascades(33). Carboxy-terminal peptides derived from che-
merin by cysteine protease cleavage bind to CMKLR1 with
much higher affinity than chemerin itself and exert potent
anti-inflammatory effects on activated macrophages(56,57).
This divergent effect of chemerin and chemerin-derived
peptides can be explained by binding to receptors other
than CMKLR1, which have been identified recently. Che-
merin binds to two G-protein-coupled receptors, GPR1 and
CCR-like 2(57,58). More specifically, chemerin binds with
its carboxy-terminal domain to CMKLR1, directly acti-
vating cells; however, chemerin can also bind to CCR-like
2 with its amino-terminal domain and present the carboxy-
terminal domain to CMKLR1 on neighbouring cells. In
contrast, chemerin-derived peptides only binding to
CMKLR1 inhibit an inflammatory response, a process that
is comparable with that for other chemokines such as
MCP-1 or RANTES(59,60). The role of the novel chemerin
receptors and chemerin-derived peptides in the context of
obesity and type 2 diabetes is not known.

Mechanisms of adipose tissue inflammation with a
potential role for chemoattractants

Obesity is associated with a state of chronic inflammation
in adipose tissue. In addition to increased release of pro-
inflammatory markers, macrophage infiltration has recently
been shown to be characteristic of expanding adipose tis-
sue(61). However, obesity is not associated with increased
macrophage numbers in muscle or liver. It has been pro-
posed that the main source of pro-inflammatory adipokines
is in fact macrophages, although other cells in adipose
tissue such as adipocytes, preadipocytes and vascular cells
contribute to adipose tissue secretion(62). Clinical studies
have provided evidence for a good correlation between
BMI and macrophage infiltration into adipose tissue, par-
ticularly in relation to the visceral fat depot(63). Paracrine
and endocrine signals as well as adipocyte hypertrophy and
hyperplasia might contribute to macrophage infiltration
into adipose tissue. In adipose tissue of obese patients
crown-like structures of macrophages surrounding apoptotic
adipocytes have been found(64). The expression of several
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chemotactic cytokines is increased in the obese state
concomitantly with increased expression of chemokine
receptors such as CCR2 in newly-recruited macrophages,
making it possible that ligands for this receptor contribute
to macrophage attraction and activation(65). Characterization
of adipose tissue-resident macrophages has shown that the
latter express surface markers for alternatively activated
macrophages (M2) that are able to secrete anti-inflammatory
cytokines in addition to pro-inflammatory cytokines, a pro-
cess that may be necessary for the uptake of large, apoptotic
or necrotic adipocytes(65). Weight reduction in human
subjects is accompanied by the occurrence of more M2-like
macrophages in adipose tissue(66) while diet-induced
obesity is characterized by switching the macrophage
phenotype towards classical inflammatory M1 status(67).
However, it must be emphasized that the mechanisms of
macrophage recruitment to adipose tissue in obesity are not
yet understood.

The study of hypoxia in adipose tissue in the context of
obesity is timely, as some very enlightening studies have
put this theory in a physiological context in recent
years(68). Hypoxia has been observed in both physiological
and pathological situations. In relation to adipose tissue, it
has been demonstrated in mice that oxygenation is com-
parable with general tissue oxygenation in lean animals,
while their obese littermates are characterized by an
approximately 60% lower O2 pressure in fat(69). In adipose
tissue of mice hypoxia underlies the increased production
of adipokines and the development of obesity and the
metabolic syndrome(70). Furthermore, it has been demon-
strated in human subjects that hypoxia occurs in the obese
state(22). Mechanistically, hypoxia leads to activation of the
transcription factor hypoxia inducible factor 1a, which has
a key role in the adaptive response to decreased O2 avail-
ability in tissues. Hypoxia inducible factor 1a increases the
transcription of various genes that affect, for example, cell
proliferation, angiogenesis, glucose metabolism and the
extracellular matrix(71). Hypoxia studies in isolated adi-
pocytes have shown that hypoxia causes various changes in
protein expression and secretory behaviour in this cell
type. Hypoxia in isolated adipocytes leads to the same
dysregulation of secretory function as that observed in
expanded adipose tissue, including increased release of
IL-6, leptin and vascular endothelial growth factor(72).
In contrast, the release of adiponectin is decreased in
hypoxia, possibly through activation of endoplasmic reticu-
lum stress(70). The release of RANTES is increased by
hypoxia(73), while MCP-1 secretion is slightly decreased
(72). The regulation of other chemotactic proteins by
hypoxia is not yet known.

Another mechanism of adipose tissue inflammation
associated with hypoxia currently under investigation is
endoplasmic reticulum stress. There are several expla-
nations of why endoplasmic reticulum stress occurs parti-
cularly in fat in obesity, including increased protein
synthesis as a result of increased energy availability or
even glucose deprivation as a result of insulin resistance in
adipose tissue(74). Hypoxia has also been proposed to be a
cause of endoplasmic reticulum stress(70). Furthermore,
hypoxia and endoplasmic reticulum stress might be closely
related, as signalling pathways for both forms of stress

merge in common pathways such as activation of mam-
malian target of rapamycin or c-Jun N-terminal kinase(70).

Conclusion

Research on adipose tissue secretory function has opened
up a new vision on the pathophysiological relationships
between increased adipose tissue mass in obesity, inflam-
mation, insulin resistance and type 2 diabetes. The obser-
vation that macrophages infiltrate expanded adipose tissue
in obesity has led to new perspectives in both clinical
and basic science for a better understanding of the patho-
physiology of obesity and for the development of new
therapeutic strategies. Adipose tissue secretes many chemo-
tactic proteins, chemokines and other proteins such as
chemerin that correlate with obesity and also with type 2
diabetes in vivo. These adipokines participate in a low-
grade chronic inflammatory state that could play a key role
in insulin resistance. Analysis of adipokine and chemokine
release could eventually provide new potential therapeutic
targets and also serve to define new biomarkers that
may be helpful in optimizing the prevention of insulin
resistance and type 2 diabetes in the future. Finally,
understanding adipose tissue inflammation and hypoxic
events occurring in adipose tissue might lead to a better
understanding of the pathophysiology of obesity and
facilitate targeting involved pathways for the treatment of
obesity-related diseases.
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