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Abstract. Let f, g : (�n, 0) → (�, 0) be Cr+1 functions, r ∈ �. We will show that
if ∇f (0) = 0 and there exist a neighbourhood U of 0 ∈ �n and a constant C > 0 such
that ∣∣∂m(g − f )(x)

∣∣ ≤ C |∇f (x)|r+2−|m| for x ∈ U,

and for any m ∈ �n
0 such that |m| ≤ r, then there exists a Cr diffeomorphism

ϕ : (�n, 0) → (�n, 0) such that f = g ◦ ϕ in a neighbourhood of 0 ∈ �n.

2010 Mathematics Subject Classification. 58K40, 14B05.

1. Introduction. Let f, g : (�n, 0) → (�, 0). We say that f and g are Cr-right
equivalent if there exists a Cr diffeomorphism ϕ : (�n, 0) → (�n, 0) such that f = g ◦ ϕ

in a neighbourhood of 0 ∈ �n. Let � denote the set of positive integers and
�0 = � ∪ {0}. A norm in �n we denote by | · | and by dist(x, V ) – the distance of a point
x ∈ �n to a set V ⊂ �n. By Ck(n), where k, n ∈ �, we denote the set of Ck functions
(�n, 0) → �. Let Jf Ck(n) be the ideal in Ck(n) generated by ∂f

∂x1
, . . . ,

∂f
∂xn

. The ideal
Jf Ck(n) is called the Jacobi ideal in Ck(n) (we will call it in short the Jacobi ideal).

In this paper, we address the question under what conditions Cr-right equivalence
of Cr+1 functions holds. There exists result which deals with Cr-right equivalence of
Cr+2, namely J. Bochnak has used Tougeron’s Implicit Theorem to prove the following
theorem [1, Theorem 1]
Let f, g : (�n, 0) → (�, 0) be Cr+2 functions such that ∇f (0) = 0, r ∈ �. If (g − f ) ∈
m(Jf Cr+1(n))2 then f and g are Cr-right equivalent. By m we mean maximal ideal in the
set of Cr+1 functions (�n, 0) → �.

Results presented in this paper are proven in the classical spirit of Kuiper–
Kuo Theorem which deals with C0-right equivalence of Cr functions with isolated
singularity at 0 ∈ �n ([2, 3] see also [7]). Moreover, in compare to Bochnak Theorem,
we assume geometric condition for (g − f ) instead algebraic condition. More precisely,
we will prove the following

THEOREM 1. Let f, g : (�n, 0) → (�, 0) be Cr+1 functions, r ∈ �. If ∇f (0) = 0 and
there exist a neighbourhood U of ∈ �n and a constant C > 0 such that∣∣∂m(g − f )(x)

∣∣ ≤ C |∇f (x)|r+2−|m| for x ∈ U, (1)
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and for any m ∈ �n
0 such that |m| ≤ r, then f and g are Cr-right equivalent.

After slight modification of the above theorem, we will obtain some sufficient
condition for C0-right equivalence (Theorem 2). Moreover, we will see that Theorem 1
implies Theorem 3, where we assume that (g − f ) belongs to Jacobi ideal of f to some
power depends on r. It is worth mention about author’s result [6], where it has proved
that if two analytic functions f, g are such that (g − f ) ∈ (f )r+2 then f and g are Cr-right
equivalent, (f ) denote ideal generated by f . In this paper, we will also prove that if two
real analytic functions are C1-right equivalent then they have the same exponent in the
Łojasiewicz gradient inequality (Proposition 1).

2. Auxiliary results. Let us start this section from some obvious lemma. Let
M, m, k, r ∈ �, k ≥ r and M > r. Moreover, let p, q1, . . . , qm ∈ Ck(n) and let QCk(n)
denote the ideal in Ck(n) generated by q1, . . . , qm.

LEMMA 1. If p ∈ (QCk(n))M then

(i) ∂rp
∂xi1 ...∂xir

∈ (QCk−r(n))M−r for i1, . . . , ir ∈ {1, . . . , n},
(ii) |p(x)| ≤ C|(q1(x), . . . , qn(x))|M in a neighbourhood of 0 ∈ �n and for some

positive constant C.

From the above, we obtain at once

COROLLARY 1. Let f, g : (�n, 0) → (�, 0) be Cr+1 functions, r ∈ �. If (g − f ) ∈
(Jf Cr(n))r+2, then there exist a neighbourhood U of 0 ∈ �n and a constant C > 0 such
that ∣∣∂m(g − f )(x)

∣∣ ≤ C |∇f (x)|r+2−|m| for x ∈ U,

and for any m ∈ �n
0 such that |m| ≤ r.

The next two lemmas come from [6] (respectively Lemmas 2 and 3).

LEMMA 2. Let f : (�n, 0) → (�, 0) be a locally lipschitzian. Then, there exist a
neighbourhood U of 0 ∈ �n and a constant C > 0 such that for any x ∈ U, |f (x)| ≤
C dist(x, Vf ) (Vf denote zero set of f ).

LEMMA 3. Let ξ, η : U → � be C|k| functions, where U ⊂ �n is a neighbourhood of
0 ∈ �n and k ∈ �n

0. Assume that there exist constants A1, A2, A3 > 0 such that

A1|η(x)|2 ≤ |ξ (x)| ≤ A2|η(x)|2, |∂ξ (x)| ≤ A3|η(x)| for x ∈ U.

Then, there exist a neighbourhood U1 ⊆ U and a constant B > 0 such that∣∣∣∣∂k
(

1
ξ (x)

)∣∣∣∣ ≤ B|η(x)|−|k|−2 for x ∈ U1.

The last lemma in this section is slight modification of [7, Lemma 1].

LEMMA 4. Let G ⊂ � × �n be an open set, W : G → �n be a continuous mapping
and let V ⊂ �n be a closed set. If a system

dy
dt

= W (t, y), (2)
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has a global uniqueness of solutions property in G\(� × V ) and if

|W (t, x)| ≤ C dist(x, V ) for (t, x) ∈ U,

for some constant C > 0 and some neighbourhood U ⊂ G of set (� × V ) ∩ G, then (2)
has a global uniqueness of solutions property in G.

3. Proof of Theorem 1. Let Z be the zero set of ∇f and let U ⊂ �n be a
neighbourhood of 0 ∈ �n such that f and g are defined. By Lemma 2 there exists
a positive constant A such that

|∇f (x)| ≤ A dist(x, Z) for x ∈ U. (3)

Define the function F : � × U → � by the formula

F(ξ, x) = f (x) + ξ (g − f )(x),

obviously

∇F(ξ, x) = ((g − f )(x),∇f (x) + ξ∇(g − f )(x)) .

Let G = {(ξ, x) ∈ � × U : |ξ | < δ} where δ ∈ �, δ > 2. From the above, diminishing U
if necessary, we have that there exists a constant C1 > 0 such that

|∇f (x)| ≤ C1|∇F(ξ, x)| for (ξ, x) ∈ G. (4)

Indeed,

|∇F(ξ, x)| ≥ |∇f (x) + ξ∇(g − f )(x)| ≥ |∇f (x)| − |ξ ||∇(g − f )(x)|.

Since r ≥ 1 then from (1) we get that there exists a constant C2 > 0 such that

|∇(g − f )(x)| ≤ C2|∇f (x)|r+1 ≤ C2|∇f (x)|2 for x ∈ U.

Hence, diminishing U if necessary,

|∇F(ξ, x)| ≥ |∇f (x)| − |ξ |C2|∇f (x)|2 ≥ 1
C1

|∇f (x)| for (ξ, x) ∈ G.

Moreover, from definition of ∇F we get at once, that there exists a positive constant
C3 such that

|∇F(ξ, x)| ≤ C3|∇f (x)| for (ξ, x) ∈ G. (5)

Now we will show that the mapping X : G → �n × � defined by

X(ξ, x) = (X1, . . . , Xn+1) =
{

(g−f )(x)
|∇F(ξ,x)|2 ∇F(ξ, x) for x /∈ Z
0 for x ∈ Z

is a Cr mapping. The proof of this fact will be divided into several steps.

STEP 1. The mapping X is continuous in G.
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Indeed, let hi(ξ, x) = (g − f )(x) ∂F
∂xi

(ξ, x). Then, from (1) and (5) we have

|hi(ξ, x)| =
∣∣∣∣ ∂F
∂xi

(ξ, x)

∣∣∣∣ |(g − f )(x)| ≤ CC3|∇f (x)|r+3,

for (ξ, x) ∈ G\(� × Z). Moreover, from definition of X , (3) and (4) we obtain that
there exists a constant A′ > 0 such that for any (ξ, x) ∈ G\(� × Z)

|Xi(ξ, x)| ≤ CC2
1C3|∇f (x)|r+1 ≤ A′ dist(x, Z)r+1. (6)

The above inequality also holds for (ξ, x) ∈ G ∩ (� × Z), therefore X is continuous
in G.

STEP 2. Let α = (α0, . . . , αn) ∈ �n+1
0 be such that |α| ≤ r, then there exists a

constant A′′ > 0 such that

|∂αXi(ξ, x)| ≤ A′′ dist(x, Z)r+1−|α| for (ξ, x) ∈ G\(� × Z).

Indeed, let us take (ξ, x) ∈ G\(� × Z), from Leibniz rule we have

∂αXi(ξ, x) =
∑
β≤α

(
α

β

)
∂α−β(hi(ξ, x))∂β

(
1

|∇F(ξ, x)|2
)

. (7)

Diminishing G if necessary, from Lemma 3 we obtain∣∣∣∣∂β

(
1

|∇F(ξ, x)|2
)∣∣∣∣ ≤ A′′

β

|∇F(ξ, x)||β|+2
,

for some constants A′′
β > 0. Therefore, from (7) we have

|∂αXi(ξ, x)| ≤
∑
β≤α

(
α

β

)
|∂α−β(hi(ξ, x))| A′′

β

|∇F(ξ, x)|2|β|+2
. (8)

From (1) and (5) we have

|∂α−β(hi(ξ, x))| ≤ Bα−β |∇f (x)|r+3−|α|+|β|, (9)

for some positive constants Bα−β . Finally, from (8), (9), (4) and (3) we obtain

|∂αXi(ξ, x)| ≤
∑
β≤α

(
α

β

)
Bα−β |∇f (x)|r+3−|α|+|β| A′′

β

|∇F(ξ, x)||β|+2

≤
∑
β≤α

(
α

β

)
A′′

βBα−β |∇f (x)|r+3−|α|+|β|−|β|−2

≤ A′′

A
|∇f (x)|r+1−|α| ≤ A′′ dist(x, Z)r+1−|α|,

for some constant A′′ > 0 and for (ξ, x) ∈ G\(� × Z).

STEP 3. Partial derivatives ∂αXi vanish for (ξ, x) ∈ G ∩ (� × Z) and |α| ≤ r.
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Indeed, we will carry out induction with respect to |α|. Let t ∈ �, x ∈ Z and
let xt

m = (x1, . . . , xm + t, . . . , xn). For |α| = 0 hypothesis is obvious. Assume that
hypothesis is true for |α| ≤ r − 1. Then, from Step 2 we have

|∂αXi(ξ, xt
m) − ∂αXi(ξ, x)|

|t| = |∂αXi(ξ, xt
m)|

|t| ≤ A′′ dist(xt
m, Z)r+1−|α|

|t|
≤ A′′|t|r+1−|α|

|t| = A′′|t|r−|α|.

Since r − |α| ≥ r − r + 1 = 1, we obtain ∂γ Xi(ξ, x) = 0 for x ∈ Z and |γ | = |α| + 1.
This completes Step 3.

In summary from Step 1, 2 and 3 we obtain that Xi are Cr functions in G. Therefore,
X is a Cr mapping in G.

Define a vector field W : G → �n by the formula

W (ξ, x) = 1
X1(ξ, x) − 1

(X2(ξ, x), . . . , Xn+1(ξ, x)). (10)

Diminishing U if necessary, we may assume that A′ dist(x, Z) < 1
2 . From (6) we obtain

|X1(ξ, x) − 1| ≥ 1 − |X(ξ, x)| ≥ 1 − A′ dist(x, Z) >
1
2
, (11)

for (ξ, x) ∈ G. Hence, the field W is well defined and it is a Cr mapping.
Consider the following system of ordinary differential equations

dy
dt

= W (t, y). (12)

Since r ≥ 1, then W is at least of class C1 on G, so it has a uniqueness of solutions
property in G. By solving (12) we obtain that a general solution is of Cr-class. Moreover,
by definition of G any solution is defined on interval [0, 1]. Hence, there exists a
Cr diffeomorphism ϕ : (�n, 0) → (�n, 0) given by formula ϕ(x) = yx(1), where yx :
[0, 1] → �n is solution of system (12) with initial condition yx(0) = x.

Note that for any x ∈ U ,

F(t, yx(t)) = const. in [0, 1]. (13)

Indeed, from definition of W we derive the formula

[1, W (ξ, x)] = 1
X1(ξ, x) − 1

(X(ξ, x) − e1) for (ξ, x) ∈ G,

where e1 = [1, 0, . . . , 0] ∈ �n+1 and [1, W ] : G → � × �n. Thus, if we denote by 〈a, b〉
the scalar product of two vectors a, b, then for t ∈ [0, 1], we have

dF(t, yx(t))
dt

= 〈(∇F)(t, yx(t)), [1, W (t, yx(t))]〉

= 1
X1(t, yx(t)) − 1

(
〈(∇F)(t, yx(t)), X(t, yx(t))〉 − ∂F

∂ξ
(t, yx(t))

)

= 1
X1(t, yx(t)) − 1

(g(yx(t)) − f (yx(t)) − g(yx(t)) + f (yx(t))) = 0.
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This gives (13). Finally, (13) yields

f (x) = F(0, x) = F(0, yx(0)) = F(1, yx(1)) = F(1, ϕ(x)) = g(ϕ(x)),

for x ∈ U . This ends the proof. �

4. Additional results. Under assumptions of Theorem 1, note that in the situation
when r = 0, we have that ∇f is a continuous mapping and we can’t use Lemma 2, so
we should assume that ∇f is a locally lipschitzian mapping. Moreover, condition (1)
has the form

|(g − f )(x)| ≤ C |∇f (x)|2 , x ∈ U,

so inequalities (4) and (5) are false. But when we will assume additionally that

|∇(g − f )| ≤ C′ |∇f (x)|2 , x ∈ U,

for some constant C′ > 0, then those inequalities will be already true. Moreover,
from those inequalities we obtain that vector field (10) is continuous in G and locally
lipschitzian in G\(� × Z). Therefore system (12) has a global uniqueness of solutions
property only in G\(� × Z). But from (11) and Lemma 4 we have that (12) has a
global uniqueness of solutions property in G. Therefore, due to the above, we obtain
the following sufficient condition for C0-right equivalence. Additionally to obtain that
mapping ∇F is locally lipschitzian we should assume that ∇g is locally lipschitzian.

THEOREM 2. Let f, g : (�n, 0) → (�, 0) be C1 functions such that ∇f,∇g are locally
lipschitzian mappings. If ∇f (0) = 0 and there exist a neigbourhood U of 0 ∈ �n and
constants C, C′ > 0 such that

|(g − f )(x)| ≤ C |∇f (x)|2 , |∇(g − f )(x)| ≤ C′ |∇f (x)|2 for x ∈ U,

then f and g are C0-right equivalent.

From Theorem 1 and Corollary 1 we obtain immediately

THEOREM 3. Let f, g : (�n, 0) → (�, 0) be Cr+1 functions, r ∈ �. If ∇f (0) = 0 and
(g − f ) ∈ (Jf Cr(n))r+2 then f and g are Cr-right equivalent.

It seems that Bochnak Theorem [1, Theorem 1] is stronger than Theorem 3,
because in the first theorem we assume that power of Jacobi ideal is constant, whereas
in the last theorem this power is depending on r. But on the other hand in Theorem 3
assumption about class of f, g is weaker than in Bochnak Theorem. So, it is difficult to
say which theorem is better.

5. Łojasiewicz exponent in the gradient inequality. Under the additional
assumption of analyticity of functions, we will show that if two functions are C1-
right equivalent then their Łojasiewicz exponents in the gradient inequality are the
same.

Let f : (�n, 0) → (�, 0) be an analytic function. It is known that there exist a
neighbourhood of 0 ∈ �n and constants C, η > 0 such that the following Łojasiewicz
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gradient inequality holds

|∇f (x)| ≥ C|f (x)|η, for x ∈ U.

The smallest exponent η in the above inequality is called Łojasiewicz exponent in the
gradient inequality and is denoted by 
0(f ) (cf. [4, 5]).

PROPOSITION 1. Let f, g : (�n, 0) → (�, 0) be analytic functions. If f and g are C1-
right equivalent, then 
0(f ) = 
0(g).

Proof. By the assumption there exists a C1 diffeomorphism
ϕ : (�n, 0) → (�n, 0) such that g = f ◦ ϕ and f = g ◦ ϕ−1. Moreover, there exist
a neighbourhood U of 0 ∈ �n and a constant C > 0 such that

|∇g(x)| ≥ C|g(x)|
0(g) for x ∈ U.

By J(ϕ) we denote the Jacobian matrix of mapping ϕ and by ‖J(ϕ)‖ the norm of this
matrix. Note that, diminishing U if necessary, there exists a constant A > 0 such that

‖J(ϕ(x))‖ ≤ A for x ∈ U.

Moreover, ∇g = ∇(f ◦ ϕ) = ∇f (ϕ) · J(ϕ) and from the above,

|∇g(x)| ≤ |∇f (ϕ(x))| ‖J(ϕ(x))‖ ≤ A|∇f (ϕ(x))| for x ∈ U.

Hence, diminishing U if necessary

|∇f (ϕ(x))| ≥ 1
A

|∇g(x)| ≥ C
A

|g(x)|
0(g) = C
A

|f (ϕ(x))|
0(g) for x ∈ U.

Therefore, 
0(f ) ≤ 
0(g). Analogously, we get 
0(f ) ≥ 
0(g). Hence, we have 
0(f ) =

0(g). �

From Proposition 1 and Theorem 3 we obtain

COROLLARY 2. Let f, g : (�n, 0) → (�, 0) be analytic functions. If ∇f (0) = 0 and
(g − f ) ∈ J 3

f then 
0(f ) = 
0(g), where Jf denotes the Jacobi ideal of f in the ring of
germs of analytic functions (�n, 0) → �.
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