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Abstract

We prove that if G is a finite flat group scheme of p-power rank over a perfect field of characteristic p, then the
second crystalline cohomology of its classifying stack ngys(BG) recovers the Dieudonné module of G. We also
provide a calculation of the crystalline cohomology of the classifying stack of an abelian variety. We use this to
prove that the crystalline cohomology of the classifying stack of a p-divisible group is a symmetric algebra (in
degree 2) on its Dieudonné module. We also prove mixed-characteristic analogues of some of these results using
prismatic cohomology.
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1. Introduction

Let p be a prime which will be fixed throughout. Our beginning point is the classification of finite
commutative group schemes of p-power rank over a perfect field k of characteristic p in terms of
contravariant Dieudonné theory. This is achieved by defining an algebraic invariant associated to any
given finite group scheme G (assumed to be commutative and of p-power rank, unless otherwise
mentioned), which is called the Dieudonné module of G and will be denoted by M (G). We will recall
the classical construction of M (G) in Section 3. The basic object of interest is the Dieudonné ring 9y,
which is an associative algebra over the ring of Witt vectors W (k). The Dieudonné functor M which
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takes G to M (G) transforms the study of finite group schemes over & to the study of semilinear algebraic
objects. More precisely, we have the following:

Theorem 1.1 (Dieudonné). The Dieudonné functor M induces an antiequivalence between the category
of finite commutative group schemes over k of p-power rank and left Dy -modules with finite W (k) length.

Our primary goal in this paper is to provide a geometric construction of M(G). In particular, we
attempt to understand whether M (G) can be constructed in terms of some cohomology theory associated
to some ‘space’. Since M (G) is a module over W(k), it could be natural to take the naive candidate,
which is the ith crystalline cohomology of G for some i, denoted as Hérys (G). However, one can see that
this cannot not work for any i simply by taking discrete group schemes as input for M(.). Moreover,
any reasonable cohomology theory will suffer from exactly the same problems. The issue is that a
cohomology theory will view any discrete group scheme just as a discrete space, and will be unable to
detect its group structure. This suggests that we look for other spaces naturally associated to G instead
of just G itself. In topology, one can get around this issue by considering the classifying space BG, as
explained in Example 1.3. In category theory, the analogue of this would be to simply view a group G
as a groupoid with one object and morphism set isomorphic to G. In algebraic geometry, for a group
scheme G, a model of these constructions would be to consider the classifying stack BG. Our main goal
is to prove the following:

Theorem 1.2. For a finite commutative group scheme G over k which is of p-power rank, the Dieudonné
module M (G) is naturally isomorphic (up to a Frobenius twist) to Hg,ys(BG), where BG denotes the
classifying stack of G (compare Section 3.1).

Example 1.3. We explain the topological analogue of Theorems 1.1 and 1.2. In the case where G
is a finite abelian group, one can consider the classifying space BG of G, which has the property
that 7;(BG) ~ G and n;(BG) = 0 for i > 1. In this case, Hfingular(BG) ~ Ext'(G,Z), which is
noncanonically isomorphic to the group G. By using the short exact sequence 0 - Z — Q — Q/Z — 0,
we obtain that Ext'(G,Z) ~ Hom(G,Q/Z) = limHom(G, Z/nZ) =~ Hom (G,S'). By Pontryagin
duality, one obtains that sending G — Hszi nula .(BG) gives an antiequivalence from the category of
finite abelian groups to itself.

We also define the classifying stack BG of a p-divisible group G and prove the following:
Theorem 1.4. Let G be a p-divisible group over k. Then H}, (BG) =~ Sym*(M(G)[-2]), where

crys

M (G) denotes the Dieudonné module of G. Here M(G) is considered to be in degree 2. In particular,
HCZ,yS(BG) recovers the Dieudonné module M(G) and H.,,,(BG) = 0 for odd i (compare Section 3.4).

rys

In [SW14], Scholze and Weinstein defined a mixed-characteristic analogue of (covariant) Dieudonné
modules for p-divisible groups over a perfectoid ring. More recently, in [ALB19], Anschiitz and Le Bras
defined a mixed-characteristic analogue of contravariant Dieudonné modules over more general base
rings. In Section 4.2 we briefly recall their work and the definition of the filtered prismatic Dieudonné
module M, (G) = (Ma(G),Fil My (G), ¢um, (G)) associated to a p-divisible group G as defined by them.
Their main theorem is the following classification result:

Theorem 1.5 ([ALB19]). Let R be a quasiregular semiperfectoid ring. The filtered prismatic Dieudonné
module functor

G—-M,(G)

defines an antiequivalence between the category of p-divisible groups over R and the category of filtered
prismatic Dieudonné modules over R.

Using the classifying stack BG of a p-divisible group G, we prove the following:
Theorem 1.6. Let G be a p-divisible group over a quasiregular semiperfectoid ring R. Then the

prismatic cohomology H?A(BG) is naturally isomorphic to the prismatic Dieudonné module M) (G).
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This isomorphism identifies the natural Frobenius on Hz(BG) with the endomorphism ¢, (G) on
My (G). Further, the Nygaard filtration A/'ZlHi(BG) on the prismatic cohomology of the stack BG is
isomorphic to FilM)(G) (compare Section 4.2).

On the other hand, there has been some recent work involving computation of p-adic cohomology
theories associated to the classifying stack of group schemes over p-adic base rings. For example, we
refer to the work of Totaro [Tot18] and the work of Antieau, Bhatt and Mathew [ABM19]. Our results
can also be viewed as some computations in this direction.

Outline of the paper

The statement of Theorem 1.2 presents the need for a theory of crystalline cohomology for stacks.
This theory has already been developed by Olsson in [O107] using the lisse-étale crystalline site of
an algebraic stack. In Section 2, we provide another definition of crystalline cohomology of algebraic
stacks through syntomic descent, relying on the work of Fontaine and Messing [FM87]. In Proposition
2.16 we prove that the definition via syntomic descent and the definition via the lisse-étale crystalline
site are equivalent.

In Section 3.1, we provide a brief review of crystalline Dieudonné theory and prove Theorem 1.2.
Our proof uses a description of M (G) obtained in the work of Berthelot, Breen and Messing [BBMS82],
which expresses M (G) as a certain Ext group in the crystalline topos which is recalled in Theorem 3.8.
The main ingredient of our proof of Theorem 1.2 is to obtain a suitable spectral sequence computing

H{(BG), which is done in Proposition 3.13. In order to obtain the spectral sequence in Proposition
3.13, we use Cech descent along the syntomic map * — BG. In Section 3.2, we deduce the analogue of
Theorem 1.2 for p-divisible groups. In Section 3.3, we provide a complete calculation of the crystalline
cohomology of the classifying stack BA of an abelian variety A. This is done in Proposition 3.28, where

we prove that Hcrys(BA) = Sym" ( clryS(A)) and HéryS(BA) = 0 for odd i. An analogue of this result in

¢-adic cohomology was proved by Behrend [Beh03, Theorem 6.1.6]. Our proof of Proposition 3.28 uses
different techniques. We rely on some explicit simplicial constructions and some computations from the
theory of nonabelian derived functors. Using these calculations, in Section 3.4 we completely calculate
the crystalline cohomology of BG for a p-disivible group G.

In Section 4, we enter the mixed-characteristic situation. We begin by recalling the work of Anschiitz
and Le Bras and define the contravariant prismatic Dieudonné module M, (G) for a p-divisible group G
over a quasiregular semiperfectoid base ring R as an Ext! group in the prismatic topos. This definition is
compatible with the definition in [SW14] as proven in [ALB 19, Proposition 4.3.7]. We will then define
quasisyntomic stacks and define the classifying stack BG of G as a quasisyntomic stack in Definition
4.27. In Definition 4.13, we extend the notion of prismatic cohomology developed by Bhatt and Scholze
[BS19] to quasisyntomic stacks via quasisyntomic descent. Then analogous to Proposition 3.16, in
Proposition 4.33 we prove that M, (G) ~ H?2 . (BG), where the latter denotes the prismatic cohomology
of BG. Similar to the crystalline case, in Proposmon 4.40 we obtain a complete calculation of the
prismatic cohomology of the classifying stack BA, where A is the p-adic completion of an abelian
scheme A.

2. Crystalline cohomology
2.1. Crystalline cohomology for stacks

We gather some notation for this section. We fix a prime p. Let k be a perfect field of characteristic p > 0
and let W (k) be the ring of Witt vectors of k. Let SYNSchy denote the big Grothendieck site of schemes
over k with the syntomic topology. Let D(SYNSchy, W(k)) denote the unbounded derived category of
sheaves of W(k)-modules and let D(W (k)) denote the unbounded derived category of W (k)-modules
(both can be equipped with natural co-categorical enhancements). For a given scheme X € SYNSchy,
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there is a functor RT'(X,-) : D(SYNSchy, W(k)) — D(W(k)). Let RT'¢rys(X) € D(W(k)) denote the
crystalline cohomology of X.

Proposition 2.1. There is an object RO € D(SYNSchy, W(k)) such that RU (X, RO) =~
chrys(x)~

Proof. This is a formal corollary of a result of Fontaine and Messing. Using [FM87, Proposition 1.3],
we get that for any n, there is a sheaf O“”®/W,, on SYNSch; such that the n-truncated crystalline
cohomology (Rl crys/Wy) (X) =~ RT(X, O“Y*/W,). Now we define RO := R lim O /W,,. Then
it follows that R['(X, RO™Y®) ~ H&ln (RTcrys/Wn) (X) = RDcrys(X). O

Definition 2.2. Let 2 be an algebraic stack over k. Let Cq denote the category of schemes X over 2.
We define the crystalline cohomology of the algebraic stack X as

chrys(gr) =R lin chrys(X) € D(W(k)).
XeCyq

Remark 2.3. Alternatively, given an algebraic stack 2 one can consider the slice site &gy, :=
SYNSch, . Then the object RO”* induces an object in the derived category of sheaves of W(k)-
modules on Zsy,, which by abuse of notation we again write as RO“Y®. Then RIy(X) =
RT (Lign, ROY).

Remark 2.4. By Definition 2.2 and Zariski descent, we observe that RI¢y(2) =

R @XGC a RT¢rys(X), where C% denotes the category of affine schemes over 2.

Remark 2.5. Let X — & be a syntomic cover of the algebraic stack 2 by a scheme X. Let X, be the
simplicial algebraic space given by the Cech nerve of X — 2 (so that X,, is the n-fold fibre product of X
over &, which is, in general, only an algebraic space). Then we have that RI¢rys(27) = R llril Rl rys(X).

2.2. The crystalline site

In this section, we provide a brief reminder of definitions of the (big) crystalline site and the associated
topos. We prefer to work with the big site because it is functorial and still computes the same cohomology
groups. Our exposition roughly follows [BBMS82].

We fix a prime p as before. Let k be a fixed field of characteristic p and let W(k) be the ring of Witt
vectors. Let (W(k), p,y) be the usual divided power structure on W (k).

Definition 2.6. We denote by Crys(k/W(k)) a category whose objects are given by the data of a k-
scheme U; a W(k)-scheme T on which p is locally nilpotent; a closed W (k)-immerisoni : U — T}
and a divided power structure ¢ on the ideal sheaf corresponding to the closed immersion i, which we
require to be compatible with the divided power structure y. We will denote an object of Crys(k /W (k))
by (U, T, 6), or simply by (U,T) when no confusion is likely to arise. A morphism in this category
is given by a pair of morphisms 4 : U’ — U and v : T" — T, where u is a k-morphism and v is a
W (k)-morphism compatible with divided powers such that v o i’ =i o u.

Definition 2.7. A family (U;,T;) — (U, T) of maps in Crys(k/W(k)) is a T-covering if U; = U X7 T;
for all i and {T; — T} is a T-covering. Here 7 could be Zariski, étale, smooth, syntomic or fppf. This
equips the category Crys(k/W(k)) with a Grothendieck topology, and we denote the site we obtain
this way by Crys(k/W(k))-. We let (k/W (k))crys,- denote the associated topos. We define a presheaf
O“Y(U,T) :=T(T,Or). This is a sheaf of rings on the site Crys(k/W(k));.

Definition 2.8. Let X be a scheme over k. By X we denote a sheaf on Crys(k/W(k)), defined by
X(U,T) = X(U) =Homg (U, X) (compare [BBMS82, Section 1.1.4.5]). This is a sheaf for any 7, where
7 is from the list mentioned in Definition 2.7.

Remark 2.9. We will write 7 < 7/ when comparing different topologies to mean that 7’ is finer than 7.
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Proposition 2.10. Let G be an abelian sheaf on Crys(k /W (k)),.. Then
RHOmCrys(kjw (1)), (G, O) = RHompys(k/w (k). (G, O)

fort <7’

Proof. This is [BBMS&2, Proposition 1.3.6]. The proof relies on [BBMS82, Proposition 1.1.19]. m|
Proposition 2.11. Let X be a scheme over k. Then
RTrys(X) = RHOMCrys (k)w (1)), (Z [X], O7),

where one can choose any topology T from the list mentioned in Definition 2.7. Here 7 [X ] denotes the
‘free abelian group’ on X in the topos (kW (k))crys, -

Proof. When 1 is a Zariski topology, this follows from [BBMS82, Proposition 1.3.4] and the definition
of crystalline cohomology. The rest follows from Proposition 2.10. O

Remark 2.12. Therefore, we see that it does not matter which topology 7 we choose while computing
crystalline cohomology. We will often choose 7 = Zariski, and in this case we will omit 7 from the
notation and write the relevant site as Crys(k /W (k)) and the topos as (k/W(k))crys.

Remark 2.13. One can also define ‘truncated crystalline sites’ by replacing W (k) by W, (k) in Defini-
tions 2.6 and 2.7 for each n > 1. We denote the corresponding site (equipped with the Zariski topology
for simplicity) by Crys(k/W,(k)) and the associated topos by (k/W,, (k))crys. This has a sheaf of rings
O defined in a way similar to Definition 2.7. Analogous to Proposition 2.1 1, one has that for a scheme
X over k, RUerys (X /W,,) = RHomcyys(k/w, (b)) (Z [X], O°), where X is the sheaf on Crys(k/W, (k))
defined in a way similar to Definition 2.8.

Now we provide a different definition of the crystalline cohomology of an algebraic stack, following
[O107, Section 2.7.1]. Then we will prove that this definition is equivalent to Definition 2.2.

Definition 2.14. Let 2 be an algebraic stack over k. We define the lisse-étale crystalline site of X first
as the category Crys(2 )is-¢c Whose objects are the data of a k-scheme U with a smooth map U — X
over k; a W(k)-scheme T on which p is locally nilpotent; a closed W (k)-immersioni : U — T; and a
divided power structure ¢ on the ideal sheaf corresponding to the closed immersion i, which we require
to be compatible with (W (k), p,y). We will denote an object of Crys(Z )is.¢c by (U, T, §), or simply by
(U, T) when no confusion is likely to arise. The morphisms of this category is defined in the obvious way.
A family (U;, T;) — (U, T) of maps in Crys(2 )ys.¢ is a covering if U; = U X T; for all i and {T; — T}
is an étale covering. This equips Crys(2 )js.¢r With a Grothendieck topology, and the resulting site is
called the lisse étale crystalline site. Let O (U, T) := I'(T, Or) be a sheaf of rings on Crys(2 s ¢

Definition 2.15. We define RTis-g-crys (X) := RT(Crys(X Jiis-¢r, O°°).

Proposition 2.16. RIji.¢.crys(X) = RUer(X) — that is, Definition 2.15 — is consistent with
Definition 2.2.

Proof. We break down the proof into a few steps.

Step 1. First we fix some notations for the proof. We let Crys(Z')s denote the big variant of the site
in Definition 2.14, where we remove the hypothesis that for a pair (U,T) the map U — 2 must be
smooth, and the covers are still given by étale covers. Sending (U,T) — I'(T, Or) defines a sheaf of
rings on both of these sites, which we will denote by O in both cases when no confusion is likely to
occur. Let Crys(Z)syn denote the variant of Crys(X)¢ with the same underlying category, but now the
covers are given by syntomic covers. Lastly, we denote the big syntomic site of 2" by 2y, which is the
full subcategory of schemes over &, and the topology is given by syntomic coverings.
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Step 2. In this step, we show that crystalline cohomology can be computed in the big site Crys(2 )g.
We have an inclusion functor

Crys(Xis-sc = Crys(X)ats
which is continuous and cocontinuous and therefore gives a map of topoi
i : ShvCrys(X )iis-¢t — ShvCrys(Z )g;.

We want to prove that there is a natural isomorphism RI7 ¢ (Sl" , i‘lOcrys) ~ Rls (X, O%). Thus, it
is enough to prove that i~! has a left adjoint iy which is exact. Following the method of proof in [SP,
Tag 071J], it is enough to show that i* = %, where * denotes the final object.

Let Y — X be a smooth cover of & by a scheme Y. First we prove that for any given object
(U,T) € Crys(X)g, there exists a cover {(U;, T;) — (U,T)} in Crys()g such that for all i there are
maps U; — Y over 2. In order to show this, first we change base to get a smooth map U Xg Y — U
which admits a projection map U Xg Y — Y. Now we pick an étale cover U' — U Xg Y, where U’ is a
scheme, and thus we get a smooth map U’ — U. This can be refined further to obtain maps U; — U’ such
that the composition {U; — U’ — U} is an étale cover. Now i : U — T is a divided-power thickening
of U with p being locally nilpotent on 7. Therefore i : U — T is a universal homeomorphism. By the
invariance of étale sites [SP, Tag 04DY] for universal homeomorphisms, we get étale maps T; — T
such that 7; Xy U = U;. This gives a thickening U; — T;. Since the map T; — T is étale, by [SP,
Tag 07H1], the ideal of the thickening U; — T; has divided powers. Further, since {U; — U} was an
étale cover, {T; — T} is also an étale cover by construction. Thus we have constructed a refinement
{(U;, T;) — (U, T)} in the site Crys(Z ). For all i, we have also constructed maps U; — Y over 2.

Now by using the proof in [SP, Tag 071J], we fix a set of divided-power thickenings (Us, Ty)ses by
picking (Uy)ses = (SpecCy)ses to be an affine Zariski open cover of the scheme Y and, for each s € S,
building 7 by using the algebra C; as in [SP, Tag 07HP]. Since the map ¥ — 2 was smooth, it follows
that (U, Ts) € Crys(2)is-¢t- Using the discussion from the previous paragraph and the construction
of (Us, Ty)ses, we get an epimorphism [ [ cg b, 7,y — * in ShvCrys(Z )¢, which implies i1 = *,
proving our main claim in step 2.

Step 3. In this step, we show that crystalline cohomology can also be computed in the finer site
Crys(Z )syn. We have a map of topoi

v : ShvCrys(Z )syn — ShvCrys(Z)s.

Let v, denote the corresponding right adjoint. The left adjoint v™! is given by sheafification. Thus
we obtain a natural isomorphism RTsy, (2, OY°) = RT¢ (X, Rv.O*). We claim that Ry, O ~
v, O = O, This statement can be checked locally and thus follows from the scheme case, where it
is already known. We refer to [BBM82, Proposition 1.1.19] for a proof in the case of schemes.

Step 4. In this step, we show that crystalline cohomology can be computed in X5y, as well and
conclude the proof. We have a functor

h 2 Crys(Z )syn — Lyn

which sends (V,T) — V. By the proof of [FM&87, Proposition 1.3], this functor is cocontinuous. By
[SP, Tag 00XT], there is a morphism of topoi

u : ShvCrys(X)syn — Shvlyn,

T . . -1 . .
where u.(F)(U) = l(ln(V’T)/U F(V,T). We write the left adjoint by ™", which is exact by [SP, Tag

00XL]. By adjunction, it follows that u, commutes with the global section functor: Indeed, we obtain
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Hom(*, u.F) =~ Hom(x, F). Therefore it follows that Ry, (', O*) =~ RT'Ru,.O“**. Now the right-
hand side is equivalent to Definition 2.2. Therefore we are done. O

3. Application to crystalline Dieudonné theory

In this section, we apply the notion of the crystalline cohomology of stacks to describe the Dieudonné
module of a finite group scheme of p-power order or a p-divisible group as the crystalline cohomology
of the classifying stack. Before we do that, we briefly remind the reader of the main theorem of
contravariant Dieudonné theory and the related definitions.

Definition 3.1. Let k be a perfect field and W (k) the ring of Witt vectors of k. Let o denote the
Witt vector Frobenius which is induced from the Frobenius in k. The Dieudonné ring 9 is defined
to be the free noncommutative polynomial ring in two generators F,V over W(k) subjected to the
relations FV = VF = p, Fc = o(¢)F for ¢ € W(k) and ¢V = Vo (c) for ¢ € W(k). The ring Dy, is
noncommutative when k # I, and is Z, [x, y]/(xy — p) when k = F,.

Definition 3.2. We let W,, denote the group scheme that corepresents the functor that sends a k-algebra A
to the ring of length n Witt vectors W,,(A). These group schemes are naturally induced with a Frobenius
endomorphism F on them, and we define W}* to be the group scheme which is the kernel of " on W,,.
We also have a map V : W,, — W, induced by the Witt vector Verschiebung which turns {W,}, -,
into a directed system of group schemes. We define CW" := h_r)n W,,. One defines the formal p-group
CW of Witt covectors as a completion of CW" in a suitable sense. We refer to [Fo77] for details.

Example 3.3. By definition, W is the additive group scheme G,. Also, W11 is the finite additive group
scheme with the underlying scheme given by Speck [x]/x”, which is usually denoted as . Similarly,
W' is the finite additive group scheme with the underlying scheme given by Speck [x] /xP", which is
denoted as «pn. The Cartier dual of a -~ is given by the group scheme W1. More generally, the Cartier
dual of W, is isomorphic to W, [Dem72, Chapter III, Section 4].

Definition 3.4. For a finite group scheme G over k, we define the Dieudonné module of G to be
M (G) := Hom(G, CW),

where the Hom is being taken in the category of formal groups.

Now we are ready the state the classical theorem of contravariant Dieudonné theory, which can be
found in [Fo77, Chapitre I1I, Section 1, Theorem 1]:

Theorem 3.5. The functor G — M (G) induces an antiequivalence between the category of finite group
schemes over k and left Dy.-modules with finite W (k) length.

Example 3.6. Let us give some examples of Dieudonné modules associated to certain finite flat group
schemes. For the group schemes W, from Example 3.3, we have M (W,T) ~ D [/Dy - (F™, V")
[Oor66, Section 15.4]. In particular, M (apn) =~ Dy /Dy - (F", V). For the multiplicative group scheme
underlying p"th roots of unity denoted as ppn, we have M (upn) =~ Dy /Dy - (F", (V - 1)). For the
constant group scheme Z/p"7Z, we have M (Z/p"7Z) ~ Dy | Dy - ((F = 1),V").

Example 3.7. Let E[p] denote the p-torsion group scheme of a supersingular elliptic curve E over k.
Then M(E|[p]) ~ D/ Dk - (Fz, F-V, Vz). We refer to [Oor66, Section 15.5] for more details.

In [BBMS&2], Berthelot, Breen and Messing obtained an alternative description of M(G). Given
a finite group scheme G, using Definition 2.8 we obtain an abelian group object G of the topos
(k/W(k))crys- It proves the following theorem, which expresses M(G) as a certain Ext group in the
crystalline topos.
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Theorem 3.8 ((BBMS82, Theorem 4.2.14]). For a finite group scheme G for p-power rank, we have

oc*M(G) ~ Extzk/w(k))c (G, 0, where * M (G) denotes the extension of scalars along the Witt
rys

vector Frobenius o — that is, o*M(G) = M(G) ®w k), W(k).

3.1. Dieudonné module of finite group schemes

In this subsection, we work with finite group schemes G of p-power rank over a perfect field k. Let
BG := [Speck/G] be the classifying stack of G [SP, Tag 0440]. Any such group scheme is a local
complete intersection and therefore it follows that the map Speck — BG is a syntomic cover. Its Cech
nerve is given by the following simplicial scheme:

G XGxG =G xG =G —= Speck.

As in Definition 2.8, we can attach a sheaf G on Crys(k/W (k)) which can be viewed as an object of the
topos (k/W (k))crys. Corresponding to this Cech nerve, we obtain by functoriality a simplicial object of
the topos:

BG = GXxGxG=—%GxG=%G=—= x

where * is the final object. With this simplicial object, we can attach the free simplicial abelian group
object

- L[GXGXG| =XZ|Gx G| == Z|G] ==

The alternating face map complex associated to this simplical object is as an object in the category
of complexes of abelian objects of the topos (k/W (k))crys, Which can also be viewed as an object in
the derived category of abelian objects of (k/W(k))cyys, denoted as D (k/W (k)). This object living in
D (k/W(k)) is also isomorphic to the homotopy colimit of

- L|Gx G| ==12[G]| ==1Z

viewed as a functor from A°P to D(k/W(k)). We denote this object by Z [BQ] € D(k/W(k)). If we
work with the truncated crystalline site Crys(k/W,,(k)), all of these constructions remain valid, and one
can associate Z [BQ] € D(k/W,(k)) as well.

Lemma 3.9. H (Z [BG|) ~Z and H' (Z |BG]) ~ G

Proof. First we work with the presheaf simplicial abelian group object
I [G X G| =% 7 [G] ==L,

which is obtained by applying the free abelian presheaf functor to BG [SP, Tag 03CP]. Let ZP™ [BQ ]
be the associated complex: K*® := ---ZP® [G X G| — ZP* [G| — Z — 0. We see that H® of this
complex is Z, since the last differential is zero. One also notes that K* computes the (presheaf) group
cohomology of the (presheaf) abelian group G with constant coefficients in Z, and hence H~! (K*®) ~ G.
Now since sheafification is exact, we obtain the required statements. O

Lemma 3.10. Let G be a group scheme of order p™. Then H™ (Z [BQ]) is killed by p™ fori > 0.
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Proof. We start by recalling some definitions for this proof. Let A be an ordinary n-torsion abelian
group. Let us define Z[BA] to be the alternating face complex associated to the simplicial abelian

group

- Z[A X A] == Z[A] —=Z.

Then, as noted previously, H'(Z[BA]) =~ H;(A), where the latter denotes group cohomology with
coefficients in Z. This is also the homology of the Eilenberg—MacLane space K (A, 1). We will show
that H;(A) is n-torsion (*). First, from the complex Z[ BA], one notes that H; (A) commutes with filtered
colimits as a functor defined on abelian groups. Since A is an n-torsion abelian group, it can be expressed
as a filtered colimit of finite n-torsion abelian groups. Therefore, it is enough to check the statement
for an n-torsion finite abelian group A. Further, one notes that K(A, 1) X K(Az,1) =~ K(A] X Az, 1);
therefore, by using the Kiinneth formula, we are reduced to checking this for n-torsion cyclic groups,
where it follows from the well-known computation of group homology of finite cyclic groups using the
Tate complex. The statement in the lemma now follows from applying (*) to ZP™ [BQ] and noting that
since G has order p™, one has p™ - G = 0. O

Remark 3.11. These lemmas clearly remain valid even if we were working with the truncated crystalline
sites Crys(k/W,,(k)) mentioned in Remark 2.13.

Proposition 3.12. RT ., (BG) =~ RHomp kjw (x)) (Z [BG], O™).

Proof. Since Speck — BG is a syntomic map, we can apply Remark 2.5, which gives that
RT¢ys(BG) ~ R lin (chrys(spe(:k):>> RFcrys(G)§ Rlerys(G X G) - ) .
By Proposition 2.11, this is

= Rlim (RHOmD<k/W<k>>(Z, O™*) === RHomp )w (1 (Z [G] , O ) =—=
RHomp(kjw () (Z[G x G], OF*) --).
We can take the RliLn inside as a homotopy colimit, which gives us that this is =
RHomp k/w (k) (Z [BG], OY), as desired. ]

Proposition 3.13. There is a spectral sequence with E>-page

Ey) = Extly . (H (Z[BG),0°) = Hi(BG)

and another spectral sequence with E-page
E\’ = H., (G') = H}(BG),
where G' denotes the i-fold fibre product of G with itself. By convention, G° = x.

Proof. This is a consequence of [SP, Tag 07A9] and Propositions 2.11 and 3.12. O

Proposition 3.14. H!_ (BG) = 0.

rys

Proof. We can use the E, spectral sequence from Proposition 3.13 to compute Hérys(BG). We note that
Ext' (Z, O™®) = 0 fori > 0, as it computes the cohomology of Speck for a perfect field k, by Proposition
2.11. Also, by [BBM&2, Proposition 4.2.6], we have Hom (G, O°¥*) = 0. These calculations, along with

the spectral sequence and Lemma 3.9, imply Hclrys(BG) =0. O

Proposition 3.15. If G is a finite group scheme of p-power order, then for any i > 0, H.
by a power of p as an abelian group.

(BG) is killed

rys
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Proof. This follows from the spectral sequence in Proposition 3.13. Indeed, already in the E,-page of
the spectral sequence, all but Eg’o is p-power torsion by Lemma 3.10. Hence, all but E%0 is p-power
torsion as well. Therefore, for any i > 0, H(,y(BG) has a finite filtration whose successive quotients are
p-power torsion, and hence is p-power torsion itself. O

Proposition 3.16. If G is a finite group scheme of p-power order, then H?. (BG) =

crys
1 Crys
Xt w (1), (G- O7):
,O) — HZ. (BG), which is in-
JeCthG Indeed, from the E,-spectral sequence (which is natural in G), we note that FlloHcrys(BG) =
(BG),Fil'H, rys(BG) = 0 for i > 2, and therefore Fil' Hrys(BG) = Ext(k/W(k))C (G, 0°%),
Tys

which gives the required injective map. We proceed to proving that this natural map is an
isomorphism.

Set Rl erys(BG/W,) = Rluys(BG) ®L
Then we have the exact sequence

. . 1
Proof. First we note that there is a natural map Ext( KW (K)) e (G

crys

W, (k) and H.  (BG/W,) := H' (RTerys(BG/W,)).

W (k) crys

0 = Hry, (BG)/p" = Hirys(BG[Wn) — Hy (BG)[p"] = 0.
Now we choose n large enough that p"G = 0 and ngys(BG) is p"-torsion. This is
possible by Proposition 3.15. Then the exact sequence, along with Proposition 3.14, gives
Clrys(BG/W,,) ~ Hfrys(BG) for such an n. By [BBMS2, Proposition 4.2.17], we have

EXt(k/W(k))c (G, O) = Hom/w,(k))q,, (G, O™°). Therefore, it is enough to show that
Tys

crys(BG/W ) = Hom(k/Wn(k))Crys (Q Ocrys)
Since

RTys (BG) = R1m ( RTrys (Speck) ==% RTerys(G)==F RTerys(G X G) -+,
we obtain

chrys(BG/Wn) = Rliil (chrys(speCk/Wn)j chrys(G/Wn):>> chrys(G xG[W,)-- ) .

In order to justify the last step, we note that W), (k) is quasi-isomorphic to the complex W (k) LN W(k);
thus the functor ( -) ® W (k) W, (k) commutes with the R hm as required.
Therefore, by Remark 3.11 and the proof of Proposmon 3.12, one obtains

RIys(BG /W,,) =~ RHomp (x/w, (k) (Z [BQ] , Ocrys) .
and, analogously to Proposition 3.13, a spectral sequence with E,-page

EY = Bxtig w, ())o, (H (Z[BG]). O) = HGl(BG/Wa).

Now applying Lemma 3.9 yields the desired isomorphism. To check this, we see that E21,0 =0 and

EY' = Hom k), (k))c,,, (G, O°°). Also, we have E>" = 0. Since EfY = 0fori < 0orj <0,

we obtain E%;' = Hom,x [Wa () (G5 O*). Therefore, we indeed obtain the required isomorphism

is depicted in the following diagram:

H}yy (BG [W,,) = Hom i w, (k) s (G, O°¥). The relevant part of the E» page of the spectral sequence
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0 EY? E)? E}?
0 Hom (G, O Ey' E}'

| 0’0 ’0\ 2’0

0 EY" = W, (k) E;'=0 E;'=0

Proof of Theorem 1.2. This follows from Proposition 3.16 and Theorem 3.8. O

Remark 3.17. One can develop the theory of crystalline cohomology for higher stacks and study the
cohomology of the n-stack K (G, n) [To06]. For a group scheme G, the n-stack K(G, n) is supposed to
be an analogue of the Eilenberg—-MacLane space K (G, n) for any discrete abelian group G which has
the property that 7;(K(G,n)) = G fori = n and m;(K(G,n)) = 0 for i # {n,0}. In the topological
case, there exists a chain complex of abelian groups Z[B"G] such that H;(Z[B"G]) computes the
singular homology of the CW complex K(G,n). Here we do not define crystalline cohomology for
higher stacks in general, but for a finite group scheme G, we can work with an ad hoc definition
generalising Proposition 3.12. Similar to the definition of Z [BQ] as an object of the crystalline topos,
one can also define Z [B”Q] Then we define RTcrys(K(G,n)) := RHom w (1)) (Z[B"G], O®).
Then from the analogue of the spectral sequence in Proposition 3.13, we obtain that H,(K(G,n)) =0
forO<i<n+1and Hg’r;l(K(G, n)) = M(G). In order to prove this for n > 2, the computation with
the spectral sequence relies on the fact that for an abelian group A, H;(K(A,n),7Z) =0for 0 <i < n,
H,(K(A,n),Z) = A and H,,+1(K(A,n),Z) = 0. The first two of these computations follow from the
Hurewicz theorem, and the last one follows from applying the Serre fibration spectral sequence for the
homotopy fibration sequence K(A,n) — * — K(A,n+ 1).

3.2. Dieudonné theory of p-divisible groups

First, we recall the definition of a p-divisible group:

Definition 3.18. Let p be a prime and # > 0 an integer. A p-divisible group (or Barsotti—Tate group) of
height 4 over a scheme S is a directed system G = {G,,} of finite flat group schemes over S such that each
G, is p"-torsion of order p"h and the transition map i, : G, — G4 is an isomorphism of G,, onto
Gpi1[p"] forall n > 1. A morphism f : G — H between p-divisible groups is a compatible system of
S-group maps f, : G, — H, foralln > 1. If S’ — § is a map of schemes, then G Xg S’ := G, X5 S’
is the p-divisible group of height / over S” obtained by base change.

Example 3.19. If A — § is an abelian scheme with fibres of constant dimension g > 0 and p is a prime,
then G, := A[p"] is a finite flat p"-torsion group scheme of order p?¢” for all n > 1 and {G,} is a
directed system via isomorphisms G, = G,1[p"] for all n > 1. For an abelian variety A, we denote
this p-divisible group by A[p]. It has height 2¢, where g = dim A.

We also recall the following theorem on the Dieudonné theory of p-divisible groups, which can be
found in [Fo77, Chapitre III, Section 6, Proposition 6.1]:
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Theorem 3.20. The functor G — M(G) := @M (Gy) is an antiequivalence of categories between
the category of p-divisible groups over k and the category of finite free W (k)-modules D equipped with
a Frobenius semilinear endomorphism F : D — D such that pD C F (D). The height of G is the
W (k)-rank of M (G).

Now in order to formulate the analogue of Theorem 1.2 for p-divisible groups, we begin by making
a definition:

Definition 3.21. Let G be a p-divisible group over k. We define the classifying stack of G to be
BG = h_n)] BG,,, where the colimit is being taken in the category of stacks.

Proposition 3.22. For a p-divisible group G = {G,}, we have RT¢;s(BG) ~ R lin RT¢rysBG .

Proof. We write F,, := BG, and F := BG for this proof. Using Remark 2.4, we see that the crystalline
cohomology of a stack )’ depends only on ) viewed as a presheaf of groupoids on the category of
affine k-schemes Affy. If Y := colim)/,, as presheaves of groupoids, then by the alternative definition in
Remark 2.4 it follows that RI¢ys())) = Rlimg RI'¢ys(Ve). Therefore, in order to show that Ry (F) =
R liLnn RO ¢ys(Fr), it is enough to prove that F is the colimit of ¥, in the category of presheaves of
groupoids on Affx. This follows because affine schemes in the fpqc site of all schemes satisfy the property
that any fpqc covering of an affine scheme has a finite subcovering by affine schemes. Indeed, by the
property we mentioned, checking descent over an affine scheme is essentially a finite limit condition.
Thus our claim follows, since filtered colimits commute with finite limits. O

Proposition 3.23. We have a natural isomorphism Hf.,ys(BG) =~ M(G).

Proof. We are interested in computing ngys (BG), which is H? (R 1(21 RFcrysBGn) by Proposition 3.22.
We compute the cohomology of this N-indexed derived limit by using [SP, Tag 07KY], which gives us
the short exact sequence

0 — R'lim Hy (BGy) — Heyo(BG) — lim Hgy ((BGy) — 0.

T

Therefore, our claim follows from Propositions 3.14 and 3.16 and Theorem 3.20. m]

3.3. Cohomology of the classifying stack of an abelian variety

Now we consider an abelian variety A over the field k. Let BA denote the classifying stack of A. In this
section, in Proposition 3.28, we prove that H>: (BA) = Sym* (Hc]rys(A)), and H. . (BA) = 0 for odd

Tys crys

i. In other words, H;y (BA) = Sym* (Hclrys(A)), where Hclrys(A) is considered to be in degree 2.

Remark 3.24. An analogue of this proposition was proved by Borel in topology [Bo53] and by Behrend
in £-adic cohomology using fibration spectral sequences [Beh03, Theorem 6.1.6]. Here we take a different
approach, based on descent theory. One knows that there is a functorial isomorphism H(y (A) =
A Hclrys(A). We show that Proposition 3.28 is a formal consequence of this isomorphism and the
Kiinneth formula.

In this section, we will crucially use the theory of derived functors of nonadditive functors, which
appears in [DP61, 1171]. Note that, analogously to Proposition 3.13, there is an E; spectral sequence
with E\Y = Hl,ys (A") = Heys(BA), where A’ denotes the i-fold fibre product of A with itself. We
note that by definition, for j > 1, E ;’J is the alternating face complex associated to the cosimplicial
object given by

(I-IAc].rys(*)j> Hbirys(A)§ ngys(A X A) o ) ’
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which is naturally isomorphic to the cosimplicial object
J
/\ (H(}rys(*)4> Hérys(A)S H(!rys(A X A) t ) .
Lemma 3.25. The complex E 1"1 is homotopy-equivalent to HLl.ryS(A) [-1].

Proof. As already noted, E 1"1 is the alternating face complex associated to

(Hc]rys(*)*> H(]:rys(A):>> ngys(A X A) o ) .

By the Kiinneth formula, one has a natural isomorphism ngys (A7) = EBZ:I Hclrys(A), and H' (%) = 0.

Writing HclryS(A) =V, we note that E;’] is naturally isomoprphic to the following explicit complex
(where V sits in cohomological degree 1):

K}:i >0 VoV2 5y

Here the first differential d; : V — V®2 is zero. In general, for n > 2, the differential d,, : V" — V&+!

is given by
dy(vi,v2,...,vp) = (-v1,0,v2 = v3,0,v4 — v5,0,...,v,) forevenn
and
dy(vi,vo,...,vn) =(0,v2,v2,v4,V4,...,0) forodd n.
One can check this by induction. Now we consider the complex K5 : -+ >0 —>V -0 —>0---,

where V sits in cohomological degree 1. There are obvious maps K7 — K3 and K3 — K7} (induced
by idy on cohomological degree 1), and we prove that they induce the desired homotopy equivalence.
There is nothing to prove for the composite map K3 — Kj. For the other composite map, K} — K7,
our task is to prove that it is homotopic to idks. We construct the required homotopy #;. We set
h; = 0fori < 2. Fori > 3, now we define h; : V¥ — V-1 We let h3(vi, vo,v3) = (=vi,v3) and
ha(vi,...,vq) = (0,v7,0). In general, we set

hi(vi,...,vi) =(0,v,2,0,...,0,v;—2,0) foreveni > 6
and
hi(vi,...,vi) =(=v1,0,-v3,0,...,0,-v;_5,v;) foroddi > 5.
One easily checks that this gives the required homotopy. O

Remark 3.26. For the cohomology of the complex K7, one can also use a less explicit argument. If
we write V = Hclrys(A) as before, the addition A X A — A induces a map V — V @& V which is
dual to addition on V. Therefore, one sees that the complex K7 is the dual complex to BVY (whose
cohomology is concentrated in cohomological degree —1 and is equal to V). Applying duals back,
one sees that cohomology of K7 is concentrated in cohomological degree 1 and is equal to V. In fact,
one can also prove that K7 is homotopy-equivalent to V[~1] in this manner by noting that BVY is
homotopy-equivalent to VV[1]. We thank the referee for pointing this out.

Lemma 3.27. The complex E}"" is homotopy-equivalent to Sym” (Hclrys(A)) [-n].
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Proof. Writing ngys(A) = V again, we note that by Lemma 3.25, Er’l is homotopy-equivalent to

V[-1]. Therefore, the (derived) nth exterior power A" (V[—1]) is homotopy-equivalent to A" (E 1'1) by
[1171, Definition 4.1.3.2, Lemma 4.1.3.5]. It also follows from [I171, Definition 4.1.3.2, Section 1.3.4]

that A" (E 1'1) is homotopy-equivalent to the alternating face complex associated to

/n\ (Hclrys(*):>> Hc]rys(A)§ Hc]rys(A X A) o ) >

which is isomorphic to E}". Now one also notes that A"(V[-1]) is homotopy-equivalent to
Sym”"(V)[-n], by the formula of décalage [I171, Proposition 4.3.2.1(i)]. This proves the lemma. O

Proposition 3.28. We have a natural isomorphism H>:, (BA) = Sym* (H clrys(A)) ,and H. _(BA) =0

crys crys
for odd i.

Proof. This follows from the existence of the E; spectral sequence analogous to Proposition 3.13
(which degenerates at the E; page by Lemma 3.27) and the calculations from Lemmas 3.25 and 3.27.
The spectral sequence also guarantees the naturality of the isomorphisms. O

Corollary 3.29. For an abelian variety A over k, Hfrys(BA) is naturally isomorphic to the Dieudonné
module associated to the p-divisible group A[p®].

Proof. This follows from Proposition 3.28 and the fact that HclryS(A) is isomorphic to the Dieudonné
module associated to the p-divisible group A[p™]. O

3.4. Cohomology of the classifying stack of a p-divisible group

Let G be a p-disivisible group over a perfect field k. Using the calculation in Section 3.3, we are
able to fully compute the cohomology ring H.y (BG). In this section, we prove that H(,y (BG) =~
Sym*(M(G)), where M(G) is the Dieudonné module of G and is considered to be in degree 2. Our
strategy is to relate the p-divisible group to a suitable abelian variety and deduce the result from
Proposition 3.28. First, we will record two lemmas:

Lemma 3.30. Let G be a uniquely p-divisible abelian group. Then H;(G,k) = 0 for i > 0, where
H;(G, k) denotes the group homology with coefficients in the field k equipped with trivial G action.

Proof. Since G is an abelian group, there is an exact sequence 0 — Z® — Z®/ — G — 0. By taking
colimits over multiplication by p, we obtain an exact sequence 0 — Z[1/p]®! — Z[1/p]® — G — 0.
Using the Hochschild—Serre spectral sequence, we are reduced to checking the claim for G = Z[1/p]®!.
By taking filtered colimits, we can assume that [ is finite. Then by the Kiinneth formula it is enough to
check the claim for Z[1/p]. Taking filtered colimits over multiplication by p, it follows from the fact
that Hy(Z, k) = k and H;(Z, k) = 0 fori > 0. O

Lemma 3.31. Let G be an abelian group such that multiplication by p is surjective on G. Then it
Jollows that W, (k)[BG [p®]] — W, (k)[BG] is an isomorphism in the derived category D(W,(k)) of
W, (k)-modules. Here G[p®] := li_r)nG[p”].

Proof. Going modulo p, it would be enough to show that k[ BG [p™]] — k[BG] is a quasi-isomorphism.
For that, it would be enough to prove that the map induced on group homology H;(G[p™], k) —
H;(G, k) is an isomorphism. Here in both cases, group cohomology is taken with constant coefficients
in k. We have the exact sequence

0—- G[p”] > G — 1limG — 0.
>
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We will write Q := h_r)n G. By the Hochschild—Serre spectral sequence, we have a spectral sequence
p

Ey=H, (Q,Hy(G[pT].k)) = Hp+y(G k).

Since G is abelian and G acts trivially on k, it follows that Q acts trivially on H,(G[p™], k). Since k is
afield, H,(G[p™], k) is a direct sum of copies of k, and therefore we are done, by Lemma 3.30. O

Proposition 3.32. Let A be an abelian variety over k. Let A[p™] be the associated p-divisible group.
Then H}, (B(A[p®])) = Sym" (H2 (BA[p""])), where H? (BA[p*®])) is considered to be in

crys crys crys

degree 2.

Proof. We let X denote the topos Shv(SYNSchy ). Given the abelian variety A, we can associate an object
in X (by considering functors of points), which will also be denoted by A. Similarly, by taking direct
limits, we can associate an object in X corresponding to A[p®], which will again be denoted by A[p*].
Since they both are group objects, we can consider the associated classifying objects as simplicial objects
in &, denoted respectively by BA and BA[p*]. One can also consider the free W, (k)-module on these
objects and take the associated alternating face complex, which will be denoted by W, (k)[BA] and
W, (k)[BA[p™]], respectively, and can both be viewed as objects in D (W,,(k))y; the derived category of
Wy (k)-modules in X. We set RTys(BA[p™]/W,) := RHomp w, (k) ,(Wn (k) [BA[p™]], O |W,)
and Ry (BA/W,,) := RHomp w, (k)) , (Wn (k) [BA], O IW,).

Lemma 3.33. There is a natural isomorphism W, (k) [BA[p™]] =~ W,,(k)[BA] in D(W,,(k))x. Thus
RUry(BA[p®1/Wy) = RTrys(BA/W,,).

Proof. Since the multiplication-by-p map on the abelian variety A is a syntomic cover, it follows that
as an abelian group object of X, multiplication by p is surjective on A. Using the map A[p™] — A, we
obtain a natural map W, (k)[BA[p*™]] — W, (k)[BA], and in order to prove that this map is a quasi-
isomorphism, we need to check that H (W, (k)[BA[p™]]) — H'(W,(k)[BA]) is an isomorphism.
Note that since the topos X can be generated by affine schemes, it is (locally) coherent, and by Deligne’s
theorem [AGV72, Exposé VI, p. 336] it has enough points. Therefore, in order to check that the map
H (W, (k)[BA[p™]]) — H'(W,(k)[BA]) is an isomorphism, it is enough to check it by taking stalks
at a (geometric) point x : Sets — X. But since taking stalks is an exact functor, it commutes with taking
cohomology. Therefore, we can take stalks levelwise on the complexes associated to W, (k)[BA[p™]]
and W,,(k)[BA] and then check that the map is a quasi-isomorphism. Again, noting that taking stalks
commutes with the free W,,(k)-module object construction, we are reduced to proving that there is a
natural quasi-isomorphism W, (k)[BAx[p®]] — W, (k)[BA,] of complexes of W, (k)-modules. This
follows from Lemma 3.31. O

By taking inverse limits over n, we obtain RI'crys(BA[p*™]) =~ RI¢rys(BA). Now Proposition 3.32
follows from the fact that H}. (BA) is a symmetric algebra in ngys(BA) by Proposition 3.28. O

crys

Proposition 3.34. Let G be any p-divisible group over k. Then H}

Tys crys

(BG) = Sym* (H2 (BG)), where
Hg,ys(BG) is considered to be in degree 2.

Proof. At first we assume that the field k is algebraically closed. By the results proven in [Oor(00], it
follows that there exists a p-divisible group G’ such that there is an isomorphism G X G’ =~ A[p*] for
some abelian variety A. Indeed, by taking G’ to be the dual of G, we get a p-divisible group G X G’
which has a symmetric Newton polygon; therefore, by [Oor00, Section 5] there exists some abelian
variety A’ such that A’[p™] and G X G’ have the same Newton polygon. By the Dieudonné—Manin
classification, A’ is isogenous to G X G’. Quotienting A’ by a finite flat group scheme if necessary, one
obtains an abelian variety A as desired.
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Using the zero section of G’ we have a map G — G X G’ which when composed with projection
to G gives the identity map. Thus BG is a retract of BA[p®]. Since H, (BA[p®]) is generated as a

(commutative) symmetric algebra in degree 2 classes, it follows that HZ.  BG is generated by degree

2 classes — that is, there is a surjection Sym” (chrys(BG)) — H(y(BG). Doing the same for G’, we
arrive at the following commutative diagram:

Sym*H2,,(BG) ® Sym* H2(BG') — Sym* (ngys(BG x BG'))
Crys(BG) ® crys(BGl) e Crys(BG X BG')

The upper horizontal map is an isomorphism, since H, Crys (BG) is isomorphic to the Dieudonné module

(Proposition 3.23), and therefore Crys(BG X BG') ~ Crys(BG) ) CryS(BG ). By Proposition 3.32,
the right vertical map is an isomorphism, since BG X BG’ ~ BA[p*]. This shows that the surjection
Sym* ( Cryg(BG)) — H{y(BG) must be an isomorphism, yielding the assertion of the proposition
when £ is algebraically closed.

We will now remove the assumption that & is algebraically closed. Let k be any perfect field and k
denote the algebraic closure of k. Let Gz denote the base change of G to Speck. Our goal is to show

that the natural map Sym” ( Crys(BG)) — H{y(BG) is an isomorphism. By Proposition 3.23 and

taking inverse limits over n, it would be enough to show that H,.\ (BG /W,) = Sym* ( J(BG /W, ))

cry:

Since we already know that Hg,y (BG/W,) = Sym" ( erys (BGE/Wh )), it would be enough to prove
that Rl ¢,y (BGf/Wn) =~ Ry (BG /W) ®w, (k) Wn (k) This reduces to the case when n = 1, so it is

enough to show that H., ., (BG¢/W)) = Hérys(BG /W) ® k. We note the following lemma:

crys (

Lemma 3.35. Let M be a finite group scheme over a perfect field k. Then Hj,yS(BM /W) is a finite-
dimensional vector space.

Proof. By using descent along the syntomic map Speck — BM and [ABM 19, Remark 2.4], it follows
that H . (BM /W) ~ H!,(BM). Here H!, (BM) denotes the de Rham cohomology of the smooth
stack BM as in [ABM 19, Construction 2.4]. In order to show the finiteness of HSR(BM ), since BM is
smooth, using the Hodge—de Rham spectral sequence from [ABM 19, Definition 3.1(b)] it is enough to
show the finiteness of the Hodge cohomology groups of BM. But this finiteness follows because the
cotangent complex of BM and its exterior powers are perfect complexes on BM, and M is a finite group
scheme (compare [Tot18, Theorem 3.1]). O

Let us write G as the directed system {G} of finite group schemes G, over k. For a fixed n, we have
Hyys (B(Gu)g/Wh) = Cry§(BG /W1) & k. By the previous lemma, we have

Hl,y, (BGZ/W)) = lim HCrys (B(Gn)g/Wh) = lim (H;'rys(BG,, /W) ® E) :
n

We note that the prosystem { (BG,,/W, )} is essentially constant [SP, Tag 05PT]. Indeed, this can

crys

be seen by changing base to k and noting that the prosystem {V,,} := {Hé'rys(BGn /W) ®k Z} consists

of finite-dimensional k-vector spaces, and l(in V, is finite-dimensional as well. The first assertion
n
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follows from Lemma 3.35, and the second one follows from the statement of Proposition 3.34 for the
algebraically closed field k. Therefore,

Hérys (B(GH)E/WI) = m (Hérys(BGn/Wl) Bk E) = mHérys(BGn/Wl) Bk E = Hérys(BG/Wl) Bk Ea

n n
which finishes the proof. )
Proof of Theorem 1.4. This follows from Propositions 3.23 and 3.34. O

4. Prismatic cohomology
4.1. Prismatic cohomology for stacks

In this section, we start by recalling the notion of prismatic cohomology and then extend it to stacks. The
main references for this section are [BS19]. We will freely use the definitions and notations from those
papers. Our somewhat terse exposition here is also loosely based on [ALB19]. We will sometimes use
the notion of derived p-completion in the proofs; for its basic properties, we refer to [SP, Tag 091N].
More details on notions such as p-complete flatness can be found in [BMS19, Section 4].

Definition 4.1 ([BMS19, Definition 4.1]). Let A — B be a map of commutative rings. We will call
this map p-completely (faithfully) flat if B ®ﬁ A/p € D(A/p) is concentrated in degree 0, and is a
(faithfully) flat A/p-algebra.

Definition 4.2 ([BMS19, Definition 4.1]). Let A be a commutative ring and M be an object in the
derived category D(A). Set a,b € 7 LI {xco}. We will say that M has p-complete Tor-amplitude in
[a,b] if M ®£ A/p € D(A/p) has Tor-amplitude in [a, b]. The latter condition means that if we set

M’ =M &% A/p, then M’ ®/ﬁ/p N € D!@Pl(A/p) for any A/p-module N.

Definition 4.3 ([BMS19, Definition 4.10]). A ring S is called quasisyntomic if it is p-complete with
bounded p®-torsion and the cotangent complex Lz, has p-complete Tor-amplitude in [-1,0]. The
category of all quasisyntomic rings is denoted by QSyn. Amap S — S’ of p-complete rings with bounded
p-torsion is a quasisyntomic morphism if S’ is p-completely flat over S and the cotangent complex
Ls;s has p-complete Tor-amplitutde in [—1,0]. A quasisyntomic morphism is called a quasisyntomic
cover if the map § — S’ is p-completely faithfully flat.

Remark 4.4. Note that since a quasisyntomic ring S is assumed to have bounded p®-torsion, the notion
of derived p-completeness is equivalent to classical p-completeness in this case (compare [SP, Tag
0923]).

Definition 4.5 ((BMS19, Definition 4.18]). A ring S is called an integral perfectoid if it is p-complete,
such that 77 = pu for some 7 € S, u € S*, the Frobenius is surjective on S/p and the kernel of the map

0: Ane(S) =W (Sb) — § is principal.

Definition 4.6 ([BMS 19, Definition 4.20]). A ring S is called a quasiregular semiperfectoid (QRSP) if
S € QSyn and there exists a perfectoid ring R mapping surjectively onto S.

Definition 4.7. If R is any p-complete ring, we will let (R)qsyn denote the (opposite) category of all
p-complete rings over R which are quasisyntomic. This category can be equipped with a Grothendieck
topology generated by quasisyntomic covers, which turns this into a site.

Remark 4.8. By the results in [BMS19, Section 4.4], QRSP rings form a basis for the site (R)gsyn.
Therefore, specifying a sheaf on (R)qsyn amounts to assigning values to the QRSP rings satisfying the
descent condition.
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In [BS19] the authors defined prismatic cohomology first for p-complete smooth algebras and
then extended it to all p-complete algebras [BS19, Construction 7.6], calling it the derived prismatic
cohomology. An important fact [BS 19, Proposition 7.10] about this construction is that for every QRSP
ring S, the derived prismatic cohomology, denoted as Ag, lives only in degree 0 — that is, is discrete.
Also, the functor S — Ag forms a quasisyntomic sheaf [BS19, Construction 7.6(3)]. Using these facts,
the authors in [ALB19] construct a sheaf of rings OP™ on (R)gsyn such that for any QRSP ring S over
R, one has

As = RT (S, 0P™)

Further, we note that for any prism (A, I), there is a decreasing filtration N=* A, called the Nygaard
filtration, which is defined as

NZ(A) =71 (I').
This equips the sheaf of rings OP"™ with a decreasing filtration A’Z*(OP" of sheaves.

Remark 4.9. We explain the construction of the Nygaard filtration in detail. Using [ALB 19, Corollary
3.3.10], we have a morphism of topoi

v : Shv ((R)s) — Shv ((R)gsyn) »

where (R), denotes the absolute prismatic site as in [ALB19, Definition 3.1.4]. On (R), one defines
a sheaf of rings Op by sending a prism (A,I) — A. Using the notion of Nygaard filtration on a
prism, one can equip this sheaf of rings O, with the Nygaard filtration A=*O,, which sends a prism
(A,I) — N>*A C A. In order to prove that the presheaf (A, I) — NZ°A is indeed a sheaf, we note
that N®*(A) is the kernel of a map of a presheaf of rings ((A,7) — A) — ((A,I) — A/I') obtained
by composing ¢ : A — A with the projection map A — A/I'. Therefore it will be enough to show that
the presheaf (A, ) — A/I' is a sheaf. This follows from the proof of [BS19, Corollary 3.12] by noting
that for amap (A, I) — (B, J) of prisms, one has I'B=Jt by [BS19, Lemma 3.5]. One defines

NZOPTS =y N2,

By this definition and [BS 19, Proposition 7.2], it follows that AZ*OP"S(S§) ~ NZ*Ag for a QRSP ring
S € (R)qsyn- In fact, by Remark 4.8 this description can be used to define the sheaves N=*OP™ after one
proves that it forms a sheaf on the basis objects. However, although a priori it is not obvious, actually
more is true: The functor that sends a QRSP algebra § — NZ*Ag forms a sheaf with vanishing higher
cohomology — that is, H' (S, N**OP™) = 0 fori > 1 and a QRSP algebra S. This fact follows from
[BS19, Theorem 12.2] and [BMS19, Theorem 3.1].

Definition 4.10. We call ) a quasisyntomic stack over R if it is a stack with respect to the site (R)gsyn-

Remark 4.11. If A € (R)qsyn, then by p-completely faithfully flat descent it follows that /4 is a sheaf
with respect to (R)qsyn. If Vis a quasisyntomic stack, an arrow 74 — ) will be denoted as SpfA — ).

Remark 4.12. Let X be a p-adic formal scheme over R. Then setting X (A) := Homgymai sch (SpfA, X)
defines a quasisyntomic sheaf on (R)qsyn, Which we will denote by X.

Definition 4.13. Let ) be a quasisyntomic stack. We define the prismatic cohomology of ) to be

RUA(Y) =R lim Ay,
SpfA—-Y

where A € (R)qsyn and the derived limit is taken in the derived category of abelian groups.
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Remark 4.14. Let ) be a quasisyntomic stack. We give an alternative description of RI'4())). One can
define the quasisyntomic site of ), denoted as ()))gsyn, to be the category whose objects are SpfA — )
for A € (R)qsyn equipped with the quasisyntomic covers — that is, we let (V)gsyn := (R)gsyn ,,- Then by
the discussion preceding Definition 4.10, we obtain a sheaf of rings O" on (Y)gsyn- Then it follows
that R[4 () =~ RT (Y, OP™).

Definition 4.15. Let ) be a quasisyntomic stack. The Nygaard filtration on the prismatic cohomology
RI',A()) is defined to be
NZ*RT4()) = RT (Y, N>*OP"S) .

Definition 4.16. Now we consider an algebraic stack X over R. We will define the p-adic completion of
X as a quasisyntomic stack, which will be denoted as X. We define

X(A) := lim X(A/p"),

where A € (R)qsyn. This defines a sheaf of groupoids in the site (R)qsyn. Indeed, X by definition is an
inverse limit of the sheaves on (R)qsyn Which sends A — X(A/p™) and therefore has to be a sheaf.

Definition 4.17. We define the prismatic cohomology of a stack X'to be
RT,(X) := RT, (?v) .

Proposition 4.18. If X is a p-adic formal scheme over R, then RI)(X) =
RHom D((R)yom) (Z [K ] , O is), where X is the quasisyntomic sheaf associated to X on (R)gsyn.

Proof. This follows from Remarks 4.12 and 4.14 by adjunction. m]

Remark 4.19. Instead of considering quasisyntomic stacks, one could also work with ‘p-adic formal
stacks’, which can be defined to be stacks with respect to the Grothendieck site on the category of p-
complete and bounded p*-torsion rings equipped with p-completely faithfully flat covers. Any p-adic
formal stack can also be regarded as a quasisyntomic stack. The reason we work with the notion of
quasisyntomic stacks is that the notion of prismatic cohomology in Definition 4.13 would ultimately
regard a p-adic formal stack as a quasisyntomic stack. Hence one might as well define prismatic
cohomology for quasisyntomic stacks.

4.2. Application to prismatic Dieudonné theory

From now we will assume that the ring R is a QRSP ring. Let (Ag, I) be the prism associated to R
by taking prismatic cohomology. We briefly recall some definitions from [ALB19] and review their
theorem on classification of p-divisible groups in terms of filtered prismatic Dieudonné modules.

Definition 4.20 ([ALB19, Definition 4.1.10]). A filtered prismatic Dieudonné module over R is a
collection (M, FilM, ¢,) consisting of a finite locally free Ag-module M, a Ag-submodule FilM and
¢ alinear map ¢y : M — M satisfying the following:

(1) @p (FilM) c IM and @y, (FilM) generates IM as a Ag-module.
) (A/'ZlAR) M c FilM and M /FilM is a finite locally free R-module.

Now let G be a p-divisible group. One makes the following definition:

Definition 4.21. The quasisyntomic sheaf G € (R)qsyn associated to a p-divisible group G is defined to
be h_r)n G, where Gy, € (R)gsyn is the quasisyntomic sheaf associated to SpfG,.
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The authors in [ALB19] make the following definition, which can be seen as a generalisation of
Theorem 3.8:

Definition 4.22 ([ALB19, Definition 4.2.8]). Let G be a p-divisible group over R. We define

— 1 is
My(G) = EXt(R)qsyn (Q, OPrm) i

FilM(G) = Extly, (Q,/\/'Z‘ OP“S)

and ¢y, (G) as the endomorphism induced by ¢ on OP™. Then
M, (G) := (Mu(G),FilMp(G), ¢pm,(G))
is called the filtered prismatic Dieudonné module of G.

In this case, the main theorem of [ALB19] says the following:

Theorem 4.23. The filtered prismatic Dieudonné module functor
G— MA(G)

defines an antiequivalence between the category of p-divisible groups over R and the category of filtered
prismatic Dieudonné modules over R.

Example 4.24. For the étale p-divisible group Q,, /Z, over R, wehave M, (Q,,/Z,) =~ (AR JNZ AR, go).
We refer to [ALB19, Section 4.7, Remark 4.9.6] for more discussions.

Example 4.25. Let A denote the p-adic completion of an abelian scheme A over R. Let us denote the
p-divisible group associated to A by A[p] for simplicity. In this case, the prismatic Dieudonné module

Mu(A[p™]) is locally free of rank 2 - dimA and is isomorphic to Hi (Z), which identifies the natural
Frobenius on both of these modules as well [ALB19, Theorem 4.5.6]. Further, by using the proof of
[ALB19, Proposition 4.5.9], one obtains that FilM,(A[p®]) ~ N*'H] (Z), where NZ'H! (;\\) =

H! (./\fZIRF/A (Z)) (compare Proposition 4.39).

Now we proceed toward proving Theorem 1.6. Let G = SpecB be a finite flat group scheme over R.
Since G is syntomic, it follows that Spf(B) is quasisyntomic. If BG denotes the associated quasisyntomic
stack, then * — BG is a G-torsor and is a quasisyntomic cover. The Cech nerve of the map * — BG is
given by the simplicial quasi-syntomic sheaf

- GXGXG=—GxG=—%G—= *

The associated simplicial abelian group object is
Z|GXxGXxG| ==Z|GxG| ==%1Z|G] —= Z.

With this simplicial object we can associate an object of D ((R)qsyn)» Which we will denote simply by
Z|BG].

Proposition 4.26. Let G be a finite flat group scheme over R. Then RIUA(BG) =
RHomp,((x),..) (ZIBG1, O7™).

Proof. By Cech descent along the quasisyntomic cover * — BG, we obtain

RT'A(BG) ~ Rlim (RTA(*)——= RT4(G)=—= RTA(G X G)---).
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By Proposition 4.18, this is

~ Rlim (RHomD(R) (Z, OP™) —= RHomp x) (Z [G] , OP™) =%
RHomp g (Z[G x G],OP™) ).
We can take the R{iLn inside as a homotopy colimit, which gives us that this is

~ RHomp,((g), . ) (Z|BG], OP™), as desired. O

Definition 4.27. The classifying stack of a p-divisible group G = {G,,} is defined to be BG := h_r)n BG,,
where the filtered colimit is taken in the category of quasisyntomic stacks with respect to the site (R)gsyn-

Proposition 4.28. For a p-divisible group G = {G, }, we have RT',(BG) = R yLnRFA(BGn).
Proof. This follows because BG is defined to be the filtered colimit of the quasisyntomic stacks BG,,. O

Since filtered colimits commute with finite limits, the Cech nerve of * — BG is given by the
simplicial quasisyntomic sheaf

GXGXG=(EGXG=—EG—= =
The associated simplicial abelian group object is
- ZL|GXxGxG| =Z£Z|GxG| =%Z|G] —= Z.
With this simplicial object, we can associate an object of D ((R)qsyn), which will be denoted by

Z|BG]. Since filtered colimits are exact in the category of abelian sheaves on (R)qsyn, We have that
li_n}Z[BGn] ~ Z[BG].

R

Proposition 4.29. Let G be a p-divisible group over R. Then RIx(BG)
RHomD((R),,W) (Z [&] , Opris).

Proof. By Propositions 4.26 and 4.28, we have

RT4(BG) = Rlim RTy (BG,) = Rlim RHomp, (), ) (Z[BGn], O™).

Now
Rlim RHom () (Z1BGn], O™) = RHomp () (ImZ[BG, ], 0°*).
Since li_r)nZ[BG”] =~ 7[BG], we obtain the required statement. O

Remark 4.30. Alternatively, one could descend along the effective epimorphism * — BG.

Proposition 4.31. There is a spectral sequence with E>-page

Ey) = Extlp (H‘f (Z[BGY), (9"”*) — HY(BG),
and another spectral sequence with E-page

E\Y =H] (G') = H,’(BG),
where G' denotes the i-fold fibre product of SpfG with itself. By convention, G° = .

Proof. This follows in a way similar to Proposition 3.13. m}
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Lemma 4.32. H*(Z[BG)) ~ Z, H'(Z[BG]) ~ G and H>(Z|BG]) ~ G A G.

Proof. This follows exactly in the same ways as in the proof of Lemma 3.9, after further noting that
for an abelian group G, the second group homology with integral coefficients H,(G,Z) ~ G A G. This
isomorphism can be found in [CM52, Theorem 3]. O

Proposition 4.33. There is a natural isomorphism Hi(BG) ~ Extz R) (Q, O””“).
gsyn
Proof. By the E; spectral sequence from Proposition 4.31 and Lemma 4.32, this will follow once we

prove that Hom g, (G A G, OP™) = 0 and Exti Rl (Z,OP"s) = 0 fori > 1. We begin by proving

the first vanishing. We have a surjection G ® G — G A G — 0, which gives us an injection
0— Hom(R)qsyn (Q A Q’ Opris) - Hom(R)qsyn (Q ® Q’ Opris) .

Thus it is enough to show that Homgy,,, (G®G, (QpriS) = 0. Indeed,
Hom(R)qsyn (Q ® Q’ Opris) = Hom(R)qSyn (Q, %Om(R)qsy" (Q’ (’)Pris)) ,

and Z om g),,, (Q OP“S) = 0, since G is p-divisible and OP™ is derived p-complete. Therefore, we
obtain the required statement. Now the second vanishing follows from the fact that for a QRSP ring S,
its prismatic cohomology Ag is discrete — that is, lives only in degree 0. This finishes the proof. O

Proposition 4.34. In the foregoing situation, ./\/Z]H?A(BG) = H? (./\/ZIRFA(BG)) C HZ(BG) and

>1 172 ~ 1 >1 ypris
N*HE(BG) = Extlyy (G NZ1OP™).

Proof. By Definition 4.15, we have N='R[',(BG) = R’ (BG, J\/Zl(’)Pris). Hence, analogous to Propo-
sition 4.26, by descent along the effective epimorphism * — BG we obtain

A/ZIRFA(BG) ~ RHomD((R)qsyn) (Z[BG]’/\/‘Zlopris) )

By the spectral sequence, analogous to Proposition 4.3 1 we obtain that in order to prove /\fZIHi(BG) ~

EXt%R)qsyn (Q,A/ZIOpris), by Lemma 4.32 it is enough to prove that Homg,),,,, (Q A Q,./VZIOP“S) =0

and Exti R) (Z, NZ (’)pris) = 0 for i > 2. By the proof of Proposition 4.33, in order to prove the first
qsyn

vanishing it is enough to prove that # om ), (Q,/\/Zl(’)pris) = 0. By the injection 0 — N='OP —

OP"S of sheaves, the required vanishing follows from the fact that % OM(R)goyn (G, (’)P“s) = 0, which was

noted in the proof of Proposition 4.33. Now for proving Ext’é R, (Z,./\[ZIOPHS) =0 for i > 2, using

syn
the exact sequence

0_>N210pris_>0pris_)0_>0

from [A_LB 19, Proposition 4.1.2], where O denotes the structure sheaf on (R)qsyn, it is enough to show
that Ext‘( R, (Z,0) =0 fori > 1, which follows from p-completely faithfully flat descent for bounded
syn

p=-torsion rings [BMS19, Remark 4.9]. The inclusion ./\/ZlHi(BG) C Hz(BG) now follows from the
exact sequence and the fact that Hom (G, O) = 0, since G is p-divisible and O is derived p-complete. O

Proof of Theorem 1.6. This follows from Proposition 4.33 and Proposition 4.34. O
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Remark 4.35. We note that Ext! (Z,Aﬁl(’)pris) = 0 as well. This follows from the foregoing exact
sequence and [ALB19, Theorem 3.4.6].

Remark 4.36. Similar to Proposition 3.14, it follows that for a p-divisible group G over R, we have
H!(BG) ~
A

Remark 4.37. One can define prismatic cohomology for higher quasisyntomic stacks as well. In par-
ticular, one can talk about prismatic cohomology of the n-stacks K(G,n) for a p-divisible group
G. Similar to Remark 3.17, one can prove that HZ”(BG) ~ Mu(G) and H(BG) = 0 for
1<i<n.

Now we look at the case where A is the p-adic completion of an abelian scheme A over R. In this
situation one can consider the p-divisible group associated to A, which will be written as A[p™].
We let BA denote the classifying stack of A, which we define to be the p-adic completion of the
stack BA. The quasisyntomic sheaf represented by A will simply be written as A. Then we have the
following:

R

Proposition 4.38. We have H;(BA) = Exly (A,0") and N*'H:(BA)

(R)qun
Ext! (é,/\fZlO"’”).

(R)qui

Proof. This follows exactly in the same way as the proof of Proposition 4.33, after noting that
Ext(R)qsyn (Z,0P") = 0 for i > 1, as before, and # om g, (A, O") = 0 by [ALB19, Theorem
4.5.6]. The second part follows. O

Proposition 4.39. Hz (BZ) is naturally isomorphic to the prismatic Dieudonné module associated to
the p-divisible group A[p™]. Further, J\fZIHz (BZ) ~FilMy(A[p™]).

Proof. Using Proposition 4.38, it is enough to prove that Ext! (4, (’)pris) is isomorphic to

EXt( R)gn (A [p™], Opm). Note that we have

(R)gsyn

A Opris )

1 oo i 1
EXL(R) (M’ Opm) = &xt g, (A,
and

1 co >1 pris | 1 >1 mypris
Bxtlp, . (A[p LAZO )—%xt(R)qsyn (A,/\F 10 )

Indeed, to see these isomorphisms, we note that A/A[p*™] = 11'_1>np A, and for any sheaf F, we

have
R%om( imA, % | ~ RimRZ om (A, F) ~ R# om A,RlimS‘T).
— «— — - —
p p p

Now if & is further assumed to be a sheaf of derived p-complete abelian groups with vanishing higher
cohomology on a collection of basis objects, then R limp F =~ (. To see this, it is enough to prove that
for any such basis object V, one has RI" (V R 11m 97) R hmp RT'(V, %) ~ 0. But this follows from

our assumptions, since R['(V, %) ~ F (V) and J« (V) is derived p-complete [SP, Tag 091N]. Finally,
by taking F to be OP™ or N=! OP"S and using Remark 4.9, we obtain the required vanishings to yield
the desired isomorphisms of &xz-groups.
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The proposition now follows by applying the global section functor and noting that
H om(R),, (A[p“’],@pris) = 0, % omg),,, (A,O"™) = 0 and Zomg,, (A[p‘x’],./\/?lopris)

0, Z om (), (é,AfZlOpris) ~ 0. These vanishings have been noted before in the proofs of Propo-
sitions 4.33, 4.34 and 4.38. This ends the proof. ]

As in Section 3.3, if A is the p-adic completion of an abelian scheme A over R, we can explicitly
compute H (B (A\))

Proposition 4.40. We have a natural isomorphism Hﬁ* (BZ) = Sym* (HA (Z)), and HZ (B (Z)) =0
for odd i.

Proof. This follows exactly in the same way as in the proof in the crystalline case in Section 3.3 from
the E; spectral sequence in Proposition 4.31, the Kiinneth formula in prismatic cohomology [ALB19,
Corollary 3.5.2] and the calculations of the prismatic cohomology of abelian varieties in [ALB19,
Corollary 4.5.8]. O
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