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A HYBRID BOUNDARY INTEGRAL / TAYLOR SERIES
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FROM FLUID MECHANICS
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Abstract

We show that a combination of Taylor series and boundary integral methods can lead to
an effective scheme for solving a class of nonlinear partial differential equations. The
method is illustrated through its application to an equation from two dimensional fluid
mechanics.

1. Introduction

The boundary integral method is now a well established technique for the
solution of linear partial differential equations [1], but its application to nonlinear
equations has been less widespread. This is not surprising as the nonlinear
equations require to be treated as a sequence of linear inhomogeneous equations
[2,3]. Further, the boundary integral formulation for an inhomogeneous equation
includes body integral terms, these requiring a far more complicated quadrature
procedure than the boundary integrals.

It is the purpose of the present paper to develop a boundary integral approach
to nonlinear equations that avoids the use of body integrals. We first develop a
method for solving linear inhomogeneous equations and then extend this method
for the solution of nonlinear equations. In essence, we find a particular solution
to the inhomogeneous equation and then use a boundary integral method to find
the correct eigensolution. However, since a closed form particular solution can
rarely be achieved, we resort to a patchwork of local series solutions.
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280 C. J. Coleman [2 ]

We demonstrate our approach for a class of differential equations that arises in
the study of plane incompressible viscous flow. In Section 2 we present a
boundary integral formulation for the linear homogeneous equation, in Section 3
we describe our approach to the inhomogeneous equation and then, in Section 4,
we describe extensions to the nonlinear case. The considerations of Section 4
apply to a wide class of nonlinearities, but in Section 5 we consider that which
arises in the study of inertial effects. For this nonliriearity, we consider the
simulation of a stick-slip flow.

2. Integral equations for the homogeneous problem

It was shown in [4] that the plane creeping flows of a Newtonian fluid could be
described in terms of a complex potential x that satisfied

32x/3z2 = 0 (1)
where z(= xx + ix2) is a complex coordinate. The stress components a,y are
related to x by

c u =

o22 = 3

o12 = -

and the velocity components u, by

1

where TJ is the fluid viscosity.
Consider the problem of finding the complex derivatives of x

3x/3^) within a region R having boundary C. We will assume boundary
conditions such that, at each point of C, some linear combination of 3x/3z,
3x/3z, 3x/3z a n d 3x/9^ is specified, the derivatives being related to physical
quantities through

=/ x - 2IJIIX + I(2TJ«2 - f2),

= / i + 2ij«x + i ( / 2 + 2TJ«2),

where /)(= 8</>/3x,) are the integrated components of stress. The problem can be
recast in terms of the integral equation [4]

2/
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where the integrals are defined in terms of their principal values,

( it for points inside C
n/2 for points on C where the curve is smooth
0 for points outside C

and x ± are the kernels
z - zc

For a given set of boundary conditions, suitable combinations of equations (2)
will determine the unknown boundary values. Further, once these boundary
values are known, suitable combinations of (2) will also provide values within
region R.

In all but a few circumstances, it will be necessary to solve the integral
equations by numerical methods. We consider a discretisation for which the
boundary is approximated by a set of linear segments with the derivatives of x
taken to be constant on each segment. Then, for the segment from z, to zl+u we
will have

Jz [dz
approximated by

~ zo\ , dX( zi+i ~ zo z. ~ zc
3z,-- zQ j 3z \z , + 1 - z0 zt- zc

with 3x/3^ and 3x/3^ represented by their values at the mid point of the
segment. After applying this approximation to equations (2), collocation at the
segment midpoints provides a finite set of linear equations that determines the
approximate values of the unknown boundary fields.

3. The inhomogeneous problem

We now consider the solution of

= / ( z , f ) (3)

where / is a function of z and z. Let region R be divided into M subregions R,
with boundaries Cr(I = 1 to M). Then, in the subregion Rf, we expand / in
Taylor series about some point z,

f(z,z)=t E a]m(z-z,y(z-z,r.
j-0 m = 0
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We assume that the Taylor series about z, has a disc of convergence which
contains Rj. Then

f f zy+2(X' = f f ajm{2 - z,y+2(z - z,)m/(f + 3; + 2)

will be a local solution to (3), valid in Rj. However, each local solution x' will
only be unique up to an eigensolution fix' that satisfies d2Sx'/dz2 = 0 and hence
its integral equivalent

± 3 x ± 3 « X , .
r—I—5 5-3— dz

d d
02 dz dz dz

= aliTCi dz dz \ 9z dz

Providing we choose each fix' correctly, x7 + ^X7 WU1 yield a local representa-
tion of x i n region /?7. Now consider a point z0 that does not lie on more than
one of the boundary curves C,. On summing relations (4) for / from 1 to M, we
obtain

9 X i + 3Xi 9 x \ & + J _ ^ 9X 9x± ^
2 3z + 9z dz)az+ 2i?cdz dz "Z

z dz j | Z Z o

(5)
where z0 e i?y, a = IT for allowable points in R and a = TT/2 for points on C
where the curve is smooth. It is important to note that interior unknowns (those
not on C) have cancelled, with the effect that equations (5) and (2) will only differ
by some terms involving known quantities. In essence, we have traded the
problem of evaluating some difficult body integrals for that of performing some
Taylor expansions and then some contour integrals. The solution procedure is
now virtually identical to that for the homogeneous problem.

4. The Nonlinear Problem

Consider the nonlinear equation

d2x/dz2 = f{dx/dz,dx/dz, 9x/3z, 3x/9z, . . . ) , (6)
where / is an analytic function of the various complex derivatives d'+Jx/dz'dzJ

and d'+J\/dz'dzJ. Starting with an initial approximation Xo> w e shall find x a s
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the limit of an iterative procedure for which the (/ + l)th iterate x,+i satisfies

•••) , (7)
subject to the given boundary conditions. Providing the necessary Taylor expan-
sions of /(3X//32) • • •) exist, equation (7) can be solved using the techniques of
the last section. These techniques provide, through (5), the derivatives of x,+i to
any order. Consequently, it is possible to produce Taylor expansions for the
various derivatives of x,+i and x,+i- Further, since/ is analytic in its arguments,
it is also possible to produce the corresponding expansions for /(3x,+i/3z,. . .) .
These expansions will enable the next stage of iteration and so on until a suitable
criterion for convergence has been satisfied.

The expansion of the various derivatives of x,+i and x,+i is best achieved by
expanding (5) and then differentiating the result. However, this requires the
expansion of several contour integrals. Fortunately, once (5) has been discretised,
the integrals reduce to linear combinations of the functions ln(zB — z0) and
(zB — zo)/(zB — z0), with zB ranging over the vertices of the polygons that
approximate the various C,. These functions have the expansions

00

ln(zB - z0) = ln(zB - zj) - £ (z0 - zf)"/{n(zB - z,)"}

and
00

(ZB - ZQ)/(ZB - Z0) = ((ZB - Z,)-(z0 - Z,)) Y, (*o - Zl)"/(ZB ~ zl)" + 1-

5. An Example

We consider the 2D steady state flows of an incompressible Newtonian fluid.
These flows can be described in terms of a complex potential x that satisfies

2 = 0,

where TJ is the viscosity and p0 the density. The stress components o,- • are related
t o x b y

11
_d2ReX Po

" 3 2 W2 ,., \ 3*2 / '

Po

o 1 2 = - -
Po
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and the velocity components by

« * , = - - 9x2

«-> =
2TJ

As an example, the methods of Section 4 have been applied to the boundary
value problem of Figure 1, a stick-slip flow. For discretisation purposes, the
boundary was divided into 160 equal-length segments. Further, full use was made
of symmetry in order to reduce the number of boundary unknowns. The interior
was subdivided into twelve non-overlapping unit squares and, for all squares
without a stick-slip change on the perimeter, the expansion point was located at
the centroid. The field x will become singular at a change from stick to slip and
so this point will he on the circle of convergence for the Taylor series. Conse-
quently, any stick-slip change must be located at the corner of a square if a
suitable expansion point is to exist. This is the case for the above subdivision, the
four squares with a singular corner being those having the origin as a corner. For
these squares, the respective expansion points were chosen to be (-0.6, 0.4), (0.6,
0.4), (-0.6, -0.4) and (0.6, -0.4) in order to ensure that non-singular points were
contained within the relevant disc of convergence. Internal contour integrals were
evaluated using the same approximate procedure as for integrals on C, the
perimeter of each square being divided into 40 equal length segments for this
purpose. A further consideration concerns the truncation of the Taylor series, a
necessity for any practical implementation. In the case of the present simulation,
for squares without a singular corner, it was found sufficient to include terms in
z'zJ with i +j < 8. However, for squares with a singular corner, at least terms
with i + j < 12 were required.

(-2, -1)

(4,1)

f,=

(4, -1)
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Figures 2 and 3 show the velocity fields from simulations of a flow with
Reynolds number zero (the unbroken contours) and a flow with Reynolds
number 10 (the broken contours). The Reynolds number is defined to be p0LU/t)
where L is a length scale and U a velocity scale (L = U = 1 and tj = \ for the
present problem). In order to attain convergence at Reynolds numbers above 7,
the iterative scheme required a small amount of damping. However, for Reynolds
numbers above 12, convergence ceased.

The above simulations were performed using a modified version of our scheme.
At each stage of iteration, instead of choosing local solutions \' such that terms
in z'(i < 2) be zero, these terms were taken from the expansion of 8xT at the
previous iteration. Consequently, as the iteration proceeded, each 8xr tended to
zero and each x7 tended to a local series representation of x- These local
representations of x provide a convenient way of calculating field values and
were used in the production of Figures 2 and 3.
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6. Discussion

We have shown that, by use of Taylor series, it is possible to avoid the use of
body integrals in the boundary integral solution of an inhomogeneous partial
differential equation. Further, by employing iterative techniques, the method can
be extended to enable the solution of nonlinear equations. In nature, our
approach can be regarded as a regional method [5].

The method is extremely effective for regular points of the solution, but
problems can arise in the vicinity of a singular point. As mentioned in Section 5,
singular points will necessitate great care in the choice of expansion regions.
Further, as for other methods that do not give special consideration to singulari-
ties, errors will become appreciable in the immediate vicinity of a singularity.
However, the use of Taylor series enables a possible remedy. For many problems,
the nature of the singularity will be known. Consequently, we may remove that
part of the Taylor series which corresponds to the singularity and replace it by the
correct singular behaviour. Initial experiments with this approach have given
promising results.
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