ON THE MONOTONE CONVERGENCE OF GENERAL NEWTON-LIKE METHODS

Ioannis K. Argyros and Ferenc Szidarovszky

Abstract

This paper examines conditions for the monotone convergence of general Newtonlike methods generated by point-to-point mappings. The speed of convergence of such mappings is also examined.

1. Introduction

This paper examines conditions for the monotone convergence of Newton-like methods. Using the famous Kantorovich lemma on monotone mappings (see for example Kantorovich and Akilov [5]) we derive several convergence results. The speed of convergence of these processes is also examined.

In particular, let us consider the Newton-like iterates

$$
\begin{equation*}
z_{k+1}=G_{k}\left(z_{k}\right)(k \geqslant 0) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{k}\left(z_{k}\right)=z_{k}-A_{k}\left(z_{k}, z_{k-1}\right)^{-1} f_{k}\left(x_{k}\right)(k \geqslant 0) \tag{2}
\end{equation*}
$$

Here $f_{k}, G_{k}: D \subseteq B \rightarrow B_{1}(k \geqslant 0)$ are nonlinear mappings acting between two partially ordered linear topological spaces (POL-spaces), (for definitions see for example Krasnoselskii, [6]), whereas $A_{k}(u, v)():. D \rightarrow B_{1}(k \geqslant 0)$ are invertible linear mappings. We provide sufficient conditions for the convergence of iteration (1) to 0 . We may have this assumption without losing generality, since any solution x^{*} can be transformed into 0 by introducing the transformed mapping $g_{k}(x)=f_{k}\left(x+x^{*}\right)-x^{*}(k \geqslant 0)$. Iterations of the above type are extremely important in solving optimisation problems, as well as linear and nonlinear equations. A very important field of such applications can also be found in solving equilibrium problems, in economy and in solving nonlinear input-output systems (see for example $[4,6,7,8,9,12,13]$). Our results can be reduced to the ones obtained earlier in $[1,2,3,5,6,10,11,12]$ when $f_{k}=f(k \geqslant 0)$.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

2. Convergence theorems

Let us first define some special types of mappings between two POL-spaces. First we introduce some notation. If B and B_{1} are two linear spaces then we denote by (B, B_{1}) the set of all mappings from B into B_{1} and by $L\left(B, B_{1}\right)$ the set of all linear mappings from B into B_{1}. If B and B_{1} are topological linear spaces then we denote by $L B\left(B, B_{1}\right)$ the set of all continuous linear mappings from B into B_{1}. For simplicity, spaces $L(B, B)$ and $L B(B, B)$ will be denoted by $L(B)$ and $L B(B)$. Now let B and B_{1} be two POL-spaces and consider a mapping $G \in\left(B, B_{1}\right) . \quad G$ is called isotone (respectively antitone) if $x<y$ implies $G(x) \leqslant G(y)$ (respectively $G(x) \geqslant G(y)$). G is called nonnegative if $x>0$ implies $G(x)>0$. For linear mappings nonnegativity is clearly equivalent to isotony. Also, a linear mapping is inverse nonnegative if and only if it is invertible and its inverse is nonnegative. If G is a nonnegative mapping we write $G \geqslant 0$. If G and H are two mappings from B into B_{1} such that $H-G$ is nonnegative then we write $G \leqslant H$. If Z is a linear space then we obviously have $I \geqslant 0$. Suppose that B and B_{1} are two POL-spaces and consider the mappings $T \in L\left(B_{1}, B\right)$ and $T_{1} \in L\left(B, B_{1}\right)$. If $T_{1} T \leqslant I_{B}$ (respectively if $T_{1} T \geqslant I_{B}$) then T_{1} is called a left subinverse (respectively superinverse) of T, and T is called a right subinverse (respectively superinverse) of T_{1}. We say that T_{1} is a subinverse of T if T_{1} is a left as well as a right subinverse of T.

We assume that the following conditions hold:
(A) Consider mappings $f_{k}: D \subset B \rightarrow B_{1}$ where B is a regular POL-space and B_{1} is a POL-space. Let x_{0}, y_{0}, y_{-1} be three points of D such that

$$
\begin{equation*}
x_{0} \leqslant y_{0} \leqslant y_{-1},\left\langle x_{0}, y_{-1}\right\rangle \subset D, f_{0}\left(x_{0}\right) \leqslant 0 \leqslant f_{0}\left(y_{0}\right) \tag{3}
\end{equation*}
$$

and denote

$$
\begin{aligned}
& S_{1}=\left\{(x, y) \in B^{2} \mid x_{0} \leqslant x \leqslant y \leqslant y_{0}\right\} \\
& S_{2}=\left\{\left(u, y_{-1}\right) \in B^{2} \mid x_{0} \leqslant u \leqslant y_{0}\right\} \\
& S_{3}=S_{1} \cup S_{2}
\end{aligned}
$$

Assume mappings $A_{k}(.,):. S_{3} \rightarrow L B\left(B, B_{1}\right)$ such that

$$
\begin{equation*}
f_{k}(y)-f_{k}(x) \leqslant A_{k}(w, z)(y-x) \text { for all } k \geqslant 0,(x, y),(y, w) \in S_{1},(w, z) \in S_{3} \tag{4}
\end{equation*}
$$

Suppose for any (u, v) $\in S_{3}$ the linear mappings $A_{k}(u, v)(k \geqslant 0)$ have a continuous nonsingular nonnegative subinverse. Assume furthermore that

$$
\begin{align*}
& f_{k}(x) \leqslant f_{k-1}(x) \text { for all } x \in\left\langle x_{0}, y_{0}\right\rangle(k \geqslant 1), f_{k-1}(x) \leqslant 0 \tag{5}\\
& f_{k}(y) \geqslant f_{k-1}(y) \text { for all } y \in\left\langle x_{0}, y_{0}\right\rangle(k \geqslant 1), f_{k-1}(y) \geqslant 0 . \tag{6}
\end{align*}
$$

We can now formulate the main result.

Theorem 1. Assume Condition (A) is satisfied.
Then there exist two sequences $\{x\},\left\{y_{k}\right\}(k \geqslant 0)$ and points $x^{*}, y^{*}, x_{1}^{*}, y_{1}^{*}$ such that for all $k \geqslant 0$;

$$
\begin{align*}
& f_{k}\left(y_{k}\right)+A_{k}\left(y_{k}, y_{k-1}\right)\left(y_{k+1}-y_{k}\right)=0, \tag{7}\\
& f_{k}\left(x_{k}\right)+A_{k}\left(y_{k}, y_{k-1}\right)\left(x_{k+1}-x_{k}\right)=0, \tag{8}\\
& f_{k}\left(x_{k}\right) \leqslant f_{k-1}\left(x_{k-1}\right) \leqslant 0 \leqslant f_{k-1}\left(y_{k-1}\right) \leqslant f_{k}\left(y_{k}\right)(k \geqslant 1) \tag{9}\\
& x_{0} \leqslant x_{1} \leqslant \ldots \leqslant x_{k} \leqslant x_{k+1} \leqslant y_{k+1} \leqslant y_{k} \leqslant \ldots \leqslant y_{1} \leqslant y_{0} \tag{10}\\
& x_{k} \rightarrow x^{*}, y_{k} \rightarrow y^{*} \text { as } k \rightarrow \infty, x^{*} \leqslant y^{*} \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
f_{k}\left(x_{k}\right) \rightarrow x_{1}^{*}, f_{k}\left(y_{k}\right) \rightarrow y_{1}^{*} \text { as } k \rightarrow \infty, \text { with } x_{1}^{*} \leqslant 0 \leqslant y_{1}^{*} \tag{12}
\end{equation*}
$$

Proof: Let L_{0} be a continuous nonsingular nonnegative left subinverse of $A_{0}\left(y_{0}, y_{-1}\right) \equiv$ A_{0} and consider the mapping $P:\left\langle 0, y_{0}-x_{0}\right\rangle \rightarrow B$ defined by

$$
P(x)=x-L_{0}\left(f_{0}\left(x_{0}\right)+A_{0}(x)\right)
$$

where $A_{0}(x)$ denotes the image of x with respect to the mapping $A_{0}=A_{0}\left(y_{0}, y_{-1}\right)$. It is easy to see that P is isotone and continuous. We also have

$$
\begin{aligned}
P(0) & =-L_{0}\left(f_{0}\left(x_{0}\right)\right) \geqslant 0 \\
P\left(y_{0}-x_{0}\right) & =y_{0}-x_{0}-L_{0}\left(f_{0}\left(y_{0}\right)\right)+L_{0}\left(f_{0}\left(y_{0}\right)-f_{0}\left(x_{0}\right)-A_{0}\left(y_{0}-x_{0}\right)\right) \\
& \leqslant y_{0}-x_{0}-L_{0}\left(f_{0}\left(y_{0}\right)\right) \leqslant y_{0}-x_{0}
\end{aligned}
$$

According to the famous Kantorovich lemma (see for example [5]) mapping P has a fixed point $w \in\left\langle 0, y_{0}-x_{0}\right\rangle$. Taking $x_{1}=x_{0}+w$, we have

$$
f_{0}\left(x_{0}\right)+A_{0}\left(x_{1}-x_{0}\right)=0, x_{0} \leqslant x_{1} \leqslant y_{0}
$$

Using (4), (5) and the above relation we get

$$
f_{1}\left(x_{1}\right) \leqslant f_{0}\left(x_{1}\right)=f_{0}\left(x_{1}\right)-f_{0}\left(x_{0}\right)+A_{0}\left(x_{0}-x_{1}\right) \leqslant 0 .
$$

Consider now the mapping $Q:\left\langle 0, y_{0}-x_{1}\right\rangle \rightarrow B$ given by

$$
Q(x)=x+L_{0}\left(f_{0}\left(y_{0}\right)-A_{0}(x)\right) .
$$

Q is clearly continuous, isotone, and

$$
\begin{aligned}
Q(0) & =L_{0} f_{0}\left(y_{0}\right) \geqslant 0 \\
Q\left(y_{0}-x_{1}\right) & =y_{0}-x_{1}+L_{0} f_{0}\left(x_{1}\right)+L_{0}\left(f_{0}\left(y_{0}\right)-f_{0}\left(x_{1}\right)-A_{0}\left(y_{0}-x_{1}\right)\right) \\
& \leqslant y_{0}-x_{1}+L_{0} f_{0}\left(x_{1}\right) \leqslant y_{0}-x_{1}
\end{aligned}
$$

Applying the Kantorovich lemma again, we deduce the existence of a point $z \in\left\langle 0, y_{0}-\right.$ $\left.x_{1}\right)$ such that $Q(z)=z$. Taking $y_{1}=y_{0}-z$,

$$
f_{0}\left(y_{0}\right)+A_{0}\left(y_{1}-y_{0}\right)=0, x_{1} \leqslant y_{1} \leqslant y_{0} .
$$

Using the above relations and conditions (4), (6) we obtain

$$
f_{1}\left(y_{1}\right) \leqslant f_{0}\left(y_{1}\right)=f_{0}\left(y_{1}\right)-f_{0}\left(y_{0}\right)+A_{0}\left(y_{0}-y_{1}\right) \geqslant 0
$$

By induction it is easy to show there exist four sequences $\left\{x_{k}\right\},\left\{y_{k}\right\},\left\{f_{k}\left(x_{k}\right)\right\}$, $\left\{f_{k}\left(y_{k}\right)\right\}(k \geqslant 0)$, satisfying (7)-(10). Since space B is regular, from (9) and (10) we know that there eixst $x^{*}, y^{*}, x_{1}^{*}, y_{1}^{*} \in B$ satisfying (11)-(12), which completes the proof.

In the next part we give some natural conditions which guarantee that points x^{*}, y^{*} are common solutions of equations $f_{k}(x)=0(k \geqslant 0)$.

Theorem 2. Under the hypotheses of Theorem 1, assume furthermore that
(i) there exists $u \in B$ such that $x_{0} \leqslant u \leqslant y_{0}$ and $f_{k}(u)=0(k \geqslant 0)$;
(ii) linear mappings $A_{k}(w, z)(k \geqslant 0),(w, z) \in S_{3}$ are inverse nonnegative.

Then

$$
\begin{gathered}
x_{k} \leqslant u \leqslant y_{k}(k \geqslant 0) \\
x^{*} \leqslant u \leqslant y^{*} .
\end{gathered}
$$

and
Moreover if $x^{*}=y^{*}$, then $x^{*}=u=y^{*}$.
Proof: Using (i),

$$
\begin{aligned}
A_{0}\left(y_{1}-u\right) & =A_{0}\left(y_{0}\right)-f_{0}\left(y_{0}\right)-A_{0}(u) \\
& =A_{0}\left(y_{0}-u\right)-\left(f_{0}\left(y_{0}\right)-f_{0}(u)\right) \geqslant 0
\end{aligned}
$$

and

$$
\begin{aligned}
A_{0}\left(x_{1}-u\right) & =A_{0}\left(x_{0}\right)-f_{0}\left(x_{0}\right)-A_{0}(u) \\
& =A_{0}\left(x_{0}-u\right)-\left(f_{0}\left(x_{0}\right)-f_{0}(u)\right) \leqslant 0
\end{aligned}
$$

$\mathrm{By}(\mathrm{ii})$ it follows that $x_{1} \leqslant u \leqslant y_{1}$. By induction it is easy to show that $x_{k} \leqslant u \leqslant y_{k}$ for all $k \geqslant 0$. Hence, $x^{*} \leqslant u \leqslant y^{*}$. Moreover if $x^{*}=y^{*}$, then $x^{*}=u=y^{*}$, which completes the proof.

Moreover we can show:
Theorem 3. Under the hypotheses of Theorem 2, assume that either
(i) B is normal and there exists a mapping $L: B \rightarrow B_{1}(L(0)=0)$ which has an isotone inverse continuous at the origin and $A_{k}\left(y_{k}, y_{k-1}\right) \leqslant L$ for all sufficiently large $k \geqslant 0$;
or
(ii) $\quad B_{1}$ is normal and there exists a mapping $T: B \rightarrow B_{1}(T(0)=0)$ continuous at the origin and $A_{k}\left(y_{k}, y_{k-1}\right) \leqslant T$ for sufficiently large $k \geqslant 0$;
or
(iii) Mappings $A_{k}\left(y_{k}, y_{k-1}\right)(k \geqslant 0)$ are equicontinuous.

Then $f_{k}\left(x_{k}\right) \rightarrow 0, f_{k}\left(y_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$.
Proof: (i) Using relations (6)-(10) we get

$$
\begin{aligned}
& 0 \geqslant f_{k}\left(x_{k}\right)=A_{k}\left(y_{k}, y_{k-1}\right)\left(x_{k}-x_{k+1}\right) \geqslant L\left(x_{k}-x_{k+1}\right), \\
& 0 \leqslant f_{k}\left(y_{k}\right)=A_{k}\left(y_{k}, y_{k-1}\right)\left(y_{k}-y_{k+1}\right) \leqslant L\left(y_{k}-y_{k+1}\right) .
\end{aligned}
$$

Hence

$$
0 \geqslant L^{-1} f_{k}\left(x_{k}\right) \geqslant x_{k}-x_{k+1}, 0 \leqslant L^{-1} f_{k}\left(x_{k}\right) \leqslant y_{k}-y_{k+1} .
$$

Since B is normal and both $x_{k}-x_{k+1}$ and $y_{k}-y_{k+1}$ converge to zero, $L^{-1} f_{k}\left(x_{k}\right) \rightarrow 0$, $f_{k}\left(y_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$, from which the result follows.
(ii) Using relations (7)-(10) we have

$$
\begin{aligned}
& 0 \geqslant f_{k}\left(x_{k}\right)=A_{k}\left(y_{k}, y_{k-1}\right)\left(x_{k}-x_{k+1}\right) \geqslant T\left(x_{k}-x_{k+1}\right), \\
& 0 \leqslant f_{k}\left(y_{k}\right)=A_{k}\left(y_{k}, y_{k-1}\right)\left(y_{k}-y_{k+1}\right) \leqslant T\left(y_{k}-y_{k+1}\right) .
\end{aligned}
$$

By letting $k \rightarrow \infty$ we obtain the result.
(iii) From equicontinuity of mappings $A_{k}\left(y_{k}, y_{k-1}\right)$ it follows that $A_{k}\left(y_{k}, y_{k-1}\right)\left(z_{k}\right)$ $\rightarrow 0$ whenever $z_{k} \rightarrow 0$. In particular, we have

$$
A_{k}\left(y_{k}, y_{k-1}\right)\left(x_{k}-x_{k+1}\right) \rightarrow 0, A_{k}\left(y_{k}, y_{k-1}\right)\left(y_{k}-y_{k+1}\right) \rightarrow 0 \text { as } k \rightarrow \infty .
$$

By (7) and (8) and above estimate the result follows.
The uniqueness of a common solution of equations $f_{k}(x)=0(k \geqslant 0)$ in $\left\langle x_{0}, y_{0}\right\rangle$ can be proven assuming a condition which is complementary to (4). More precisely we can prove the following:

Theorem 4. Let B and B_{1} be two POL-spaces. Let $f_{k}():. D \subset B \rightarrow B_{1}$ be nonlinear mappings and suppose there exist two points $x_{0}, y_{0} \in D$ such that $x_{0} \leqslant y_{0}$ and $\left\langle x_{0}, y_{0}\right\rangle \subset D$. Denote by $S_{1}=\left\{(x, y) \in B^{2} ; x_{0} \leqslant x \leqslant y \leqslant y_{0}\right\}$ and assume there exist mappings $L_{k}(.,):. S_{1} \rightarrow L\left(B, B_{1}\right)$ such that $L_{k}(x, y)$ has a nonnegative left superinverse for each $(x, y) \in S_{1}$ and

$$
f_{k}(y)-f_{k}(x) \geqslant L_{k}(x, y)(y-x) \text { for all }(x, y) \in S_{1} .
$$

Under these assumptions if $\left(x^{*}, y^{*}\right) \in S_{1}$ and $f_{k}\left(x^{*}\right)=f_{k}\left(y^{*}\right)$, then $x^{*}=y^{*}$.
Proof: Let $T_{k}\left(x^{*}, y^{*}\right)$ denote a nonnegative left superinverse of $L_{k}\left(x^{*}, y^{*}\right)$ for all $k \geqslant 0$. We have

$$
\begin{aligned}
0 \leqslant y^{*}-x^{*} & \leqslant T_{k}\left(x^{*}, y^{*}\right) L_{k}\left(x^{*}, y^{*}\right)\left(y^{*}-x^{*}\right) \\
& \leqslant T_{k}\left(x^{*}, y^{*}\right)\left(f_{k}\left(y^{*}\right)-f_{k}\left(x^{*}\right)\right)=0
\end{aligned}
$$

Hence $x^{*}=y^{*}$, which completes the proof.
Remark 1. The conclusions of Theorem 1 hold if iteration (7)-(8) is modified as

$$
\begin{aligned}
f_{k}\left(y_{k}\right)+A_{k}\left(y_{k}, y_{k+1}\right)\left(y_{k+1}-y_{k}\right) & =0 \\
f_{k}\left(x_{k}\right)+A_{k}\left(y_{k+1}, y_{k}\right)\left(x_{k+1}-x_{k}\right) & =0(k \geqslant 0)
\end{aligned}
$$

This modification seems to be advantageous (see for example Slugin, [11]) in many applications.

Remark 2. Conditions (5) and (6) of Theorem 1 are very natural and they hold in many interesting problems in numerical analysis. See for example, Krasnoselskii, [6]. Let us consider equations $f_{k}(x)=(k+1)(k+2)^{-1} x, k \geqslant 0$ on $[-1,1]=\left[x_{0}, y_{0}\right] \in \mathbb{R}$, where \mathbb{R} is ordered with the usual ordering of real numbers. Then for any x, y with $x \in\left[x_{0}, 0\right]$ and $y \in\left[0, y_{0}\right]$, conditions (5) and (6) are satisfied. We note that when $f_{k}=f(k \geqslant 0)$, the same conditions are satisfied as equalities.

Remark 3. The regularity of space B which is assumed in Theorem 1, is a rather restrictive condition. This condition was essentially used in proving that the iterative procedure (7)-(8) is well defined (that is, there exist sequences $\left\{x_{k}\right\},\left\{y_{k}\right\}$, $\left\{f_{k}\left(x_{k}\right)\right\},\left\{f_{k}\left(y_{k}\right)\right\}(k \geqslant 0)$ satisfying (7)-(10) and they are convergent. Next, we present a method to avoid this regularity assumption. Consider now the following explicit method:

$$
\begin{align*}
& y_{k+1}=y_{k}-A_{k}^{1}\left(y_{k}, y_{k-1}\right) f_{k}\left(y_{k}\right)(k \geqslant 0) \tag{13}\\
& x_{k+1}=x_{k}-A_{k}^{2}\left(y_{k}, y_{k-1}\right) f_{k}\left(x_{k}\right)(k \geqslant 0) \tag{14}
\end{align*}
$$

where $A_{k}^{1}\left(y_{k}, y_{k-1}\right)$ and $A_{k}^{2}\left(y_{k}, y_{k-1}\right)$ are nonnegative subinverses of $A_{k}\left(y_{k}, y_{k-1}\right)$ $(k \geqslant 1)$. Without the regularity it is impossible to prove that sequences $\left\{x_{k}\right\},\left\{y_{k}\right\}$, $\left\{f_{k}\left(x_{k}\right)\right\},\left\{f_{k}\left(y_{k}\right)\right\}(k \geqslant 0)$ produced by (13)-(14) are convergent. However, we can verify that for any common solution $u \in\left\langle x_{0}, y_{0}\right\rangle$ of the equations $f_{k}(x)=0(k \geqslant 0)$,

$$
x_{k} \leqslant x_{k+1} \leqslant u \leqslant y_{k+1} \leqslant y_{k}(k \geqslant 0)
$$

This result becomes important when the existence of the solution is proven by other methods, but it has to be enclosed monotonically (see the next section).

Theorem 5. Consider mappings $f_{k}: D \subset B \rightarrow B_{1}(k \geqslant 0)$, where B and B_{1} are two POL-spaces and let x_{0}, y_{0}, y_{-1} be three points of B for which condition (3) holds. Define S_{1}, S_{2}, S_{3} as in Theorem 1 and assume that there exist mappings $A_{k}():. S_{3} \rightarrow L\left(B, B_{1}\right)(k \geqslant 0)$, satisfying conditions (4)-(6) and such that $A_{k}(u, v)$ has a nonnegative subinverse for any $(u, v) \in S_{3}$.

Then, iteration (13)-(14) defines four sequences $\left\{x_{k}\right\},\left\{y_{k}\right\},\left\{f_{k}\left(x_{k}\right)\right\}$, $\left\{f_{k}\left(y_{k}\right)\right\}(k \geqslant 0)$ and they satisfy properties (9)-(10).

Moreover for any common solution $u \in\left\langle x_{0}, y_{0}\right\rangle$ of equations $f_{k}(x)=0(k \geqslant 0)$,

$$
\begin{equation*}
x_{k} \leqslant u \leqslant y_{k}(k \geqslant 0) \tag{15}
\end{equation*}
$$

Proof: For $k=0$, by denoting $A_{0}^{1}\left(0 ; y_{0}, y_{-1}\right)=A_{0}^{1}$ and $A_{0}^{2}\left(0 ; y_{0}, y_{-1}\right)=A_{0}^{2}$ we have

$$
\begin{gather*}
x_{0} \leqslant y_{0}, f_{0}\left(x_{0}\right) \leqslant 0 \leqslant f_{0}\left(y_{0}\right), A_{0}^{1} \geqslant 0, A_{0}^{2} \geqslant 0, I \geqslant A_{0} A_{0}^{2} \\
I \geqslant A_{0}^{1} A_{0}, I \geqslant A_{0} A_{0}^{2} \text { and } A_{0}^{2} A_{0} . \tag{16}
\end{gather*}
$$

Therefore

$$
\begin{align*}
y_{0}-y_{1} & =A_{0}^{1} f_{0}\left(y_{0}\right) \geqslant 0 \\
y_{1}-x_{0} & =y_{0}-x_{0}-A_{0}^{1} f_{0}\left(y_{0}\right) \geqslant y_{0}-x_{0}-A_{0}^{1}\left(f_{0}\left(y_{0}\right)-f_{0}\left(x_{0}\right)\right) \tag{17}\\
& \geqslant A_{0}^{1}\left(A_{0}\left(y_{0}-x_{0}\right)-\left(f_{0}\left(y_{0}\right)-f_{0}\left(x_{0}\right)\right)\right) \geqslant 0, \\
x_{1}-x_{0} & =-A_{0}^{2} f_{0}\left(x_{0}\right) \geqslant 0, \\
y_{0}-x_{1} & =y_{0}-x_{0}+A_{0}^{2} f_{0}\left(x_{0}\right) \geqslant y_{0}-x_{0}-A_{0}^{2}\left(f_{0}\left(y_{0}\right)-f_{0}\left(x_{0}\right)\right) \tag{18}\\
& \geqslant A_{0}^{2}\left(A_{0}\left(y_{0}-x_{0}\right)-\left(f_{0}\left(y_{0}\right)-f_{0}\left(x_{0}\right)\right)\right) \geqslant 0 .
\end{align*}
$$

Hence both x_{1} and y_{1} belong to the interval $\left\langle x_{0}, y_{0}\right\rangle$.
From (4)-(6), (13), (14) and (16) we get

$$
\begin{aligned}
f_{1}\left(y_{1}\right) \geqslant f_{0}\left(y_{1}\right) & =f_{0}\left(y_{1}\right)+A_{0}\left(y_{0}-y_{-1}-A_{0}^{1} f_{0}\left(y_{0}\right)\right) \\
& =f_{0}\left(y_{1}\right)-A_{0} A_{0}^{1} f_{0}\left(y_{0}\right)+A_{0}\left(y_{0}-y_{1}\right) \\
& \geqslant f_{0}\left(y_{1}\right)-f_{0}\left(y_{0}\right)+A_{0}\left(y_{0}-y_{1}\right) \geqslant 0, \\
f_{1}\left(x_{1}\right) \leqslant f_{0}\left(x_{1}\right) & =f_{0}\left(x_{1}\right)-A_{0}\left(y_{0}, y_{-1}\right)\left(x_{1}-x_{0}+A_{0}^{2} f_{0}\left(x_{0}\right)\right) \\
& =f_{0}\left(x_{1}\right)-A_{0} A_{0}^{2} f_{0}\left(x_{0}\right)-A_{0}\left(x_{1}-x_{0}\right) \\
& \leqslant f_{0}\left(x_{1}\right)-f_{0}\left(x_{0}\right)-A_{0}\left(x_{1}-x_{0}\right) \leqslant 0,
\end{aligned}
$$

and

$$
\begin{align*}
y_{1}-x_{1} & \geqslant y_{1}-x_{1}+A_{0}^{1} f_{1}\left(x_{1}\right)=y_{0}-x_{1}+A_{0}^{1}\left(f_{1}\left(y_{0}\right)-f_{1}\left(x_{1}\right)\right) \tag{19}\\
& \geqslant A_{0}^{1}\left[A_{0}\left(y_{0}-x_{1}\right)-\left(f_{1}\left(y_{0}\right)-f_{1}\left(x_{1}\right)\right)\right] \geqslant 0
\end{align*}
$$

Thus, we have proved $x_{0} \leqslant x_{1} \leqslant y_{1} \leqslant y_{0}$ and

$$
f_{1}\left(x_{1}\right) \leqslant f_{0}\left(x_{1}\right) \leqslant 0 \leqslant f_{0}\left(y_{1}\right) \leqslant f_{1}\left(y_{1}\right)
$$

By induction we can easily obtain (9) and (10). Consider now $u \in\left[x_{0}, y_{0}\right]$ such that $f_{k}(u)=0(k \geqslant 0)$. We have

$$
\begin{aligned}
y_{1}-u & =y_{0}-u-A_{0}^{1} f_{0}\left(y_{0}\right)+A_{0}^{1} f_{0}(u) \geqslant A_{0}^{1}\left[A_{0}\left(y_{0}-u\right)-\left(f_{0}\left(y_{0}\right)-f_{0}(u)\right)\right] \geqslant 0 \\
u-x_{1} & =u-x_{0}+A_{0}^{2} f_{0}\left(x_{0}\right)-A_{0}^{2} f_{0}(u) \\
& \geqslant A_{0}^{2}\left[A_{0}\left(u-x_{0}\right)-\left(f_{0}(u)-f_{0}\left(x_{0}\right)\right)\right] \geqslant 0
\end{aligned}
$$

Hence, $x_{1} \leqslant u \leqslant y_{1}$. By induction it follows that $x_{k} \leqslant u \leqslant y_{k}$, which completes the proof.

If the space B is regular then from (9) and (10) it follows that the sequences $\left\{x_{k}\right\}$, $\left\{y_{k}\right\},\left\{f_{k}\left(x_{k}\right)\right\},\left\{f_{k}\left(y_{k}\right)\right\}(k \geqslant 0)$ are convergent. In some cases the convergence of these sequences can follow from other conditions than regularity.

In the following theorem we provide some sufficient conditions for the convergence of iterations $\left\{f_{k}\left(x_{k}\right)\right\},\left\{f_{k}\left(y_{k}\right)\right\}(k \geqslant 0)$.

Theorem 6. Under the hypotheses of Theorem 2, assume:
(i) $\quad B_{1}$ is a $P O L$-space and B is a normal POL-space;
(ii) $\quad x_{k} \rightarrow x^{*}$ and $y_{k} \rightarrow y^{*}$ as $k \rightarrow \infty$,
(iii) there are two continuous nonsingular nonnegative mappings A^{1} and A^{2} such that $A_{k}^{1}\left(y_{k}, y_{k-1}\right) \geqslant A^{1}$ and $A_{k}^{2}\left(y_{k}, y_{k-1}\right) \geqslant A^{2}$ for sufficiently large k.

Then

$$
f_{k}\left(x_{k}\right) \rightarrow 0 \text { and } f_{k}\left(y_{k}\right) \rightarrow 0 \text { as } k \rightarrow \infty .
$$

Proof: Note first that

$$
\begin{gathered}
0 \leqslant A^{1} f_{k}\left(x_{k}\right) \leqslant A_{k}^{1}\left(y_{k}, y_{k-1}\right) f_{k}\left(x_{k}\right)=y_{k}-y_{k+1} \\
x_{k}-x_{k+1}=A_{k}^{2}\left(y_{k}, y_{k-1}\right) f_{k}\left(x_{k}\right) \leqslant A_{k}^{2}\left(y_{k}, y_{k-1}\right) f_{k}\left(x_{k}\right) \leqslant 0
\end{gathered}
$$

for sufficiently large k. The normality of B implies that

$$
A^{1} f_{k}\left(x_{k}\right) \rightarrow 0 \text { and } A^{2} f_{k}\left(y_{k}\right) \rightarrow 0 \text { as } k \rightarrow \infty
$$

from which the result follows.

Remark 1. Instead of the algorithm (13), (14) we may consider, more generally, an iteration scheme of the form

$$
\begin{aligned}
& y_{k+1}=y_{k}-A_{k}^{1}\left(y_{k}, y_{k-1}\right) z_{k}^{1}(k \geqslant 0) \\
& x_{k+1}=x_{k}-A_{k}^{2}\left(y_{k}, y_{k-1}\right) z_{k}^{2}(k \geqslant 0)
\end{aligned}
$$

where z_{k}^{1}, z_{k}^{2} are arbitrary elements satisfying the inequality

$$
f_{k}\left(x_{k}\right) \leqslant z_{k}^{2} \leqslant 0 \leqslant z_{k}^{1} \leqslant f_{k}\left(y_{k}\right)(k \geqslant 0)
$$

Similar to the previous results it can be shown that under the hypotheses of Theorem 2 this iteration is well defined and the resulting sequences satisfy (9) and (10). This shows, roughly speaking, that if $f_{k}\left(x_{k}\right)$ is approximated from "below" and $f_{k}\left(x_{k}\right)$ is approximated from "above" then monotone convergence is preserved.

This observation is important in many practical computations.
Remark 2. In Theorem 2, we assumed that $A_{k}(u, v)(k \geqslant 0)$, have nonnegative subinverses for $(u, v) \in S_{3}$. If we make the stronger assumption that $A_{k}(u ; v)$ is inverse nonnegative for $(u, v) \in S_{3}$ then in iteration (13)-(14) $A_{k}^{1}\left(y_{k}, y_{k-1}\right)$ and $A_{k}^{2}\left(y_{k}, y_{k-1}\right)$ can be taken as any nonnegative right subinverses of $A_{k}\left(y_{k}, y_{k-1}\right)(k \geqslant 0)$. Note that the property that it is a left subinverse was used only in proving inequalities (17)-(19). Observing that

$$
\begin{aligned}
A_{0}\left(y_{1}-x_{0}\right) & =A_{0}\left(y_{0}-x_{0}-A_{0}^{1} f_{0}\left(y_{0}\right)\right) \\
& \geqslant A_{0}\left(y_{0}-x_{0}\right)-f_{0}\left(y_{0}\right) \\
& \geqslant A_{0}\left(y_{0}-x_{0}\right)-\left(f_{0}\left(y_{0}\right)-f_{0}\left(x_{0}\right)\right) \geqslant 0
\end{aligned}
$$

and using the inverse nonnegativity of A_{0} we deduce that $x_{0} \leqslant y_{1}$. The inequalities $x_{1} \leqslant y_{0}$ and $x_{1} \leqslant y_{1}$ can be proved analogously.

Remark 3. Note that replacing condition (4) by the milder condition

$$
\begin{equation*}
f_{k}(y)-f_{k}(x) \leqslant A_{k}(y, z)(y-x), k \geqslant 0,(x, y) \in S_{1},(y, z) \in S_{3} \tag{20}
\end{equation*}
$$

we can still prove that iteration (7) is well defined and that iteration sequence satisfies $y_{k} \downharpoonright y^{*} \geqslant x_{0}$ whereas $f_{k}\left(y_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. However, assumption (20) does not imply these properties. However by replacing (4) by (20), we can only prove that sequence (13) satisfies $x_{0} \leqslant y_{k+1} \leqslant y_{k} \leqslant y_{0}(k \geqslant 0)$.

As the conclusion of this section we will now give some examples which satisfy conditions (4) and indicate how the general results of this section can be applied to obtain monotone convergence theorems for Newton's and secant methods.

Let us consider mappings $f_{k}: D \subset B \rightarrow B_{1}(k \geqslant 0)$, where B and B_{1} are POLspaces. We recall that f_{k} is called order-convex on an interval $\left\langle x_{0}, y_{0}\right\rangle \subset D$ if

$$
\begin{equation*}
f_{k}(\lambda x+(1-\lambda x) y) \leqslant \lambda f_{k}(x)+(1-\lambda) f_{k}(y)(k \geqslant 0) \tag{21}
\end{equation*}
$$

for all comparable $x, y \in\left(x_{0}, y_{0}\right\rangle$ and $\lambda \in[0,1]$. If B and B_{1} are POL-spaces and if $f_{k}(k \geqslant 0)$ has a linear G-derivative $f_{k}^{\prime}(x)$ at each point $x \in\left\langle x_{0}, y_{0}\right\rangle$ then (21) holds if and only if

$$
f_{k}(x)(y-x) \leqslant f_{k}(y)-f_{k}(x) \leqslant f_{k}^{\prime}(y)(y-x)(k \geqslant 0) \text { for } x_{0} \leqslant x \leqslant y \leqslant y_{0}
$$

Thus, for order-convex G-differentiable mappings, (20) is satisfied with $A_{k}(u, v)=$ $f_{k}^{\prime}(u)$. In the unidimensional case (21) is equivalent with isotony of the mapping $x \rightarrow$ $f_{k}^{\prime}(x)$ but in general the latter property is stronger. Assuming isotony of the mapping $x \rightarrow f_{k}^{\prime}(x)$, we have

$$
f_{k}(y)-f_{k}(x) \leqslant f_{k}^{\prime}(w)(y-x)(k \geqslant 0) \text { for } x_{0} \leqslant x \leqslant y \leqslant w \leqslant y_{0}
$$

so, in this case condition (4) is satisfied for $A_{k}(w, z)=f_{k}^{\prime}(w)(k \geqslant 0)$.
The above observations show that our results can be applied for the Newton method. Iteration (7)-(8) becomes

$$
\begin{align*}
f_{k}\left(y_{k}\right)+f_{k}^{\prime}\left(y_{k}\right)\left(y_{k+1}-y_{k}\right) & =0 \tag{22}\\
f_{k}\left(x_{k}\right)+f_{k}^{\prime}\left(y_{k}\right)\left(x_{k+1}-x_{k}\right) & =0 \tag{23}
\end{align*}
$$

whereas iteration (13)-(14) becomes

$$
\begin{align*}
& y_{k+1}=y_{k}-f_{k}^{\prime}\left(y_{k}\right)^{-1} f_{k}\left(y_{k}\right), \tag{24}\\
& x_{k+1}=x_{k}-f_{k}^{\prime}\left(y_{k}\right)^{-1} f_{k}\left(x_{k}\right) \tag{25}
\end{align*}
$$

Moreover, if in addition

$$
\begin{equation*}
\left\|f_{k}^{\prime}(z)^{-1}\left(f_{k}^{\prime}(x)-f_{k}^{\prime}(y)\right)\right\| \leqslant \gamma\|x-y\|, \text { for } x, y, z \in\left\langle x_{0}, y_{0}\right\rangle \tag{26}
\end{equation*}
$$

then

$$
\begin{array}{r}
\left\|y_{k+1}-x_{k+1}\right\| \leqslant .5 \gamma\left\|y_{k}-x_{k}\right\|^{2}(k \geqslant 0) \\
\left\|y_{k+1}-y^{*}\right\| \leqslant .5 \gamma\left\|y_{k}-y^{*}\right\|^{2}(k \geqslant 0) \\
\left\|x_{k+1}-x^{*}\right\| \leqslant .5 \gamma\left\|x_{k}-x^{*}\right\|^{2}(k \geqslant 0)
\end{array}
$$

These results follow immediately by using (24)-(26), since

$$
\begin{aligned}
&\left\|y_{k+1}-x_{k+1}\right\|=\left\|y_{k}-x_{k}-f_{k}^{\prime}\left(y_{k}\right)^{-1}\left(f_{k}\left(y_{k}\right)-f_{k}\left(x_{k}\right)\right)\right\| \\
&\left\|f_{k}^{\prime}\left(y_{k}\right)^{-1}\left[f_{k}^{\prime}\left(y_{k}\right)\left(y_{k}-x_{k}\right)-\left(f_{k}\left(y_{k}\right)-f_{k}\left(x_{k}\right)\right)\right]\right\| \\
& \leqslant .5 \gamma\left\|y_{k}-x_{k}\right\|^{2}(k \geqslant 0)
\end{aligned}
$$

Note that iteration (7)-(8) with $f_{k}=f(k \geqslant 0)$ and $A_{k}(u, v)=f^{\prime}(u)$ is exactly the same algorithm which was proposed by Fourier in 1918, (see for example [5]) in the unidimensional case and was extended by Baluev, [2]) in the general case.

If $f_{k}:[a, b] \rightarrow \mathbb{R}$ is a real mapping of a real variable then $f_{k}(k \geqslant 0)$, is order convex if and only if

$$
\left(f_{k}(x)-f_{k}(y)\right)(x-y)^{-1} \leqslant\left(f_{k}(u)-f_{k}(v)\right)(u-v)^{-1}
$$

for all $x, y, u, v \in[a, b]$ such that $x \leqslant u$ and $y \leqslant v$. This fact motivates the notion of convexity with respect to a divided difference discussed earlier for the case $f_{k}=$ $f(k \geqslant 0)$.

Let $f_{k}: D \subset B \rightarrow B_{1}$ be nonlinear mappings between two linear spaces B and B_{1}. A mapping $\delta f_{k}(.,):. D \times D \rightarrow L\left(B, B_{1}\right)$ is called a divided difference of $f_{k}(k \geqslant 0)$ on D if

$$
\delta f_{k}(u, v)(u-v)=f_{k}(u)-f_{k}(v)(k \geqslant 0), u, v \in D .
$$

If B and B_{1} are topological linear spaces then the linear mapping $\delta f_{k}(u, v)$ is supposed continuous (that is, $\delta f_{k}(u, v) \in L B\left(B, B_{1}\right)$). Now suppose B, B_{1} are two POL-spaces and assume the nonlinear mapping $f_{k}():. D \subset B \rightarrow B_{1}(k \geqslant 0)$ has a divided difference δf_{k} on $D(k \geqslant 0)$. Then $f_{k}(k \geqslant 0)$ is called convex with respect to the divided difference $\delta f_{k}($.$) on D$ if

$$
\begin{equation*}
\delta f_{k}(x, y) \leqslant \delta f_{k}(u, v)(k \geqslant 0), \text { for all } x, y, u, v \in D \tag{27}
\end{equation*}
$$

with $x \leqslant y$ and $y \leqslant v$. Moreover, the mapping $\delta f_{k}(.,):. D \times D \rightarrow L\left(B, B_{1}\right)(k \geqslant 0)$ satisfying

$$
\begin{equation*}
\delta f_{k}(u, v)(u-v) \geqslant f_{k}(u)-f_{k}(v)(k \geqslant 0) \text { for all comparable } u, v \in D \tag{28}
\end{equation*}
$$

is called the generalised divided difference of $f_{k}(k \geqslant 0)$ on D. If both conditions (27) and (28) are satisfied, then we say $f_{k}(k \geqslant 0)$, is convex with respect to the generalised divided difference $\delta f_{k}(k \geqslant 0)$. It is easily seen that if (27) and (28) are satisfied on $D=\left\langle x_{0}, y_{-1}\right\rangle$ then condition (4) is satisfied with $A_{k}(u, v)=\delta f_{k}(u, v)(k \geqslant 0)$. Indeed, for $x_{0} \leqslant x \leqslant y \leqslant w \leqslant z \leqslant y_{-1}$, we have

$$
\begin{aligned}
\delta f_{k}(x, y)(y-x) & \leqslant f_{k}(y)-f_{k}(x) \leqslant \delta f_{k}(y, x)(y-x) \\
& \leqslant \delta f_{k}(w, z)(y-x) .
\end{aligned}
$$

That is, our results can be applied also for secant method.

3. A lattice theoretical fixed point theorem

In this section we reformulate two fixed point theorems which hold in arbitrary complete lattices. These theorems are due to Tarski, [13].

The first theorem provides sufficient conditions for the existence of a fixed point of a mapping $f: S \rightarrow S$ where S is a nonempty set. The second theorem provides sufficient conditions for the existence of a common fixed point x^{*} of a sequence $f_{k}: S \rightarrow S(k \geqslant 0)$ of mappings.

We shall need some definitions:
Definition 1: By a lattice we mean a system $Q=\{S, \leqslant\}$ formed by a nonempty set S and a binary relation \leqslant; it is assumed that \leqslant establishes a partion order in S and that for any two elements $a, b \in S$ there is a least upper bound (join) $a \cup b$ and a greatest lower bound (meet) $a \cap b$. The relations $\geqslant,<$, and $>$ are defined in the usual way in terms of \leqslant.

Definition 2: The lattice $Q=\{S, \leqslant\}$ is called complete, if every subset S_{1} of S has a least upper bound $\cup S_{1}$ and a greatest lower bound $\cap S_{1}$. Such a lattice has in particular two elements 0 and 1 defined by the formulas

$$
0=\cap S \text { and } 1=\cup S
$$

Given any two elements $a, b \in S$ with $a \leqslant b$, we denote by $[a, b]$ the interval with the end points a and b, that is the set of all elements $x \in S$ for which $a \leqslant x \leqslant b$; in symbols $[a, b]=E_{x}[x \in S$ and $a \leqslant x \leqslant b]$. System $\{[a, b], \leqslant\}$ is clearly a lattice; it is complete if Q is complete.

We consider functions f on S to S and, more generally on a subset S_{1} of S to another subset S_{2} of S. Such a function f is called increasing if, for any elements $x, y \in S_{1}, x \leqslant y$ implies $f(x) \leqslant f(y)$. Note that this assumption is the same as isotony.

We can now present the following theorem whose proof can be found for example in Tarski, [13].

Assume that
(B_{1}) $Q=\{S, \leqslant\}$ is a complete lattice;
$\left(\mathrm{B}_{2}\right) \quad f$ is an increasing function on S to S;
$\left(\mathrm{B}_{3}\right) \quad P$ is the set of all fixed points of f.
Theorem 7. Assume conditions (B_{1})-(B_{3}) are satisfied.
Then the set P is not empty and the system $\{P, \leqslant\}$ is a complete lattice. In
particular,

$$
U P=U E_{x}[f(x) \geqslant x] \in P
$$

and

$$
\cap P=\cap E_{x}[f(x) \leqslant x] \in P .
$$

By the above theorem, the existence of a fixed point for every increasing function is a necessary condition for the completeness of a lattice. The question arises as to whether this condition is also sufficient. It has been shown that the answer to this question is affirmative (see, [13]).

A set W of functions is called commutative if
(i) All functions of W have a common domain, say, S_{1} and the ranges of all functions of W are subsets of S_{1};
(ii) For any $f, g \in W$,

$$
f(g(x))=g(f(x)) \text { for all } x \in S_{1} .
$$

Assume that
$\left(\mathrm{C}_{1}\right) \quad Q=\langle S, \leqslant\rangle$ is a complete lattice;
$\left(\mathrm{C}_{2}\right) \quad W$ is any commutative set of increasing functions on S to S;
$\left(\mathrm{C}_{3}\right) \quad P$ is the set of all common fixed points of all functions $f \in W$.
We can provide the following.
Theorem 8. Assume conditions (C_{1}) (C_{3}) are satisfied.
Then P is not empty and the system $\{P, \leqslant\}$ is a complete lattice. In particular, we have
and

$$
\begin{aligned}
& \cup P=\cup E_{x}[f(x) \geqslant x \text { for every } f \in W] \in P \\
& \cap P=\cap E_{x}[f(x) \leqslant x \text { for every } f \in W] \in P
\end{aligned}
$$

The proof of this theorem is found also in Tarski, [13], and it can be used in connection with the theorems of the previous section. In particular all monotone convergence methods introduced in the previous sections can be used to approximate fixed points x^{*} of mappings $f_{k}(k \geqslant 0)$, whose existence is guaranteed under the hypotheses of the above theorems.

References

[1] I.K. Argyros, 'On the secant method and fixed points of nonlinear equations', Monatsh. Math. 106 (1988), 85-94.
[2] A. Baluev, 'On the method of Chaplygin', Dokl. Akad. Nauk. SSSR 83 (1952), 781-784. (In Russian).
[3] J.E. Dennis, 'Toward a unified convergence theory for Newton-like methods', in Nonlinear functional analysis and applications, Editor L.B. Rall, pp. 425-472 (Academic Press, New York, 1971).
[4] T. Fujimoto, 'Global asymptotic stability of nonlinear difference equations', I. Econ. Letters 22 (1987), 247-250.
[5] L.V. Kantorovich and G.P. Akilov, Functional analysis in normed spaces (Pergamon Press, New York, 1964).
[6] M.A. Krasnoleskii, Positive solutions of operator equations (Noordhoff, Groningen, 1964).
[7] J.P. La Salle, The stability and control of discrete processes (Springer-Verlag, New York, 1968).
[8] K. Okuguchi, Mathematical foundation of economic analysis (McGraw-Hill, Tokyo, 1977). (In Japanese) .
[9] K. Okuguchi and F. Szidarovszky, Theory of oligopoly with multi-product firms (Springer-Verlag, New York, 1990).
[10] F.A. Potra, 'Monotone iterative methods for nonlinear operator equations', Numer. Funct. Anal. Optim. 9 (7, 8) (1987), 809-843.
[11] S. Slugin, 'On the theory of Newton's and Chaplygin's method', (In Russian), Dokl. Akad. Nauk. SSSR 120 (1958), 472-474.
[12] S. Tishyadhigama, E. Polak and R. Klessig, 'A comparative study of several convergence conditions for algorithms modeled by point-to-set maps', Math. Programming Stud. 10 (1979), 172-190.
[13] A.A. Tarskii, 'A lattice theoretical fixed point theorem and its applications', Pacific J. Math. (1955), 285-309.

Cameron University
Department of Mathematics
Lawton, OK 73505-6377
United States of America

Department of Systems and Industrial Engineering University of Arizona Tucson AZ 85721
United States of America

[^0]: Received 13 June 1991

