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The force balance of rotating Rayleigh–Bénard convection regimes is investigated using
direct numerical simulation on a laterally periodic domain, vertically bounded by no-slip
walls. We provide a comprehensive view of the interplay between governing forces both
in the bulk and near the walls. We observe, as in other prior studies, regimes of cells,
convective Taylor columns, plumes, large-scale vortices (LSVs) and rotation-affected
convection. Regimes of rapidly rotating convection are dominated by geostrophy, the
balance between Coriolis and pressure-gradient forces. The higher-order interplay between
inertial, viscous and buoyancy forces defines a subdominant balance that distinguishes
the geostrophic states. It consists of viscous and buoyancy forces for cells and columns,
inertial, viscous and buoyancy forces for plumes, and inertial forces for LSVs. In
rotation-affected convection, inertial and pressure-gradient forces constitute the dominant
balance; Coriolis, viscous and buoyancy forces form the subdominant balance. Near the
walls, in geostrophic regimes, force magnitudes are larger than in the bulk; buoyancy
contributes little to the subdominant balance of cells, columns and plumes. Increased
force magnitudes denote increased ageostrophy near the walls. Nonetheless, the flow is
geostrophic as the bulk. Inertia becomes increasingly more important compared with the
bulk, and enters the subdominant balance of columns. As the bulk, the near-wall flow
loses rotational constraint in rotation-affected convection. Consequently, kinetic boundary
layers deviate from the expected behaviour from linear Ekman boundary layer theory. Our
findings elucidate the dynamical balances of rotating thermal convection under realistic
top/bottom boundary conditions, relevant to laboratory settings and large-scale natural
flows.
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1. Introduction

Buoyancy and rotational forces drive and shape many large-scale flows in nature, such as
swirling convection currents of conductive material in the Earth’s outer core that generate
the Earth’s magnetic field (Cardin & Olson 1994; Glatzmaier et al. 1999; Jones 2000;
Sarson 2000; Aubert, Gastine & Fournier 2017; Schaeffer et al. 2017; Guervilly, Cardin &
Schaeffer 2019), deep convection in the world’s oceans (Marshall & Schott 1999; Gascard
et al. 2002; Wadhams et al. 2002; Budéus et al. 2004) and trade winds near the Earth’s
surface in the atmosphere (Hadley 1735). The influence of these forces is also observed
beyond our own planet: as deep convection in the interior of gaseous planets (Busse &
Carrigan 1976; Busse 1994; Yadav & Bloxham 2020) and zonal flows in their atmosphere
(Ingersoll 1990; Sanchez-Lavega, Rojas & Sada 2000; Porco et al. 2003; Heimpel &
Aurnou 2007; Heimpel, Gastine & Wicht 2016; Cabanes et al. 2017), as well as in the
convection zone of stars like our Sun (Miesch 2000; Cattaneo, Emonet & Weiss 2003;
Balbus et al. 2009; Hindman, Featherstone & Julien 2020).

Understanding the dynamics of these geophysical and astrophysical flows is paramount,
however, their sheer size, remoteness and complexity preclude their direct investigation.
A relatively simple, but highly relevant framework to investigate these flows is provided
by the problem of rotating Rayleigh–Bénard convection (RRBC), where a rotating
fluid layer is heated from below and cooled from above. In this system, the Rayleigh
number Ra parameterises the strength of the thermal forcing, the Ekman number Ek (and,
alternatively, the convective Rossby number RoC) measures the strength of rotation, and
the Prandtl number Pr involves the diffusive properties of the fluid. Large-scale flows
are characterised by extreme values of these governing parameters. In the Earth’s outer
core, Ra is estimated to be O(1020 − 1030), Ek ∼ O(10−15) and Pr ∼ O(10−2 − 10−1).
Such conditions are certainly unfeasible for present-day simulations and experiments, yet
studies at moderate parameter values have made great strides towards understanding the
flow phenomenology in RRBC – see Kunnen (2021) for a recent review. In particular,
it has been observed that a plethora of convection states exists in the range between
rapidly rotating and non-rotating convection. Specifically, the parameter space of RRBC is
partitioned into several regimes where the flow manifests as: quasi-steady convection cells
(Chandrasekhar 1961); convective Taylor columns (only at Pr � 2) (Sakai 1997; Sprague
et al. 2006; Grooms et al. 2010; Kunnen, Clercx & Geurts 2010; Julien et al. 2012; King
& Aurnou 2012; Rajaei, Kunnen & Clercx 2017; Noto et al. 2019; Chong et al. 2020;
Shi et al. 2020), plumes (Sprague et al. 2006; Kunnen et al. 2010; Julien et al. 2012;
Rajaei et al. 2017; Maffei et al. 2021); geostrophic turbulence (Sprague et al. 2006; Julien
et al. 2012; Maffei et al. 2021; Rubio et al. 2014; Stellmach et al. 2014); rotation-affected
convection (Ecke & Niemela 2014; Kunnen et al. 2016); and non-rotating convection
(Malkus 1954; Kraichnan 1962; Spiegel 1971; Castaing et al. 1989; Ahlers, Grossmann
& Lohse 2009; Lohse & Xia 2010). The cellular regime is typically found in the range
1 � Ra/Rac � 2 (Rac ∼ Ek−4/3 is the critical Rayleigh number for onset of convection),
and consists of narrow quasi-steady cells with horizontal size �c ∼ Ek1/3 (Chandrasekhar
1961). Columns manifest at larger Ra/Rac, and are surrounded by ‘shields’ of opposite
vertical vorticity and opposite temperature fluctuation. With increasing Ra/Rac, the
shields become weaker and the vortical columns interact with each other. As a result, their
vertical coherence is affected, leading to the development of plumes. At larger Ra/Rac,
the geostrophic turbulence regime manifests. The combination of turbulence and strong
rotational constraint leads to a quasi-two-dimensional dynamics that enables the transfer
of kinetic energy from small to large spatial scales. This upscale energy transfer can
lead to the formation of large-scale vortices (LSVs). In the rotation-affected regime, no
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upscale energy transfer is present (Kunnen et al. 2016) as rotational forces are no longer
dominant, instead the turbulent flow is thought to be dominated by buoyancy. Finally, in
the non-rotating convection regime, Coriolis forces have no dynamical effect.

Numerous investigations into the interplay amongst the forces governing RRBC have
been primarily focussed on the determination of the most relevant forces in geophysical
and astrophysical settings. These studies aim to determine the dominant force balance
in these large-scale flows in order to estimate the characteristic flow velocity and
characteristic length scale of the convective motions therein (Stevenson 1979; Aubert
et al. 2001; Christensen 2002; Aubert 2005; King & Buffett 2013; King, Stellmach &
Buffett 2013; Aurnou et al. 2015; Gastine, Wicht & Aubert 2016; Guervilly et al. 2019;
Aurnou, Horn & Julien 2020). However, the role of subdominant forces has not been
addressed extensively. A complete view of the interplay between all forces is required
to effectively characterise the flow and its transitional behaviours between regimes. In this
study, we focus on fully understanding the force balance, from the leading contributors
to the subdominant forces. Previous efforts have been made in this direction in the
field of rotating magnetoconvection (Soderlund, King & Aurnou 2012; Calkins et al.
2015; Yadav et al. 2016; Aubert et al. 2017; Aubert 2019; Schwaiger, Gastine & Aubert
2021). Self-sustained convective dynamos in planetary systems operate in a rotationally
constrained regime. There, a balance is thought to hold amongst the Coriolis, pressure
gradient, buoyancy and Lorentz forces, also known as magneto–Archimedean–Coriolis
(MAC) balance. Hence, many studies seek to determine the specific parameter values and
length scales at which the contribution of viscous and inertial forces becomes negligible,
and therefore a MAC balance is possible. In our simulations of non-magnetic, rotating
convection in a horizontal plane fluid layer, we access both low-supercriticality flow
regimes, where viscous effects are expected to be significant, and highly supercritical
regimes, where we foresee an increased importance of inertial forces. Similar low- and
high-supercriticality RRBC flows have been studied by means of asymptotically reduced
equations (Sprague et al. 2006; Julien et al. 2012; Plumley et al. 2016; Maffei et al. 2021),
valid at Ek, RoC → 0. In these studies the geostrophic regimes (cells, columns, plumes and
geostrophic turbulence with LSVs) are charted. Here, we assess the force balance of the
full Navier–Stokes equations in these regimes and at larger Ra/Rac in the rotation-affected
regime. We identify flow transitions as distinct changes in the dominant or subdominant
force balance, leading to a natural identification of each regime. We mainly consider the
case of no-slip walls. This type of boundary condition is especially relevant to realistic
settings such as laboratory experiments and large-scale flows in nature.

The remainder of this paper is structured as follows. Section 2 introduces the equations
of motion of RRBC, as well as the equations used to calculate the force magnitudes.
In § 3, we describe the numerical method and tabulate the parameter values for the
simulations. In § 4.1 we present the flow structures observed for the explored parameter
values. The midheight magnitude of the forces is discussed in § 4.2 as a function of the
flow supercriticality. There, we also identify the characteristic force balance of the distinct
flow regimes. The interplay amongst the forces in the region close to the no-slip walls is
investigated in § 4.3. Finally, in § 5 we present our conclusions.

2. Governing equations and dimensionless parameters

We consider the buoyancy-driven flow between two parallel horizontal walls, with relative
temperature difference �T = Tbottom − Ttop > 0, separated by a vertical distance H. The
rotation vector Ω ẑ is parallel to the vertical unit vector ẑ, whereas the gravitational
acceleration is ggg = −gẑ. The flow is incompressible, and the kinematic viscosity, thermal
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diffusivity and thermal expansion coefficient of the fluid are ν, κ and α, respectively. We
model rotating thermal convection by using the non-dimensional Navier–Stokes and heat
equations in the Boussinesq approximation (Chandrasekhar 1961),

∂uuu
∂t

= −(uuu ··· ∇∇∇)uuu − 1
RoC

ẑ × uuu − ∇∇∇p +
√

Pr
Ra

∇2uuu + θ ẑ, (2.1)

∂θ

∂t
+ (uuu ··· ∇∇∇)θ = 1√

RaPr
∇2θ, (2.2)

with the incompressibility constraint

∇∇∇ · uuu = 0. (2.3)

We use H, �T and the characteristic ‘free-fall’ velocity scale Uff = √
gα�TH to obtain

the non-dimensional velocity uuu, temperature θ , pressure p and time t. Equations (2.1) and
(2.2) involve three non-dimensional parameters,

Ra = gα�TH3

νκ
, Pr = ν

κ
, RoC =

√
gα�T/H

2Ω
, (2.4a–c)

where Ra is the Rayleigh number, Pr is the Prandtl number and the convective Rossby
number RoC parameterises the (inverse) strength of rotation. Alternatively, the strength
of rotation can be quantified by means of the Ekman number Ek = ν/(2ΩH2), which
provides the ratio of viscous to Coriolis forces. A convenient relation between the various
dimensionless parameters is RoC = Ek(Ra/Pr)1/2.

The velocity field in (2.1)–(2.3) must fulfil the impenetrable no-slip boundary condition
uuu = 000 at the walls. Cases with stress-free boundary conditions comply with ∂u/∂z =
∂v/∂z = 0 and w = 0 at the walls. The temperature field must meet the conducting
boundary condition θ = 1 at the bottom and θ = 0 at the top.

Rotation, contrary to convection, has a stabilising effect on the flow. Therefore, at
low values of the Rayleigh number and sufficiently strong rotation (low Ek and RoC),
no convective motions take place, and the heat transfer from bottom to top boundary is
exclusively due to conduction. In a laterally unbounded fluid layer subject to rapid rotation
(Ek � 10−3), the critical Rayleigh number Rac for the onset of convection is given by

Rac =
{

17.4(Ek/Pr)−4/3 for Pr < 0.68,

8.7Ek−4/3 for Pr ≥ 0.68
(2.5)

(Chandrasekhar 1961; Aurnou et al. 2018). Past this threshold, bulk convection starts in
the form of oscillatory structures for Pr < 0.68, or steady cells for Pr ≥ 0.68. Based on
this critical value we define supercriticality as Ra/Rac, where Rac takes either definition
in (2.5) depending on the Prandtl number of a given study case. Our results are presented
as a function of Ra/Rac throughout this work.

The characteristic horizontal length scale �c (normalised by the domain height H) of the
onset structures is given by

�c =
{

2.4(Ek/Pr)1/3 for Pr < 0.68,

2.4Ek1/3 for Pr ≥ 0.68
(2.6)

(Chandrasekhar 1961; Heard & Veronis 1971; Julien et al. 2016), again, valid for a laterally
unbounded layer of fluid and rapid rotation (Ek � 10−3).
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From (2.1), the governing forces of RRBC (the inertial, Coriolis, pressure gradient,
viscous and buoyancy forces) are, in dimensionless form,

FFFI = −(u · ∇)u, FFFC = − 1
RoC

ẑ × u, FFFP = −∇p,

FFFV =
√

Pr
Ra

∇2u, FFFB = θ ẑ,

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

respectively. Thus, the geostrophic balance can be written as FFFC = −FFFP. To estimate the
magnitude of these forces, we follow a procedure inspired by that used by Aubert et al.
(2017), Yadav et al. (2016), Aubert (2019), Schwaiger, Gastine & Aubert (2019) and Maffei
et al. (2021). We compute the plane-averaged root mean square (r.m.s.) of each force. That
is, for a given force FFF(x) with x-, y- and z-components Fx(x), Fy(x) and Fz(x), its r.m.s.
value is here defined as

F(z) =
√

〈(Fx − 〈Fx〉)2 + (Fy − 〈Fy〉)2 + (Fz − 〈Fz〉)2〉, (2.8)

where 〈·〉 denotes averaging along the horizontal directions; therefore, F is a function of
the vertical coordinate z only. In practice, on our laterally periodic domain, 〈Fx〉 ≈ 〈Fy〉 ≈
〈Fz〉 ≈ 0 for the corresponding components of the inertial, Coriolis and viscous forces.
For the pressure-gradient force and the buoyancy force, the deviations from the mean
force components, e.g. Fx − 〈Fx〉, are considered in order to disregard the underlying mean
vertical profiles of pressure and temperature; these profiles describe the mean hydrostatic
balance in the system. Therefore, (2.8) enables the faithful calculation of the magnitude
|FFF(x)| of the governing forces contributing to the dynamics in RRBC. We note that the
plane-averaging procedure considers that the flow is statistically homogeneous in the
horizontal directions. Hence, we are able to evaluate the spatial dependence of the force
balance solely in terms of the vertical coordinate. The force components are calculated at
each grid position on a horizontal cross-section. We consider a one single-time volume
snapshot well within the statistically stationary state; for other snapshots within this state
the results agree within 5 % on average.

3. Numerical set-up

Equations (2.1)–(2.3) are solved using direct numerical simulation on a horizontally
periodic Cartesian domain. The simulations are performed using two codes, both based on
the principal set-up of the Verzicco code (Verzicco & Orlandi 1996; Ostilla-Mónico et al.
2015). The codes differ in their approach to resolve the temperature field: one resolves
both velocity and temperature on a single grid, and the other resolves temperature on a
different grid than that for velocity. This distinction is due to the diffusive properties of
the fluid, parameterised by the Prandtl number. Recall that the smallest active length scales
for velocity and temperature fluctuations, i.e. the Kolmogorov length scale ηK and the
Batchelor length scale ηB, respectively, are related by ηB = ηKPr−1/2. Hence, ηK < ηB for
fluids with low Prandtl number Pr < 1, whereas ηB is smaller for high Pr > 1. The latter
property is exploited by the multiple-grid code in that it uses a finer grid to resolve the
smaller temperature features, and a coarser grid to resolve the three-component velocity
field. We use the single-grid code to simulate low-Pr fluid flows, and the multiple-grid
code for cases at high Pr. A complete list of the cases investigated can be found in table 1.

The single-grid code is a Cartesian adaptation of the original Verzicco cylinder
convection code (Verzicco & Orlandi 1996; Verzicco & Camussi 2003), where the
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Pr Ek Ra RoC Ra/Rac Nu Γ Nx Nz mx mz Flow

0.1 2.00 × 10−7 1.00 × 1010 0.063 14.48 7.21 0.302 1024 1408 — — LSV
0.1 2.24 × 10−7 1.00 × 1010 0.071 16.84 9.24 0.314 1024 1408 — — LSV
0.1 2.50 × 10−7 1.00 × 1010 0.079 19.50 11.14 0.326 768 1280 — — LSV∗
0.1 3.00 × 10−7 1.00 × 1010 0.095 24.87 15.08 0.346 768 1280 — — LSV
0.1 4.00 × 10−7 1.00 × 1010 0.126 36.49 24.27 0.381 640 1280 — — LSV
0.1 8.00 × 10−7 1.00 × 1010 0.253 91.95 53.62 0.480 640 1280 — — RA
0.1 1.05 × 10−6 1.00 × 1010 0.332 132.14 66.15 0.526 768 1280 — — RA
0.1 2.80 × 10−6 1.00 × 1010 0.885 488.65 90.94 0.729 1088 1280 — — RA
0.1 6.00 × 10−6 1.00 × 1010 1.897 1349.95 98.70 0.940 1408 1280 — — RA
5.5 3.00 × 10−7 5.50 × 109 0.009 1.27 2.46 0.323 256 640 2 1 C
5.5 3.00 × 10−7 8.00 × 1010 0.011 1.85 8.54 0.323 256 640 2 1 C
5.5 3.00 × 10−7 1.00 × 1010 0.013 2.31 18.59 0.323 384 640 2 1 T
5.5 3.00 × 10−7 1.50 × 1010 0.016 3.46 51.15 0.323 384 640 2 1 T
5.5 3.00 × 10−7 2.00 × 1010 0.018 4.62 64.78 0.323 384 640 2 1 T
5.2 1.00 × 10−7 1.40 × 1011 0.016 7.47 101.82 0.224 384 640 2 2 P∗
5.2 1.00 × 10−7 2.10 × 1011 0.020 11.20 120.92 0.224 384 640 2 2 P
5.2 1.00 × 10−7 3.20 × 1011 0.025 17.07 137.84 0.224 512 640 2 2 P∗
5.2 1.00 × 10−7 6.00 × 1011 0.034 32.01 187.27 0.224 512 640 2 2 P†

5.2 1.00 × 10−7 9.50 × 1011 0.043 50.68 247.73 0.224 640 896 2 2 LSV
5.2 1.00 × 10−7 1.50 × 1012 0.054 80.03 332.87 0.224 768 1024 2 2 LSV
100 3.00 × 10−7 1.30 × 1011 0.011 30.01 339.56 0.323 384 512 3 3 P
100 3.00 × 10−7 2.10 × 1011 0.014 48.48 401.93 0.323 384 512 3 3 P
100 3.00 × 10−7 3.40 × 1011 0.017 78.49 443.34 0.323 512 512 3 3 P
100 3.00 × 10−7 6.00 × 1011 0.023 138.50 505.35 0.323 512 768 3 3 P
100 3.00 × 10−7 9.50 × 1011 0.029 219.30 526.47 0.323 512 768 3 3 P
100 3.00 × 10−7 1.50 × 1012 0.037 346.26 622.14 0.323 512 768 3 3 P
100 3.00 × 10−7 2.50 × 1012 0.047 577.10 706.41 0.323 384 768 4 4 P

Table 1. Parameters for the simulations: Prandtl number Pr; Ekman number Ek; Rayleigh number Ra;
convective Rossby number RoC; supercriticality Ra/Rac; and domain aspect ratio Γ . The slight difference
in Pr between the Pr ≈ 5 simulation series is for comparison with (ongoing) experiments in our group (Cheng
et al. 2018, 2020). The Nusselt number Nu is the mean of five ways of measuring the convective heat transfer
(discussed in the text). These measurements converge within 5 % of the mean value Nu. The number of grid
points to resolve the velocity field are Nx and Nz (Ny = Nx), and the refinement factors for temperature mx
and mz (my = mx). The last column indicates the observed flow morphology: convective cells (C); convective
Taylor columns (T); plumes (P); LSVs; or rotation-affected convection (RA). All cases are simulated with
no-slip walls. Some cases, denoted with the superscript ‘∗’, are also independently simulated with stress-free
boundaries. In the case denoted with ‘†’ there are signs of upscale energy transfer, but no LSVs develop.

governing equations are discretised by second-order finite-differences with dynamic time
stepping for the time advancement. The multiple-grid code, which also used this numerical
scheme (Ostilla-Mónico et al. 2015), allows refinement of the grid for temperature in the
x-, y- and z-directions independently, through the refinement factors mx, my and mz. In our
domains the lateral sides are of equal length, thus my = mx. The refinement is relative to
the grid for velocity, thus mx, my and mz are selected based on the ratio ηK/ηB = Pr1/2, and
making sure to allocate an appropriate number of grid points within the thermal boundary
layers (discussed below).

For all simulations the domain aspect ratio Γ = W/H allows a sufficiently large
sampling of convective structures, whose characteristic length scale �c is given by (2.6).
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This procedure ensures the convergence of spatially averaged statistics. At low Pr, the
domain size is 10�c × 10�c × 1 (normalised by the domain height H). The multiple-grid
strategy allows us to simulate high-Pr fluid flows much more efficiently compared
with the single-grid code, thus facilitating the exploration of wider domains of size
20�c × 20�c × 1 at high Pr.

Both codes use a grid with uniform horizontal spacing and non-uniform vertical
distribution. In this way, a larger density of grid points can be placed near the walls to
resolve the thin boundary layers. We verify, a posteriori, that a minimum of 11 grid points
is allocated within the thinner (kinetic or thermal) boundary layer, which is enough to
appropriately resolve it.

To validate the bulk resolution, we compare the grid spacing with the Kolmogorov and
Batchelor length scales, ηK and ηB. We find that for low-Pr runs the bulk resolution is
�zu/ηK < 3 and �zθ /ηB < 1, where �zu and �zθ are the vertical grid spacing for the
velocity and temperature field, respectively. For simulations at high Pr, we find �zu/ηK <

3 and �zθ /ηB < 3.7. For all cases the horizontal grid spacing is smaller than the vertical
one.

To further confirm the adequacy of the grid, we compute the time-averaged convective
heat transfer Nu in five different ways: as the plane-averaged wall-normal temperature
gradient at the bottom and at the top wall; as the volume-averaged convective flux; and the
last two are based on exact relations for the dissipation rate of kinetic energy and thermal
variance (Shraiman & Siggia 1990). For all cases the maximum difference between a given
Nu and the mean of all Nu converges to better than a few per cent. This convergence is
achieved over simulation times of the order of 102 convective time units. The mean Nu for
all simulation cases is reported in table 1.

4. Results

4.1. Flow structures
Our RRBC survey spans a wide range of parameter values that jointly resolve over three
decades of supercriticality Ra/Rac. This allows the exploration of distinct flow regimes:
C, T, P, LSVs and RA. In our set of simulations at Pr ≈ 5, we observe the regimes of cells,
convective Taylor columns, plumes and large-scale vortices. We present visualisations of
the temperature fluctuations in these regimes in figures 1(a) to 1(d), respectively. The
large-scale vortices in figure 1(d) are better visualised in terms of the horizontal kinetic
energy of the flow, as we show in figure 2(a). All of our simulation cases at Pr = 100
lie within the plumes regime; we show two example cases in figures 1(e) and 1( f ). For
the exploration of highly supercritical regimes we make use of a lower Prandtl number,
Pr = 0.1. The reason is that sufficiently small values of Pr (i.e. smaller than 0.68, see
(2.5)) act to decrease the critical Rayleigh number for onset of convection Rac. Thus, for a
given value of Ra and Ek, low-Pr fluid flows can achieve a larger degree of supercriticality
than those at high Pr. In other words, inertial effects are amplified in low-Pr fluids (Julien
et al. 2012; Aurnou et al. 2018). At Pr = 0.1 we also observe large-scale vortices and,
at larger Ra/Rac, we identify rotation-affected convection – see figures 1(g) and 1(h),
respectively. Just like at Pr ≈ 5, the LSVs are more clearly visualised in terms of the
horizontal kinetic energy of the flow – we show this in figure 2(b). In the rotation-affected
regime, convection becomes more three-dimensional and, in the particular case displayed
in figure 1(h), the large parcel of hot fluid (red patch at the top) and large parcel of cold
fluid (blue patch) resemble a large overturning cell similar to that observed in non-rotating
convection. However, in this case, the magnitude of the Coriolis force is still appreciable
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Plumes at
Pr = 100 and
Ra/Rac ≈ 78

Cells at
Pr = 5.5 and
Ra/Rac = 1.3

T at
Pr = 5.5 and
Ra/Rac = 3.5

LSVs at
Pr = 5.2 and
Ra/Rac ≈ 80

Plumes at
Pr = 5.2 and
Ra/Rac = 7.5

Plumes at
Pr = 100 and
Ra/Rac ≈ 346

LSVs at
Pr = 0.1 and
Ra/Rac ≈ 20

RA at
Pr = 0.1 and

Ra/Rac ≈ 489

(e) ( f ) (g) (h)

(a) (b) (c) (d )

Figure 1. Temperature fluctuations for selected cases in the observed flow regimes. In the captions, T stands
for convective Taylor columns, LSVs for large-scale vortices, RA for rotation-affected convection, Pr is
Prandtl number and Ra/Rac is flow supercriticality. Owing to the low Ek ∼ 10−7 considered for all cases, the
domain aspect ratio Γ = W/H = O(Ek1/3) (W and H are its width and height) is smaller than unity, i.e. the
computational domains are narrower than they are tall. Thus, for clarity, the domains are stretched horizontally
by a factor 1/Γ . The colour scale is chosen to highlight the flow features. Red denotes above-average
temperature and blue is for below-average temperature.

as we shall discuss in § 4.2. Finally, in order to discuss the observed flow regimes with
increasing supercriticality, we present our results starting from simulations at Pr ≈ 5 and
100, and then at Pr = 0.1.

4.2. Force balance in the bulk
In figure 3(a,c,e) we plot the magnitudes of the governing forces as a function of Ra/Rac.
The plots correspond to our results from simulations at Prandtl numbers Pr ≈ 5, 100 and
0.1, respectively. The forces are calculated at half the domain height; we find that these
results are representative of the bulk dynamics. Figure 3(a) shows the forces at Pr ≈ 5,
where we observe cells, convective Taylor columns, plumes and large-scale vortices. The
figure shows that in these regimes not only are the Coriolis and pressure-gradient forces
larger than the other forces in the flow, but they are also in close balance with each
other. Thus, the flows are indeed in geostrophic balance at leading order. This is also
observed for plumes at Pr = 100, in figure 3(c), and LSVs at Pr = 0.1, in figure 3(e). The
simulation cases with stress-free boundary conditions at Pr ≈ 5 and 0.1 are also directed
by the geostrophic balance, as seen in figures 3(a) and 3(e), respectively. The presence
of a leading-order geostrophic balance in rotationally constrained convection is exploited
in quasi-geostrophic models (Charney 1948; Busse 1970; Charney 1971; Cardin & Olson
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Pr = 5.2,
Ra/Rac ≈ 80

Pr = 0.1,
Ra/Rac ≈ 20

Cyclonic

vortex

(a) (b)

Cyclonic

vortex

4.0

2.9

1.8Anticyclonic

vortex

Figure 2. Horizontal kinetic energy, scaled by volume-averaged total energy, for LSV cases in figures 1(d) and
1(g). As before, the domains are stretched horizontally by a factor 1/Γ for clarity. Both plots have the same
colour scale.

1994; Julien, Knobloch & Werne 1998; Aubert, Gillet & Cardin 2003; Gillet & Jones 2006;
Julien et al. 2006; Sprague et al. 2006; Calkins et al. 2012; Julien et al. 2012; Rubio et al.
2014; Julien et al. 2016) to simplify the governing equations in the limit of rapid rotation.

To further illustrate the dominant role of rotation, we directly compute the local Rossby
number Ro� as the ratio of the local estimates of inertial to Coriolis forces: Ro� = FI/FC.
Notice that this Rossby number is different from the convective Rossby number RoC
in (2.4a–c). In figure 3(b,d, f ) we plot both local and convective Rossby numbers. Let
us first discuss Ro�, shown as black squares in the aforementioned figures. Figure 3(b)
shows that Ro� < 1 for all the geostrophic regimes (i.e. cellular, columnar, plumes and
LSVs regimes), which is a clear sign of rotational constraint. Figures 3(d) and 3( f ) reveal
the same for plumes at Pr = 100 and LSVs at Pr = 0.1, respectively. Nevertheless, in
figure 3( f ) for Pr = 0.1 cases, we see that Ro� becomes larger than 1 for values of
supercriticality larger than 60. This is due to the decrease in strength of the Coriolis
force and the increase in inertial force at Ra/Rac > 60, as evidenced in figure 3(e). This
indicates that the flow transitions to a state where rotation affects the flow, but no longer
dominates it. In this so-called regime of rotation-affected convection, geostrophy does not
constitute the primary force balance in the flow. Instead, pressure gradient and inertial
forces are dominant. The green symbols in figure 3(e) represent the quantity |FFFC + FFFP|,
which is only comparable to FP in this regime because FC is much smaller; we shall
discuss this quantity below. In figure 3(b), the local Rossby number Ro� for cells and
columns is fitted by the predicted scaling Ra2 for rotationally constrained convection in
King et al. (2013) with a r.m.s. error of 3.7 %. This scaling is suggested for RaEk3/2 < 10,
or Ra/Rac � 14 at Ek = 3 × 10−7, as in our simulations (see table 1). Moreover, the
predicted scaling is for a flow in visco–Archimedean–Coriolis (VAC) balance, i.e. the
triple balance between viscous, buoyancy and rotational forces. Below we confirm that
these regimes do exhibit this force balance, and show that it is subdominant in our
simulations (see table 2). Also in figure 3(b), a least-squares fit of the Ro� values for
plumes at Pr ≈ 5 yields a scaling (Ra/Rac)

0.8. This scaling fits the Ro� data of plumes at
Pr = 100, too, with an r.m.s. error of approximately 10 %. Overall, Ro� proves to be a good
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Figure 3. Force balance (a,c,e) and local Rossby number Ro� (b,d, f ), both at midheight, as a function of
supercriticality Ra/Rac for simulations at (a,b) Pr ≈ 5, (c,d) 100 and (e, f ) 0.1. The convective Rossby
number RoC = Ek

√
Ra/Pr is plotted along with Ro� for comparison. Filled and open symbols correspond

to simulations with no-slip and stress-free boundary conditions, respectively. Vertical dotted lines denote our
estimated transition between C and T. Vertical dash–dotted and dashed lines are the predicted transitions
between T and P in Cheng et al. (2015) and Nieves, Rubio & Julien (2014), respectively. Vertical solid lines
are our estimated transitions between plumes and large-scale vortices (LSVs, at Pr ≈ 5), and between LSVs
and RA convection (at Pr = 0.1). Horizontal dashed lines indicate Ro�, RoC = 1, the red dotted line is the
predicted scaling in King et al. (2013), and the (thick) black dotted lines result from the least-squares fit of
cases with plumes at Pr ≈ 5.
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Force balance in rapidly rotating Rayleigh–Bénard convection

Flow Dominant force balance Subdominant force balance

Cells FC ∼ FP Fageos ∼ FV ∼ FB
Columns FC ∼ FP Fageos ∼ FV ∼ FB
Plumes FC ∼ FP Fageos ∼ FI ∼ FV ∼ FB
LSVs FC ∼ FP Fageos ∼ FI
RA convection FI ∼ FP FC ∼ FV ∼ FB

Table 2. Dominant and subdominant force balances at midheight (z = 0.5) for each flow regime. Here,
Fageos = |FFFageos| ≡ |FFFC + FFFP| measures the ageostrophy of the flow, i.e. the deviation from geostrophic
balance caused by the presence of the remaining forces.

indicator of the underlying dynamical balance of the distinct flow regimes. Conversely,
the convective Rossby number RoC fails to provide such diagnosis; though both Rossby
numbers are comparable for our Pr = 100 cases (figure 3d). Interestingly, in figure 3(b),
the crossing of Ro� and RoC (at Ra/Rac ≈ 3) illustrates the effect of turbulence: upon
decreasing Ra/Rac, the flow is no longer turbulent and Ro� steeply decreases as inertial
forces plummet.

The leading-order balance between Coriolis and pressure-gradient forces in the
regimes of cells, columns, plumes and LSVs constrains the flow to two dimensions, in
accordance with the Taylor–Proudman theorem (Proudman 1916; Taylor 1917). However,
the participation of other forces (buoyancy, viscous and inertial) in the force balance (see
figure 3a,c,e) leads to deviations from geostrophy, denoted by the difference between
Coriolis and pressure-gradient forces FFFC + FFFP. As a result, these geostrophic flows are
actually ageostrophic at higher order. Figure 3(a) shows that for cells and columns,
at Ra/Rac < 6, |FFFC + FFFP| mostly originates from buoyancy with some contribution of
the viscous force, whereas the magnitude of the inertial force remains relatively small.
These observations concur with results from asymptotic studies in Julien et al. (2012).
The absence of inertial forces, and thus the presence of a VAC balance in rotationally
constrained convection is leveraged in single-mode theories by Grooms et al. (2010)
and Portegies et al. (2008) to provide an analytical model for the convective Taylor
columns. Nonetheless, inertia does increase rapidly with Ra/Rac. In fact, at Ra/Rac � 6,
inertia becomes part of the subdominant force balance. The participation of inertial
forces in this subdominant balance affects the vertical coherence of the flow, which
results in its transition from vertically aligned columns to plumes with weaker vertical
coherence. For the Pr = 100 cases shown in figure 3(a), the magnitude of the inertial
force is smaller due the larger kinematic viscosity of the fluid (relative to its thermal
diffusivity). However, inertia becomes increasingly important with Ra/Rac, leading to
plumes with an ever greater degree of vertical incoherence, as displayed in figure 1(e, f ).
In the LSV regime at Pr ≈ 5 and Ra/Rac � 37, inertia becomes larger than |FFFC + FFFP|,
although it does remain smaller than FC and FP. This is also observed at Pr = 0.1, see
figure 3(e). Whilst inertial forces are the main source of ageostrophy for plumes and
LSVs, buoyancy also participates in the force balance. This is more clearly evidenced
in figure 4, where the force balance of cases at Pr ≈ 5 is decomposed into its horizontal
and vertical components (similar results are obtained at Pr = 0.1 and 100; a combination
of the horizontal and vertical components according to (2.8) results in the full force
balance displayed in figure 3a). In figure 4(a), as expected, the geostrophic balance
in all cases is seen to dominate the horizontal force balance, whereas the balance
between the inertial force and |FFFC + FFFP| indicates that inertia is the primary cause of
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Figure 4. (a) Horizontal and (b) vertical force balance at midheight as a function of the flow supercriticality
Ra/Rac, for simulations at Pr ≈ 5. Vertical lines are as in figure 3.

ageostrophy in the plumes and LSV regimes. On the other hand, figure 4(b) reveals that
for all cases there is an approximate balance between the buoyancy force and vertical
pressure-gradient force. The presence of this so-called hydrostatic balance highlights the
importance of buoyancy. It is therefore reasonable to assume that the dynamics of plumes
and LSVs results from the balance between the Coriolis, inertial and buoyancy forces, also
known as the Coriolis–inertia–Archimedean (CIA) balance, with some contribution of the
viscous force in the plumes regime. These observations are consistent with results from
asymptotic simulations (Julien et al. 2012). In figure 3(e), we see that at Ra/Rac � 60,
the inertial force is part of the dominant force balance, and the flow transitions to the
rotation-affected regime. Finally, from figures 3(a) and 3(b), we can estimate an upper limit
for the LSV regime or, equivalently, the transition to RA convection, as the Ra/Rac value at
which the inertial force becomes part of the dominant force balance or, similarly, the value
at which Ro� becomes larger than one. We estimate that this occurs at Ra/Rac ≈ 400. In
table 2 we present a summary of the dominant and subdominant force balances in all flow
states.

To further illustrate how changes in the force balance affect the flow, we analyse the
midheight r.m.s. values of the horizontal velocity uRMS and vertical velocity wRMS as
a function of Ra/Rac. Following the definitions in Kunnen, Geurts & Clercx (2009)
and Kerr (1996): uRMS =

√
〈u2〉 + 〈v2〉 and wRMS =

√
〈w2〉, where 〈·〉 denotes time- and

plane-averaging. At all heights, we have verified that 〈u〉 ≈ 〈v〉 ≈ 0, so that no mean
horizontal flows are established across the periodic domain and that 〈w〉 ≈ 0 owing to the
incompressibility constraint. Figure 5 shows that for cells and columns, at Ra/Rac � 6, the
participation of buoyancy in the subdominant force balance yields large vertical velocity
fluctuations. Conversely, the smaller contribution of inertial forces may be associated with
low variability of horizontal velocities, strengthening the Taylor–Proudman constraint and
so the vertical alignment of the flow structures in this regime. In the plumes regime, where
inertial forces are as important as buoyancy, we see that the magnitude of horizontal
velocity fluctuations is comparable to that of vertical fluctuations. Throughout the LSV
regime at both Pr ≈ 5 and 0.1, where the magnitude of inertial forces is even larger,
horizontal velocity fluctuations are larger. This may result in a nearly two-dimensional
turbulent state, where energy can be transferred from small to large scales, leading to
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Figure 5. Root mean square of horizontal and vertical velocities, uRMS and wRMS, respectively, at midheight
z = 0.5. Filled and open symbols correspond to simulations with no-slip and stress-free boundary conditions,
respectively. Red, green and blue symbols are results from simulations at Pr ≈ 5, 100 and 0.1, respectively.
Colour-coded vertical lines and regime labels are as in figure 3.

the formation of LSVs (the dynamics of LSVs in presence of no-slip walls is discussed
in Aguirre Guzmán et al. (2020)). Finally, in the rotation-affected regime, seen at Pr =
0.1 and Ra/Rac � 60, uRMS shows little variation with Ra/Rac, whereas the loss of
rotational constraint (i.e. the decreasing importance of the Coriolis force) allows for larger
vertical velocity fluctuations. In fact, their magnitude becomes as large as the horizontal
fluctuations. This suggests that the flow approaches a rather isotropic dynamics, such as
the one for non-rotating convection.

We have thus identified and discussed the characteristic force balance of the observed
flow regimes of RRBC, as well as established connections between its changes with flow
supercriticality and the transitions amongst these regimes. In particular, we have evaluated
the r.m.s. value of the governing forces at midheight, and as such representative of the bulk.
In the next section, we analyse the force balance close to the no-slip walls, and provide a
comparison with the balance in the bulk.

4.3. Force balance near no-slip walls
In this section, we investigate the interplay between forces at a close distance from the
no-slip walls. Specifically, we analyse the force balance at a distance δu from the bottom
wall, where δu is the thickness of the kinetic boundary layer. Due to symmetry this analysis
is also valid for the force balance near the top wall. The discrepancy between the force
magnitudes computed at z = δu and those at z = 1 − δu (i.e. near the top wall) is less than
5 %. To determine the thickness δu of this layer, we adopt the conventional definition that
uses the location of the peak value in the vertical profile of the r.m.s. horizontal velocity
uRMS(z) (the profiles are time- and plane-averaged). We then employ (2.8) to determine the
magnitudes of the forces at this height. The results are shown in figures 6(a), 6(c) and 6(e)
for simulations at Pr ≈ 5, 100 and 0.1, respectively. These figures show that also near the
walls the flow is primarily geostrophic in regimes displaying cells, columns, plumes and
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Flow Dominant force balance Subdominant force balance

Cells FC ∼ FP Fageos ∼ FV
Columns FC ∼ FP Fageos ∼ FI ∼ FV
Plumes FC ∼ FP Fageos ∼ FI ∼ FV
LSVs FC ∼ FP Fageos ∼ FI
RA convection FI ∼ FP FC ∼ FV ∼ FB

Table 3. Dominant and subdominant force balances at the kinetic boundary layer for each flow regime. As in
table 2, Fageos = |FFFC + FFFP| measures the ageostrophy of the flow.

LSVs, whereas the rotational constraint is lost once it transitions to the rotation-affected
regime. In particular, in figure 6( f ), the transition from rotation-dominated (Ro� � 1) to
rotation-affected (Ro� � 1) convection occurs at approximately the same supercriticality
as at midheight, i.e. Ra/Rac ≈ 60 (at Pr = 0.1; compare figures 3f and 6f ). Therefore,
with increasing supercriticality, the flow loses rotational constraint at roughly equal
Ra/Rac at both considered heights.

Figures 6(a) and 6(b) shows that, overall, the near-wall magnitude of the forces in the
subdominant balance of cells, columns, plumes and LSVs is considerably larger than in the
bulk. For instance, |FFFC + FFFP| ∼ 10−2 in the bulk and 10−1 near the walls (compare, e.g.
the green symbols in figures 3a and 6a). This indicates that the flow is more ageostrophic
near the walls. In the cellular and columnar regimes, such ageostrophy is largely caused by
viscous forces (see figure 6a). The force balance per component, shown in figure 7, reveals
that, in the presence of small vertical velocities wRMS (due to Ekman pumping from the
boundary layer; discussed below), the buoyancy force is closely balanced by the vertical
pressure-gradient force (also in the plumes and LSV regime). Thus, cells and columns also
exhibit a VAC balance close to the walls, in fair agreement with asymptotic simulations.
Nonetheless, as in the bulk, the inertial force is seen to steeply increase with Ra/Rac, in
fact, more sharply and dominantly near the walls than in the bulk (compare the grey stars
in figures 3a and 6a). Consequently, FI is part of the subdominant force balance in the
columnar regime. The effects of inertia persist in the subdominant balance of plumes and
LSVs. Therefore, in these two regimes, similar to the bulk, the near-wall flow adopts a CIA
balance, with some participation of viscous forces. Eventually, FI takes over the dominant
force balance that, along with the reduction of the Coriolis force, leads to the transition to
the rotation-affected regime. A summary of the dominant and subdominant force balances
for all regimes is shown in table 3.

The early influence of inertial forces near the walls can be associated with the presence
of large horizontal velocity fluctuations uRMS at the site of convergence (divergence) of
fluid due to Ekman pumping (suction), and the retardation of vertical velocities wRMS
near the walls. That is, considering the schematic in figure 8, the vertical flux wAcross
in a column/plume of cross-sectional area Across = πR2 is fed by a boundary-layer flux
uAcyl through a cylindrical area Acyl = 2πRδu, where R is the typical radius of the
columns/plumes. Hence, the fluxes must be equal, i.e. wAcross = uAcyl, from which we
get w/u = 2δu/R. From (2.6), R ≈ �c/2 ∼ Ek1/3. Furthermore, we expect δu ∼ Ek1/2 for
Ekman boundary layers (Pedlosky 1979). Therefore, w/u ∼ Ek1/6 � 1. Thus, horizontal
flow (∼ uRMS) near the wall (inside the Ekman layer) is much larger than vertical flow
(∼ wRMS) emanating from the boundary layer. This is observed in figure 9. We note that
also for stress-free cases (open symbols in figure 9), uRMS is larger than wRMS. In this
case, a near-wall flux is also expected to feed the columns/plumes, though no estimation
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Figure 6. Force balance (a,c,e) and local Rossby number Ro� (b,d, f ), both at the kinetic boundary layer, as a
function of Ra/Rac for simulations at (a,b) Pr ≈ 5, (c,d) 100 and (e, f ) 0.1. Filled and open symbols correspond
to simulations with no-slip and stress-free boundary conditions, respectively. Vertical and horizontal lines, as
well as regime labels, are as in figure 3.

on its scaling can be currently made due to the scarcity of stress-free cases. Finally, the
presence of inertial forces in the near-wall subdominant force balance does not necessarily
imply the loss of vertical coherence as it does in the bulk (which causes the regime
transition between columns and plumes). Yet, at larger Ra/Rac, the loss of rotational
constraint close to the walls, which happens at roughly the same Ra/Rac as in the bulk,
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w
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Across Acyl

Figure 8. Schematic figure of geostrophic convection near a bottom no-slip wall. Vertical flux, wAcross, in a
column/plume of cross-sectional area, Across, is fed by a boundary-layer flux, uAcyl, through a cylindrical area,
Acyl.

does suggest a nearly complete relaxation of the Taylor–Proudman constraint. This, along
with the observed dominant role of inertial forces, has a great impact on the structure
of the kinetic boundary layer. In a separate study, we find that the thickness δu of this
layer scales as Ek1/2 in all the geostrophic regimes (cells, columns, plumes and LSVs; at
all Prandtl numbers), as predicted in linear Ekman boundary layer theory for rotationally
constrained flows (Pedlosky 1979). However, in the rotation-affected regime (at Pr = 0.1),
where the kinetic boundary layer is no longer rotationally constrained, δu does not exhibit
the theoretical scaling Ek1/2. Therefore, the kinetic boundary layer at values of Ra/Rac
beyond the geostrophically balanced regimes is certainly not of Ekman type. The loss of
rotational constraint in the near-wall region may allude to a transition to the proposed
‘unbalanced boundary layer’ regime for Ek � 10−7 (Cheng et al. 2018), distinguished by
the breakdown of geostrophy in the thermal boundary layers. In this regime, nonetheless,
the flow is not well-understood and warrants further investigation.

5. Conclusions

To summarise, we find that in rapidly rotating Rayleigh–Bénard convection the
dominant force balance is geostrophy, the balance between the Coriolis force and the
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Figure 9. Root mean square of horizontal and vertical velocities, uRMS and wRMS, at the bottom kinetic
boundary layer (z = δu, dark-coloured symbols) and at the top kinetic boundary layer (z = 1 − δu,
light-coloured symbols). Filled and open symbols correspond to simulations with no-slip and stress-free
boundary conditions, respectively. Red, green and blue symbols are results from simulations at Pr ≈ 5, 100
and 0.1, respectively. Colour-coded vertical lines are as in figure 3.

pressure-gradient force, as anticipated in previous literature (Sprague et al. 2006; Julien
et al. 2012; Nieves et al. 2014; Plumley et al. 2016). The geostrophic regimes display cells,
convective Taylor columns, plumes and large-scale vortices. We find that in these regimes
the flow is also in leading geostrophic balance near the no-slip walls.

In simulations at Pr = 0.1, we find that the geostrophic balance breaks down at
large supercriticality past the regime of large-scale vortices. This results in the flow
transition from the rotation-dominated state to rotation-affected convection. This transition
originates from the sudden decrease of the magnitude of the Coriolis force, along with
an increment in the strength of inertial forces. We find that this loss of rotational
constraint occurs synchronously (at approximately the same Ra/Rac) in the bulk and in
the boundary-layer region.

The geostrophic flows are ageostrophic at higher order, caused by the contribution
of the remaining forces (inertia, viscous and buoyancy forces). For cells and columns,
ageostrophy is due to viscosity and buoyancy, thus leading to a VAC balance. Inertia
is smaller, but steeply increases with Ra/Rac. For plumes, inertial forces enter the
subdominant balance, along with viscous and buoyancy forces. For LSVs, inertia becomes
the main source of ageostrophy. Plumes and LSVs can be considered in CIA balance,
with some participation of viscous forces in the plumes regime. In rotation-affected
convection, inertial and pressure-gradient forces constitute the dominant force balance;
the subdominant balance is formed by the Coriolis, viscous and buoyancy forces.

In the bulk, the presence of inertial forces in the subdominant force balance marks
the loss of vertical coherence of the columnar structures in the flow, and thus the
commencement of the plumes regime. Near the no-slip boundaries, inertial effects become
part of the subdominant force balance at smaller Ra/Rac within the columnar regime,
although, remarkably, without deteriorating their structure. The reason is that, near the
walls, this enhanced inertial force results from the convergence (and divergence) of fluid
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to the site of formation of vortical structures at the Ekman boundary layer. This effect
persists in the subdominant force balance of plumes and LSVs.

Whilst buoyancy displays a leading participation in the vertical force balance near the
walls, its role may be negligible in the overall dominant (or even subdominant) force
balance for cells, columns and plumes. This is in contrast to the bulk, where the buoyancy
force participates in the subdominant balance. This is despite having approximately the
same order of magnitude (∼10−2) at both locations. The reason is that viscous forces (for
cells, columns and plumes) and inertial forces (for columns and plumes) are approximately
one order of magnitude larger close to the boundaries, thus increasing the overall degree
of ageostrophy of the flow by one order of magnitude in this region.
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