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general theory and analytic globalizations of
Harish-Chandra modules

Heiko Gimperlein, Bernhard Krotz and Henrik Schlichtkrull

ABSTRACT

In this article a general framework for studying analytic representations of a real Lie
group G is introduced. Fundamental topological properties of the representations are
analyzed. A notion of temperedness for analytic representations is introduced, which
indicates the existence of an action of a certain natural algebra A(G) of analytic
functions of rapid decay. For reductive groups every Harish-Chandra module V' is shown
to admit a unique tempered analytic globalization, which is generated by V' and A(G)
and which embeds as the space of analytic vectors in all Banach globalizations of V.

1. Introduction

While analytic vectors are basic objects in the representation theory of real Lie groups, a coherent
framework to study general analytic representations has been lacking so far. It is the aim of this
article to introduce categories of tempered and non-tempered such representations and to analyze
their fundamental properties. For a representation (m, E) of a Lie group G on a locally convex
space E to be analytic, we are going to require that every vector in £ be analytic and that the
topology on the space of analytic vectors coincides with the topology of E. No completeness
assumptions on F are imposed, so that the quotient of an analytic representation by a closed
invariant subspace is again analytic.

Recall that a vector v € E is called analytic provided that the orbit map =, :z— 7(z)v
extends to a holomorphic E-valued function in a neighborhood of G within the complexification
Gc. The space E¥ of analytic vectors carries a natural inductive limit topology E¥ = limy,_, Fiy,

E, ={v € E|~, extends to a holomorphic map GV,, — E},

indexed by a neighborhood basis {V},}nen of the identity in G¢. The induced representation
(m, E¥) turns out to be continuous and indeed satisfies £ = (E“)% in the sense of topological
vector spaces. Every analytic representation is obtained in this way. Due to the inductive limit
structure of E“, interesting examples tend to involve complicated and possibly incomplete
topologies. For instance, infinite-dimensional Fréchet spaces do not carry any irreducible analytic
representations of a reductive group. Still, in spite of examples by Grothendieck and others which
show how incomplete spaces may naturally occur, important special cases are better behaved,
like for instance the analytic vectors associated to a Banach representation, the algebra A(G)
below, or the analytic globalization of a Harish-Chandra module.
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Moderately growing analytic representations allow for an additional action by an algebra of
superexponentially decaying functions. To be specific, consider a Banach representation (7, F).
Fix a left-invariant Riemannian metric on G and let d be the associated distance function. The
continuous functions on G decaying faster than e~4(-1) for all n € N form a convolution algebra
R(G), which is a G-module under the left regular representation. If we denote the space of
analytic vectors of R(G) by A(G), the map

IT: A(G) — End(EY), II(f)v= /G f(z)m(z)v dz, (1.1)

gives rise to a continuous algebra action on E“. More general representations will be called
A(G)-tempered, or of moderate growth, provided that the integral in (1.1) converges and defines
a continuous action of A(G).

Let us now specify to the case where G is a real reductive group, and let us recall that to each
admissible G-representation E of finite length one can associate the Harish-Chandra module Ex
of its K-finite vectors. Conversely, a globalization of a given Harish-Chandra module V is an
admissible representation of G with V' = Fx. The main result for this case is now as follows.

THEOREM 1.1. Let G be a real reductive group. Then every Harish-Chandra module V' for G
admits a unique A(G)-tempered analytic globalization V™. Moreover, V™" has the property
ymn =T11(A(G))V.

It follows that E“ ~ V™" for every A(G)-tempered globalization E of V (in particular, for
every Banach globalization). Let us mention the relationship to the results of [Kas08, KS94]
(announced in [Sch85]), which assert in particular that every Harish-Chandra module admits
a unique minimal globalization, which is equivalent to E“ for all Banach globalizations E. Our
approach is independent of this theory and relies on recent lower bounds for matrix coeflicients,
see [BK].

The theorem features a worthwhile corollary, as follows.

COROLLARY 1.2. For an irreducible admissible Banach representation (w, E') of a real reductive
group G, the space of analytic vectors E¥ is an algebraically simple A(G)-module.

This corollary suggests a notion of irreducible analytic tempered representations for a general
Lie group.

2. Banach representations and F-representations

All topological vector spaces I considered in this paper are assumed to be Hausdorff and locally
convex. If F is a topological vector space, then we denote by GL(E) the group of isomorphisms
of E.

Let G be a connected Lie group. By a representation of G we shall understand a continuous
action

GXE—)E? (gan)Hg"Ua

on some topological vector space E. Each representation gives rise to a group homomorphism
m:g—FE, g—mn(g), w(gv:=9g-v (veEE),

and it is customary to denote the representation by the symbol (7, E).

A representation (7, F) is called a Banach representation if E is a Banach space. We say that
(m, ) is an F-representation if F is a Fréchet space for which there exists a defining family of
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seminorms (pp)nen such that for all n € N the action
G x (Evpn) - (Eapn)

is continuous. Here, (E, p,,) refers to the vector space E endowed with the locally convex structure
induced by p,.

Remark 2.1. (a) Every Banach representation is an F-representation.

(b) Let (m, E) be an F-representation. For each n € N, let us denote by E, the Banach
completion of (F,py,), i.e. the completion of the normed space E/{p, =0}. The action of G
on (E, py) factors to a continuous action on the normed space E/{p, =0} and thus induces a
Banach representation of G on E,.

(¢) The left regular action of G on the Fréchet space C(G) defines a representation, but in
general not an F-representation.

Let E*° denote the space of smooth vectors in F, that is, the vectors v € E' for which the
orbit map g — 7(g)v is smooth into E. Then E*° C FE is an invariant subspace, and it is dense
if E is complete. The orbit map provides an injection of E* into C*°(G, E), from which E*
inherits a topological vector space structure. Then (7, E*°) is a representation. Furthermore,
E is a Fréchet space if E is a Fréchet space, and (7, E°°) is an F-representation if (7, E) is an
F-representation. By definition, a smooth representation is a representation for which £ = F
as topological vector spaces.

2.1 Growth of representations
We call a function w: g — R* a weight if:
— w is locally bounded;
— w is sub-multiplicative, i.e. w(gh) < w(g)w(h) for all g, h € G.

To every Banach representation (7, F') we associate the function

wr(g) = |Im(g)l (9 €G),

where || || denotes the standard operator norm. It follows from the uniform boundedness
principle that w; is locally bounded. Hence, w, is a weight.

Sub-multiplicative functions can be dominated in a geometric way. For that, let us fix a
left-invariant Riemannian metric g on G. Associated to g we obtain the Riemannian distance
function d : G x G — R>g. The distance function is left G-invariant and hence is recovered as
d(g, h) =d(g~'h) from the function

d(g):==d(g,1) (9€@),

where 1 € G is the neutral element. Notice that it follows from the elementary properties of the
metric that d is compatible with the group structure in the sense that

d(g~')=d(g) and d(gh)<d(g)+ d(h) (2.1)

for all g, h € G. In particular, g — e¥9) is a weight. Note also that the metric balls {g € G| d(g) <
R} in G are compact [Gar60, p. 74].

If w is an arbitrary weight on G, then there exist constants ¢, C' > 0 (depending on w) such
that [Gar60, p. 75, Lemme 3]

w(g) < Ce9)  (ge@). (2.2)
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In particular, it follows that a Banach representation has at most exponential growth
I (9)ll < Cec™9.

By applying Remark 2.1(b), we obtain for an F-representation (7, E') with defining seminorms
(Pn)nen that for each n there exist constants ¢, Cy, such that

pr(m(g)v) < C’neC"d(g)pn(v) (geG,veER). (2.3)

Finally, notice that it follows from (2.2) that if di(g) = dg, (g, 1) is the function associated to
a different choice of a G-invariant metric, then d; is compatible with d, in the sense that there
exist constants ¢, C' > 0 such that

di(g) <cd(g) +C (9€G)
(and vice versa with d, d; interchanged).

Remark 2.2. Suppose that G is a real reductive group and | - || is a norm of G (see [Wal88,
§2.A.2]). Then || - || is a weight and hence there exist constants ¢;, C; > 0 such that

log [lg]| < c1d(g) +C1 (g € G).

Conversely, by following the proof of [Wal88, Lemma 2.A.2.2], one finds constants co, Cy > 0 such
that

d(g) <cz2logllgll +C2 (9€q).

3. Analytic representations

Let us start by setting up some notation in order to discuss the issue of analyticity in a convenient
way.

Let us denote by g the Lie algebra of G. To simplify the exposition, we will assume that
G C G¢, where G¢ is a complex group with Lie algebra g ®@r C =: gc. We stress, however,

that this assumption is not necessary, since the use of G¢ essentially only takes place locally in
neighborhoods G.

We extend the left-invariant metric g to a left Ge-invariant metric on G¢ and denote the
associated distance function as before by d. For every n € N, we set

1
V= {gEGC|d(g)<n} and U,:=V,NG.

It is clear that the V,,, respectively U,, form a base of the neighborhood filter of 1 in G¢,
respectively G. Note that V,, is symmetric, and that zy € V,, for all z, y € Va,,.

3.1 The space of analytic vectors

Let (m, E) be a representation of G. For each v € E, we denote by
YWwig—E, x—mx(z)v,

the associated continuous orbit map. We call v an analytic vector if ~, extends to a holomorphic
E-valued function (see Appendix A) on some open neighborhood of G in Gc.

If v is analytic, then ~, is a real analytic map G — E. The converse statement, that real
analyticity of the orbit map implies the analyticity of v, holds under the assumption that E is
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sequentially complete. Hence, our definition agrees with the standard notion of analytic vectors
for Banach representations, see for example [Gar60, Goo69, Nel59].

Remark 3.1. If E is a Banach space or more generally a complete DF-space (see [MV97, ch. 25]),
then it follows from [Net64, Theorem 1] that v is an analytic vector already if the orbit map is
weakly analytic, that is, XA oy, : g — C is real analytic for all A € E’. Here, E’ denotes the dual
space of continuous linear forms.

The space of analytic vectors is denoted by E“. A theorem of Nelson [Nel59, p. 599] asserts
that E“ is dense in E if E is a Banach space. More precisely, Nelson’s theorem asserts the
following. Let h; € C°°(G) denote the heat kernel on G, where t > 0; then II(h:)v € E“ and
II(ht)v — v for t — 0 for all v € E. In fact, the proof of Nelson’s theorem is valid more generally
if F is sequentially complete and with suitably restricted growth of 7. In particular, this is the
case for F-representations, see (2.3). The density is false in general, as easy examples such as
the left regular representation of R on C¢(R) show.

We wish to emphasize that £ is a G-invariant vector subspace of E. This follows immediately
from the identity v (5, (%) =1 (zg). We also note that E“ is a g-invariant subset of the space
E*° of smooth vectors.

It is convenient to introduce the following notation. For every n € N, we define the subspace
of E¥,

E, ={v € E|~, extends to a holomorphic map GV,, — E}.
Since G is totally real in G¢ and GV, is connected, the holomorphic extension of v, is unique if
it exists. Let us denote the extension by 7, , € O(GV,, E). For each z € GV,,, the operator
™ (2) By — B, 7 (2)v:=7yn(2),

is linear. In particular, uniqueness implies that

mn(92) = 7(g)mn(2)

for all g € G, z € GV,,. Tt is easily seen that if m <n, then E,, C E, and m,(z)v = m,(z)v for
z € GV, v € E,,. We shall omit the subscript n from the operator m,(z) if no confusion is
possible.

A closely related space is
E, ={v € E ||y, extends holomorphically to V,}.
LEMMA 3.2. The space of analytic vectors is given by the increasing unions

E*=]JE.=] En

neN neN
Furthermore,
E, CE, C Ey, (3.1)
for all n € N.

Proof. The inclusions

U E.cE“cJEn
neN neN

as well as the first inclusion in (3.1) are clear. Hence, it suffices to prove the second inclusion
in (3.1). Let v € V, and let us denote the extension of 7, by f:V,, = E. For g € G and z € Vj,,
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we define

F(gz) :=m(9)f(2) € E.
We need to show that the expression is well defined. Assume that g¢gz=g¢'z’ with
9, €G and z,2 €Vy,. Then ¢ '¢' =22'"'€ Vs, and hence ¢ '¢'z €V, for all z € Va,.
Since 7(g)m(g g'w)v =n(¢)w(x)v for x € G, analytic continuation from Us, implies that
7(g)f(g7 g'x) = n(g") f(x) for x € Va,. In particular, with z = 2’ we obtain 7(g) f(2) = n(¢') f(2'),
showing that F' is well defined. As F is clearly holomorphic, we conclude that v € Fy,. O

Next we want to topologize E*. For that, we notice that the holomorphic extensions provide
injections of E,, and E, into O(GV,, E) and O(V,, E), respectively. We topologize E,, and E,
by means of these maps and the standard compact open topologies. It is easily seen that the
inclusion maps E, — E,+1 — F and E — En+1 — FE are all continuous. Furthermore, we have
the following lemma.

LEMMA 3.3. The inclusion maps in (3.1) are continuous for all n € N.

Proof. Identifying E,, and E,, with the corresponding spaces of holomorphic functions, we obtain
the following neighborhood bases of 0. In F,,, the members are all sets

Wiz :={f € En| f(K)CZ},
where K C GV, is compact and Z C F is a zero neighborhood. Similarly, in E,, the members are

Wkz:={f€E,| f(K)CZ},

where K C V,, is compact and Z C F is a zero neighborhood. The continuity of the first inclusion
is then obvious.

With the mentioned identifications, the second inclusion is given by the map f — F described
in the previous proof. Let a neighborhood W =Wy o C Ey, be given. Let K' CcVy, be an
arbitrary compact neighborhood of 0. By compactness of K C GVj,, we obtain a finite union
K cJgiK' € GVyy. Let O’ =Nw(g:)~H(O); then W = Wk or is an open neighborhood of 0 in
Ep,and feW=FeW. a

We endow E“ with the inductive limit topology of the ascending unions in Lemma 3.2. The
Hausdorff property follows, since E is assumed to be Hausdorff. It follows from Lemma 3.3 that
the two unions give rise to the same topology. In symbols:

= lim E, = hm E,CE, (3.2)

n—oo
with continuous inclusion into E. Since the restriction O(GV,,, E) — C*°(G, E) is continuous for
all n € N, we have E“ C E°° with continuous inclusion.

Observe that an intertwining operator 7' : E — F' between two representations (7, E), (p, F')
carries E“ continuously into F“. In fact, if v € E,, with the holomorphically extended orbit
map z — 7(z)v, then Tw € F,, since z — Tw(z)v is a holomorphic extension of the orbit map
g+ p(g)Tv=Tn(g)v. It follows that T maps E,, continuously into F), for each n.

Notice that if we define a continuous action of G on O(GV,, F) by

(9-))(z)=n(9)fg7"'2) (9€G,z€CV),

then the image of v — 7, (-)v is the subspace O(GV;,, E)¢ of G-invariant functions, with inverse
map given by evaluation at 1. Thus, E, is identified with a closed subspace of O(GV,,, E). In
particular, it follows (see [Jar81, p. 365]) that E,, is complete/Fréchet if FE has this property.
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Let us briefly recall the structure of the open neighborhoods of zero in the limit £“. If A is a
subset of some vector space, then we write I'(A) for the convex hull of A. Now, given for each n
an open 0-neighborhood W), in E,, (or E,,), the set

W F<U Wn> (3.3)

neN
is an open convex neighborhood of 0 in E“. The set of neighborhoods W thus obtained forms a
filter base of the 0-neighborhoods in E“.

PROPOSITION 3.4. Let (m, E) be a representation of a Lie group on a topological vector space E.
Then the following assertions hold:
(i) the action G x E¥ — E“ is continuous and hence defines a representation (w, E*) of G;

(ii) each v € E¥ is an analytic vector for (m, E*) and
as topological vector spaces.

Proof. In (i) it suffices to prove continuity at (1, v) for each v € E“. We first prove the separate
continuity of g — 7(g)v € E¥. Let v € F,, and consider the E-valued holomorphic extension of
g +— m(g)v. Since multiplication in G¢ is holomorphic and Vs, - Va,, C V,,, it follows that for each
21 € Vo, the element 7, (z1)v belongs to Es),, with the holomorphic extension

29— Top(22)Ton (21)v = mp(2221)v (21, 22 € GVap, v € Ey) (3.4)

of the orbit map. In particular, (3.4) holds for z; = g € Us,. The element 7(z229)v € E depends
continuously on g, locally uniformly with respect to z3. It follows that g — m(g)v is continuous
Us,, — FEs9,, and hence into E“.

In order to conclude the full continuity of (i), it now suffices to establish the following.
(%) For all compact subsets B C G, the operators {m(g) | g € B} form an equicontinuous subset
of End(E¥).
Before proving this, we note that for every compact subset B C G and every m € N, there
exists n > m such that
b VbV, (beB).
This follows from the continuity of the adjoint action. Then zb € GV,, for all z € GV,, and hence
m(b)v € E,, for all b€ B, v € E,, with
7 (2)7(b)v = 7 (2b) 0. (3.5)

In order to prove (x), we fix a compact set B C G. Given m € N, we choose n > m as above.
We are going to prove equicontinuity B x E,, — E,. An open neighborhood of 0 in F, can be
assumed of the form

(K, Z):={f € En| f(K) C Z},
where K C GV,, is compact and Z C E is a zero neighborhood. Then, with K’ =J,cp b~ Kb
and Z' = (,ep 7(b) 1 (Z), we obtain

f(KYcZ =nb)f(b~ Kb C Z
for all b € B and all functions f: GV,, — E. If in addition f is G-invariant, then the conclusion

is f(Kb) C Z and we have shown that the right translation by b maps the zero neighborhood
(K', Z') in E,, into the zero neighborhood (K, Z) in E,.
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The equicontinuity B x E¥ — E“ is an easy consequence given the description (3.3) of the
neighborhoods in the inductive limit. This completes the proof of (i).

For the proof of (ii), let v € E,. In the first part of the proof we saw that m(z1)v € Ea,
for each z; € Vi, with the holomorphically extended orbit map given by (3.4). It then follows
from Lemma A.1, applied to Vs, x GVa, and the map (z1, z2) — 7(2221)v, that z; — w(-)7(21)v
is holomorphic V3, — O(GVa,, E). Hence, z1 — m(z1)v is holomorphic into Es, and hence also
into E“. Thus, g — 7(g)v extends to a holomorphic E“-valued map on V3, and hence v € (E¥)“
by the second description in (3.2).

For the topological statement in (ii), we need to show that the identity map is continuous
E¥ — (E¥)“. We just saw that the identity map takes

ETL - (Ew)Qn;
hence, it suffices to show continuity of this map for each n. The proof given above reduces to

the statement that the map mentioned below (A.1) is continuous. a

COROLLARY 3.5. (E®)¥ = (E“)>* = E“ as topological vector spaces.

Proof. The continuous inclusions E¥ C E*° C E induce continuous inclusions E“ = (E¥)“ C
(E*>)¥ C E¥. With E replaced by E“, the same inclusions also imply that (E“)¥ C (E¥)* C
E*. O

We are interested in the functorial properties of the construction.

LEMMA 3.6. Let (m, E) be a representation and let F' C E be a closed invariant subspace. Then:

(i) F¥=E“NF as a topological space;
(ii) E¥/F“ C (E/F)“ continuously.

Proof. (i) Obviously, F,, C E, for all n. Conversely, if v € E,, N F with holomorphically extended
orbit map z+— 7(z)v € E, then m(g)v € F for all g € G implies that 7(z)v € F for all z € GV,,.
Hence, v € F,,. The topological statement follows easily.

(ii) The quotient map induces a continuous map E“ — (E/F)“, which in view of (i) induces
the mentioned continuous inclusion. O

Notice also that if Ei, 5 are representations, then the product representations satisfy
Ei‘} X Eé‘} ~ (El X Eg)w.

3.2 Completeness

In general, completeness of E does not ensure that E“ is complete. For Banach representations
this is the case, as the following result shows.

PROPOSITION 3.7. Let (m, E) be a representation of G on a complete DF-space. Then E“ is
complete.

Proof. Let (v;) be a Cauchy net in E“. It is Cauchy in E and hence converges to some element
v € E. Moreover, the net of orbit maps (7,,) converges pointwise on G to 7,. We need to show
that v, is real analytic and, using our assumptions on F, it suffices to prove weak analyticity,
see Remark 3.1.

Let K C G be any compact set. We consider the space A(K) of real analytic functions
on K. These are germs of holomorphic functions defined on open neighborhoods V' of K in G¢,
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and A(K) is equipped with the inductive topology. Since each O(V') has the Montel property,
the limit is compact, so that A(K) inherits completeness from O(V).

For every A € E’, we consider the mapping
E¥Y — A(K), E,>vw germ of Ao~,.

It is clear that this is a continuous map. It follows that A o, |k converges in A(K), so that
A 07, is real analytic on K. O

Remark 3.8. Combining the proof above with [BDO01, Theorem 3] leads to a more general
result for representations on Fréchet spaces. In this case, E“ is complete whenever there is
a fundamental system of seminorms {p, }nen for the topology of E such that

InVm=nIk>=m3IC >0V € E: pnv): < Cpp(v)pn(v).

Remark 3.9. An example by Grothendieck [Gro53b, p. 95| may be adapted to give an example
of an incomplete space of analytic vectors. Consider the regular representation of G = S' on the
(complete) space E = C(S!, CY), where CY is endowed with the product topology. The analytic
vectors for this action are sequences of functions, which extend holomorphically to a common
annulus {z € C|1—¢e < |z|] <1+ ¢} for some £ > 0. Being a dense subspace of (C(S')“)N, E¥
fails to be complete as well as sequentially complete.

3.3 Definition of analytic representation

Motivated by Proposition 3.4, we shall give the following definition.

DEFINITION 3.10. A representation (m, E) is called analyticif E = E* holds as topological vector
spaces.

Given a representation (m, E), Proposition 3.4 implies that (7, E¥) is an analytic
representation.

LEMMA 3.11. Let (m, E) be an analytic representation and let F' C E be a closed invariant
subspace. Then 7 induces analytic representations on both F and E/F.

Proof. This follows from Lemma 3.6. From (i) in that lemma we infer immediately that F“ = F,
and from (ii) we then conclude that E/F = E¥/F¥ — (E/F)% is continuous. The opposite
inclusion is trivially valid and continuous. O

Ezample 3.12. We consider the Fréchet space E := O(G¢) with the right regular action of G,

m(9)f(z) = f(z9) (9€G,z€Gc, f€O(Ge)).

It is easy to see that (m, E') defines a representation. Given v € E, it follows from (A.1) that
the orbit map =, : ¢ — E extends to a holomorphic mapping from G¢ to E. The same equation
implies easily that £ = E“ as topological spaces. Thus, (7, F') is analytic.

3.4 Irreducible analytic representations

It is a natural question on which type of topological vector spaces E one can model irreducible
analytic representations. The next result shows that this class is rather restrictive.

THEOREM 3.13. Let (w, E) be an irreducible representation of a reductive group on a Fréchet
space E. If = E*“ as vector spaces, then E is finite dimensional.
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Proof. By passing to a covering group if necessary, we may assume that G¢ is simply connected.
By assumption, E“ = lim F,, identifies with E as vector spaces. The Grothendieck factorization
theorem implies that E = E,, for some n (see [Gro73, ch. 4, §5, Theorem 1]). Hence, the operator
7(x) := 7y (x) is defined on E for all x € V;,. We shall holomorphically extend to all x € G¢.

Let v € E. By the monodromy theorem, it suffices to extend m(z)v along all simple smooth
curves starting at 1. Let v : [0, 1] — G¢ be such a curve with v(0) = 1. We select finitely many
open sets Uy, ..., Uy C G¢ which cover the curve ([0, 1]) and points

xi:’y(ti), O=t1 < - - <t <1,

such that 1 =z, € U; and x; € U; N U;—; for i > 1. By choosing the sets U; sufficiently small (and
sufficiently many), we may assume that U; C Vo, x; for each ¢ and also that the only non-empty
overlaps are among neighboring sets U; and U;_; (to attain these properties, it may be useful
from the outset to select the sets inside a tubular neighborhood around the curve).

In particular, 7(z)v is already defined for z € U; C Vay,. On Uy, . . ., Uk, we recursively define
m(x)v =m(z)m(zi)v, x=zx;€U; C Vapxy,

where m(z;)v is defined in the preceding step. Clearly, this depends holomorphically on x.
However, in order to obtain a proper extension of x— 7(x)v, we need to verify that w(x)v
is well defined on overlaps between the U;. What we need to show is that

w(2)m(x;)v =7(zzi)v, zx; € Ui NUi_q.

Let z; = yx;_1, where y € Va,. By the recursive definition, we have m(z;)v = 7(y)m(x;—1)v and
m(zx;)v =m(2y)m(x;—1)v. Then the desired identity follows, since 7(z)7(y) = m(zy) by (3.4).
Thus, the representation extends to an irreducible holomorphic representation of G¢ (also
denoted by 7). If U < G¢ is a compact real form, then the Peter—Weyl theorem implies that 7|y
is irreducible and finite dimensional. O

Remark 3.14. Non-reductive groups, on the other hand, may have irreducible analytic actions
on a Fréchet space. As an example, consider the Schrédinger representation of the Heisenberg
group H" on the Fréchet space

E:{fEO(C")WN,MGN: sup  sup ]f(x+iy)|eM|x<oo}.
z€R™ ye(—N,N)"

It is irreducible as a restriction of the Schrédinger representation on L2(R™), and one readily
verifies that F = E¥“.

4. The algebra of analytic superdecaying functions

We define a convolution algebra of analytic functions with fast decay. The purpose is to obtain
an algebra which acts on representations of restricted growth, such as F-representations.

4.1 Superdecaying functions

Let us denote by dg the Riemannian measure on G associated to the metric g and note that dg
is a left Haar measure. It is of some relevance below that there is a constant ¢ > 0 such that

/ e=e9) dg < o (4.1)
G

(see [Gar60, p. 75, Lemme 2]).
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We define the space of superdecaying continuous function on G by
R(G) = {f € C(G) | YN e N:sup |f(g)]eN9) < oo}
geG
and equip it with the corresponding family of seminorms. Note that R(G) is independent of the

choice of the left-invariant metric, and that it has the following properties.

PROPOSITION 4.1. (i) R(G) is a Fréchet space and the natural action of G X G by left-right
displacements defines an F-representation.

(ii) R(G) becomes a Fréchet algebra under convolution:

frta) = [ )ty a) dy
G
for f,h € R(G) and z € G.

(iii) Every F-representation (mw, E') of G gives rise to a continuous algebra representation of
R(G),
R(G)x E—F, (f,v)—T(f)0,

where
W= [ oy (eREG).0eD)
as an F-valued integral.

Proof. Easy. Use (2.1), (2.3), and (4.1). O

4.2 Analytic superdecaying functions

We shall start with a discussion of the analytic vectors in R(G). Henceforth, we shall view R(G)
as a G-module for the left regular representation of G. We set A(G) := R(G)¥ and equip A(G)
with the corresponding vector topology. With the notation from the preceding section, we put
An(G) :=R(G),, for each n € N. Notice that A,,(G) is a Fréchet space for each n, since R(G)
is Fréchet. Hence, A(G) is an LF-space (inductive limit of Fréchet spaces). In the appendix, we
show that A(G) is complete and reflexive.

PRrROPOSITION 4.2. (i) A(G) carries representations of G by left and right actions.

(ii) A(G) is a subalgebra of R(G) and convolution is continuous

A(G) x A(G) — A(G).

Proof. (i) The statement about the left action is immediate from Proposition 3.4(i). It is clear
that A(G) is right invariant, since every right displacement f — R, f is an intertwining operator
for the left regular representation. The continuity of the right action follows from Lemma 4.3
below, see Remark 4.4.

(ii) This follows from Proposition 4.6 (to be proved below) by taking F = R(G). O

The next lemma gives us a concrete realization of A, (G).

LEMMA 4.3. For all n € N, restriction to G provides a topological isomorphism of

{f € O(V,G) | VN > 0,¥Q C V,, compact: sup |f(zg)|eN9) < oo}
geG,zEN

onto A, (G). Here, the space above is topologized by the seminorms mentioned in its definition.
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Proof. Let f € A,(G). Then ~f:g9— R(G),g— f(g!) extends to a holomorphic map ~¢,
gVy — R(G). As point evaluations R(G) — C are continuous, it follows that F(2) :=ys,,(271)(1)
defines a holomorphic extension of f to V,,G. Moreover, F(zg) = vf,(27')(g) for z € V,, g € G.
Let N >0 and a compact set Q C V,, be given; then
sup | F(29)[e"™?) = sup px (7,0 (271)) < 00,
geG,ze0) z€Q
where py (h) = supyeq [h(9) |eN(9) is a defining seminorm of R(G). Hence, F belongs to the space
above. Moreover, we see that f+— F' is an isomorphism onto its image.

Conversely, let F' belong to the space above and put f:= F|g. Then it is clear that
F€R(G) (take Q= {1}). We need to show that f € A,(G), i.e. that v¢:g — R(G) extends
to a holomorphic map GV,, — R(G). The extension is z — F(z71), and we need to show that it
is holomorphic.

We first show that z — F(27!.) is continuous into R(G). To see this, let zg € GV;, and €, N > 0
be given. We wish to find a neighborhood D of 2y such that
pN(F(1) = P(z1) < e (4.2)
for all z € D.
Let us fix a compact neighborhood Dy of zg in GV,,. As

sup  |F(z71g)|e™9) < 0o
g€G,zeDy

for all m > N, we find a compact subset K C G such that

sup  |F(z71g)[eMN9) < ¢/2.
gEG\K,zGDo

Shrinking Dy to some possibly smaller neighborhood D, we may request that

sup  |F(271g) — F(z51g)|eM9) <.
geK,zeD

The required estimate (4.2) follows.

As continuity has been verified, holomorphicity follows provided that z+— A(F(z7!)) is
holomorphic for A ranging in a subset whose linear span is weakly dense in R(G)" (see [Gro53a,
p. 39, Remarque 1]). A convenient such subset is {J, | g € G}, and the proof is complete. O

Remark 4.4. Let q(f) := supyeq zeq | £(29)|eN%9) be a seminorm on A, (G) as above. Then (2.1)
implies that

a(Rof) < M@q(f)  (f € Au(G)),

for x € G, so A, (G) is an F-representation for the right action.

4.3 Analytic vectors of F-representations

Let (m, E') be an F-representation of G and let v € E. The map f + II(f)v is intertwining from
R(G) (with left action) to E. Hence, II(f)v € E, for f € A,(G) and II(f)v € E¥ for f € A(G).
With the preceding characterization of A, (G), we have

v—/ f(z g)v dg (4.3)
for f € A,(G), z € GV,
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Remark 4.5. In particular,
II(A(G))E¥ C E¥
for F-representations. In fact, one can show (see [GKL]) that
II(A(G))E¥ = E*.
It is easily seen that the action of A(G) on E¥ is an algebra action. We shall now see that it

is continuous.

PROPOSITION 4.6. Let (w, E) be an F-representation. The bilinear map (f,v)w— II(f)v is
continuous

A (G) x E— E,

for every n € N. Likewise, it is continuous
A(G) x E— E“.
Notice that since E“ injects continuously in E, the last statement implies continuity of both
A(G)x E—FE and A(G)x E¥ — E”.

Proof. Let n € N be fixed and let W C E,, be an open neighborhood of 0. We may assume that
W =Wk, ={veE,|pn(K)v) <1},

with K C GV, compact and p a continuous seminorm on F such that
p(r(g)v) < Ce“p(v) (g€ G,veE)

for some constants ¢, C' (see (2.3)).
Choose N > 0 so that (cf. (4.1))

Cr:= / ele=N)d(g) dg < 00
G
and let
= {f € O(V,,G)

(with € to be specified below). According to Lemma 4.3, O is open.
For f € O and z € K, we obtain by (4.3)

p(n( / (= )lp(n(g)v) dg < eCCrp(v).

With e < 1/(CC4), we conclude that II(f)v € W if f € O and p(v) < 1.

This proves the first statement. By taking inductive limits, we infer continuity of lim(.A4,,(G) x
E) — E¥. For the continuity of A(G) x E— E*, it now suffices to verify that lim(A,(G) x E)
and A(G) x E = (lim A, (G)) x E are isomorphic. The map

lim(A,(G) x E) — (lim A,(G)) x E

is clearly bijective and continuous. The left-hand side is LF, and the right-hand side is a product
of ultra-bornological spaces and hence itself ultra-bornological. It follows that the open mapping
theorem can be applied (see [MV97, Theorem 24.30 and Remarks 24.15 and 24.36]). O

p |79l < f € 4,()

zeK,geG

For later use, we note that A(G) contains a Dirac sequence.
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LEMMA 4.7. The heat kernel h; belongs to A(G) for each t > 0. Let E be an F-representation.
Then II(hy)v — v in E for allv € E.

Proof. The convergence in F is Nelson’s theorem (see §3). The heat kernel belongs to A(G) for
all ¢ > 0 by [GKL, Theorem 4.2].

Remark 4.8. Tt follows from the proof of [GKL, Theorem 4.2] that there exists a common m
such that h; € Ay, (G) for all t > 0.

4.4 A(G)-tempered representations

As we have seen that there is a continuous algebra action of A(G) on the analytic vectors of
F-representations, we shall make this property part of a definition.

DEFINITION 4.9. A representation (m, E) is called A(G)-tempered if for all f € A(G) andv € E
the vector-valued integral
f —/ flg)m(g)v dg

converges absolutely in E, and (f, v) — II(f)v defines a continuous algebra action
A(G) x E— E.

The absolute convergence of the vector-valued integral is assumed with respect to all
continuous seminorms on F.

Ezample 4.10. (a) For every F-representation (m, E'), both (7, E) itself and (7, E¥) are A(G)-
tempered according to Proposition 4.6. In particular, this holds for all Banach representations
and also for E'=R(G) with the left action (so that E“ = A(G)).

(b) If (m, E) is an A(G)-tempered representation and F' C F is a closed G-invariant subspace,
then the induced representations on F' and E/F are A(G)-tempered.

5. Analytic globalizations of Harish-Chandra modules

In this section we will assume that G is a real reductive group. Let us fix a maximal compact
subgroup K < G. We say that a complex vector space V' is a (g, K)-module if V' is endowed with
a Lie algebra action of g and a locally finite group action of K which are compatible in the sense
that the derived and restricted actions of £ agree and, in addition,

k(X -v)=(Ad(K)X) - (k-v) (keK,XeguveV).

We call a (g, K)-module admissible if for any irreducible representation (o, W) of K the
multiplicity space Hompg (W, V) is finite dimensional. Finally, an admissible (g, K)-module is
called a Harish-Chandra module if V' is finitely generated as a U(g)-module. Here, as usual, U(g)
denotes the universal enveloping algebra of g.

By a globalization of a Harish-Chandra module V' we understand a representation (m, E) of
G such that the space of K-finite vectors

Ek :={v € F|dimspanc{r(K)v} < oo}

s (g, K)-isomorphic to V' and dense in E. Density of Ef is automatic whenever E is quasi-
complete, see [Har66, Lemma 4]. Each element v € E allows an expansion in K-types v =
> reik Vr» Where vy =dim 77(x;)v € E. Here, the integral over K that defines m(x,)v may

1594

https://doi.org/10.1112/50010437X11005392 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X11005392

ANALYTIC REPRESENTATIONS

take place in the completion of F, but v, belongs to Ex by density and finite dimensionality of
K-type spaces.

A Banach (F-, analytic, A(G)-tempered) globalization is a globalization by a Banach (F-,
analytic, A(G)-tempered) representation. Note that according to Harish-Chandra [Har53],
FEx C E¥ if E is a Banach globalization. In general, the orbit map of a vector v € Fx is weakly
analytic (see Remark 3.1).

According to the subrepresentation theorem of Casselman (see [Wal88, Theorem 3.8.3]), V
admits a Banach globalization E. The space E“ is then an analytic A(G)-tempered globalization.

If V is a Harish-Chandra module, we denote by V the Harish-Chandra module dual to V/,
i.e. the space of K-finite linear forms on V (see [Wal88, p. 115]). We note that if £ is a
globalization of V, then V embeds into E’ and identifies with the subspace of K-finite continuous
linear forms (see [Cas89, Proposition 2.2]). Furthermore, V separates on E. Since the matrix
coefficients x — &(m(x)v) for v € V, € € V are real analytic functions on G, they are determined
by their germs at 1. It follows that these functions on G are independent of the globalization
(see [Cas89, p. 396]).

5.1 Minimal analytic globalizations

Let V' be a Harish-Chandra module and v = {vy, ..., v;} be a set of U(g)-generators. We shall
fix an arbitrary A-tempered globalization (7, E') and regard V as a subspace in E.

On the product space A(G)* = A(G) x - - - x A(G) with diagonal G-action, we consider the
G-equivariant map

k
Oyt AG =B, f=(fi,..., fu)— > T(f)v;,
j=1

and write I for its kernel. This map is evidently continuous and thus I is a closed G-invariant
subspace of A(G)*. We note that f € I, if and only if > J fi(9)&(m(g)v;) dg =0 for all £ € V.
It follows that I, is independent of the choice of globalization. Furthermore, the dependence on
generators is easily described: if v’ is another set of generators, say &’ in number, then there
exists a k x k' matrix u of elements from U(g) such that f € I if and only if R,f € I,.

Since Iy is closed and G-invariant, the quotient
ymin.— A(GY¥/ I,

carries a representation of G, which we denote by (7, V™). It is independent of the choice of
the globalization (7, E') and (up to equivalence) of the set v of generators.
LEMMA 5.1. Let V' be a Harish-Chandra module. Then the following assertions hold.

(i) V™ js an analytic A(G)-tempered globalization of V.

(ii) V™ =T1I(A(G))V, that is, V™™ is spanned by the vectors of the form II(f)v.

(iii) If (A, F) is any A-tempered globalization of V', then the identity mapping V — F lifts to

a G-equivariant continuous injection V™" — F“.

Proof. (i) It follows from the definition that V™7 is analytic (see Lemma 3.6) and A(G)-
tempered (see Example 4.10(b)). It remains to be seen that (V™) is (g, K)-isomorphic to V.
By definition, ®, induces a continuous G-equivariant injection V™* — E. In particular, (V™) g
is isomorphic to a (g, K)-submodule of V' = Ef. Moreover, as A(G) contains a Dirac sequence
by Lemma 4.7, and as we may assume E to be a Banach space, each generator v; belongs
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to the E-closure of the image of V™", By admissibility and finite dimensionality of K-types,
v; belongs to (V™) g for each j. Thus, (V™M) ~ V and (i) follows. Assertions (ii) and (iii) are
clear. a

Because of property (iii), we shall refer to V™ as the minimal A(G)-tempered globalization
of V. We record the following functorial properties of the construction.

LEMMA 5.2. Let V, W be Harish-Chandra modules.

(i) Every (g, K)-homomorphism T : W — V lifts to a unique intertwining operator T™" :
W — i with restriction T on W = (W™™) g and with closed image.

(ii) Assume that W C V' is a submodule. Then:

(a) W™ js equivalent with a subrepresentation of V™" on a closed invariant subspace;
(b) (V/W)™in s equivalent with the quotient representation V™t /J/min,

Proof. (i) Let T:V — W denote the dual map of T' and observe that
T¢(r(g)w) = €(n(g)Tw)

for all we W, €€V and g € G. Indeed, these are analytic functions of g whose power series at
1 agree because T is a g-homomorphism. It follows that if we choose generators wy, . .., w; for
W and vy, ..., v for V such that v; =Tw; for j=1,...,1, then the inclusion map f — (f, 0)
of A(G)! into A(G)F takes I, into I,. Hence, this inclusion map induces a map

0 AG) Iy — AG)E/ I,

which is continuous, intertwining, and has closed image. Moreover, this map restricts to 7' on W,
since it maps each generator w; to v; = Twj.

(ii) is obtained from (i) with 7' equal to (a) the inclusion map W — V or (b) the quotient
map V — V/W. O

Our next concern will be to realize the analytic globalizations inside Banach modules.

PROPOSITION 5.3. Let (m, E) be an analytic A(G)-tempered globalization of a Harish-Chandra
module V. Then there exist a Banach representation (o, F') of G and a continuous G-equivariant
injection (m, E) — (o, F).

Proof. We fix generators £ = {1, ..., &} of the dual Harish-Chandra module V C E' and put
U:={ve F|maxicjq |&(v)| <1}. Then U is an open neighborhood of 0 in F.

Fix m € N such that A,,(G) contains a Dirac sequence (see Remark 4.8). As A,,,(G) x E — E
is continuous, we find an open neighborhood O of 0 in A,,(G) and an open neighborhood W of 0
in F such that II(O)W C U. We may assume that O is of the type O ={f € A,,(G) | ¢(f) < 1},
where

q(f) = sup | f(zg)|eN9
geG

z€Q
for some N € N and Q C V;,, compact. Define the normed space X := (A,,,(G), q). It follows from
Remark 4.4 that the right regular action of G is a representation by bounded operators on X. Let
F := (X*)! be the topological dual of X! and ¢ the corresponding dual diagonal action of G. Note
that F' is a Banach space, being the dual of a normed space, so that ¢ is a Banach representation.
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We claim that the map

l
bre—F o (=i ) LGN
j=1

is G-equivariant, continuous, and injective. Equivariance is clear, and in order to establish
continuity we fix a closed convex neighborhood O of 0 in F. We may assume that O is a polar of
the form O = [B']°, where B is a bounded set B C X. Because B is bounded, there exists A >0
such that B C AO. Choosing W := (1/A\)W, we have ¢(W) C O, as

SV)(B) € 6(W ZZ@

l
1
72 U)c{zeC||z|<1}.

It remains to be shown that ¢ is injective. Suppose that ¢(v) =0. Then ¢(v.) =0 for each
element v, in the K-finite expansion of v, so that we may assume that v is K-finite. Then for
all fe An(G) and n eV one would have n(II(f)v) = 0. Since K-finite matrix coefficients are
independent of globalizations, we conclude by Lemma 4.7 that n(v) =0 and hence v = 0. O

5.2 The minimal analytic globalization of a spherical principal series representation

Let G = KAN be an Iwasawa decomposition of G and denote by M the centralizer of A in K,
i.e. M = Zy(A). Then P = MAN is a minimal parabolic subgroup. Let us denote by a, n the Lie

algebras of A and N and define p € a* by p(X) = jtr(ad X|s), X € a. For A€ a} and a € A, we

set @ := eMloga)

The smooth spherical principal series with parameter X € ag. is defined by
.= {f € C®(Q) |Yman € P Yg € G : f(man g) = a"** f(g)}.

The action of G on Vy* is by right displacements in the arguments, and in this way we obtain a
smooth F-representation (my, V°) of G. We denote the Harish-Chandra module of V> by V).

It is useful to observe that the restriction mapping to K,
Resg : v3° — C*(M\K),

is an K-equivariant isomorphism of Fréchet spaces, and henceforth we will identify V{* with
C>®(M\K). The space V) of K-finite vectors in V® is then identified as a K-module with the
space C(M\K)g of K-finite functions on M\K.

Likewise, the Hilbert space Hy := L?(M\K) is provided with the representation 7. The
space of smooth vectors for this representation is HY® =V = C*°(M\K), and the space of
analytic vectors is the space HY = Vy’ := C¥(M\K) of analytic functions on M\ K with its usual
topology.

THEOREM 5.4. For every A\ € ag, one has
ML(A(G))Vy = C¥(M\K).

In particular, V" ~ Vi = C¥(M\K) as analytic representations.
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The proof of this theorem is similar to the corresponding result in the smooth case (see [BK,
§4]). Note that from Lemma 5.1, we have

I\ (A(G))Vy = ™ C VY

with continuous inclusion. As the space Vi™™ admits a web (see [MV97, 24.8 and 24.28])
and CY(M\K) is ultra-bornological (see [MV97, 24.16]), we can apply the open mapping
theorem [MV97, 24.30] to obtain an identity of topological spaces from the set-theoretical
identity. It thus suffices to prove that for each v € Vy’, there exist £ € V) and F' € A(G) such
that II(F){ = v.

We need some technical preparations. Let us denote by g =€ + p the Cartan decomposition
of g, and write 6 for the corresponding Cartan involution. Let (-, -) be a non-degenerate invariant
bilinear form on g which is positive definite on p and negative definite on €. Then (-, -) = —(6-, -)
defines an inner product on g, which we use to identify g and g*. We write |- | for the norms
induced on g and g*.

Let Xi,..., X, be an orthonormal basis of ¢ and Y7, ...,Y; be an orthonormal basis of p.
We define elements in the universal enveloping algebra U(g) by

s l s
A=)"X7+) Y7, Ag=> X;, and C:=A-2Ag.
j=1 i=1 j=1

Note that C is a Casimir element. In particular, it belongs to the center of U(g).

Let t C £ be a maximal torus. We fix a positive system of the root system X(tc, &c) and identify
the unitary dual K via their highest weights with a subset of #t*. If (1, W) is an irreducible
representation of K, then A acts as the scalar multiple |7 + pg? — |pe2. For every 7 € K , we
denote by x, € C(K) the normalized character x, (k) = (dim W,)~tr 7(k). Note that C(K) acts
on A(G) by left convolution.

We denote the left regular representation of G on A(G) by L. The following proposition will
be crucial in the proof of Theorem 5.4.

PROPOSITION 5.5. Let (¢;) .z be a sequence of complex numbers and (a;)_ . a sequence of
elements in G. Assume that

ler| < Ce™ " d(ar) < e log(1+ |7]) + ¢
for some C, €, c1,co > 0. Let f € A(G). Then
F:=> crx-*Liar)f € AG).
€K

Proof. As (L, R(G)) is an F-representation, it follows from [GKL] that h € R(G) belongs to
A(G) if and only if there exists an M > 0 such that for all N € N there exists a constant Cy > 0

with
sup eV | ARL(g)| < Oy M?*(2k)! (5.1)
geG
for all k€ N.
Observe that A = C + 2Ak. For every h € R(G), one has
Ax (e h) = (|7 + pd = |pd*)xr * h. (52)
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Moreover, as C is central, we obtain for every g € G and h € A(G) that
Clxr * L(g)h) = X+ + L(g)(Ch). (5.3)

Let now f € A(G). As f is an analytic vector for R(G) and hence also for L?(G), we find
(see [War72, Corollary 4.4.6.4]) a constant M; > 0 such that for all N > 0 there exists a constant
C'ny > 0 such that

sup eV |CF f(g)| < Oy M (2K)!. (5.4)
geG
We first estimate A¥(y, * L(a,)f). For that, we employ (5.2) and (5.3) in order to obtain

that

A¥(xr # L(ar) ) =

M-

I
o

(5)erean it « L

I
] =

2 (j) (I7+ pd? = |pd*)* ™ (xr * L(ar)C7 f).

[e=]

J
For N > 0, we thus obtain using (5.4) that

k
sup VU9 AR (xr x L(ar) £) ()] < On2PF Y (1 |7])2 09 sup NI L(ar)C f(g)]
ge

geG =0

k
< O M)y DM (1 7)) (29)!
j=0

k
< CRMZE S (14 |7])?k-20HNer (95))
=0

for some C, M2 > 0 independent of 7. Using these inequalities for F', we arrive at

k
sup ™A (g)| SORMZE Y D ler|(1+ 7)) E%0r (2)1
geG o G
rek =0

From the lemma below, we obtain that
D el (1 |r|)2EDTer < CMPRT 2k — 2j)!
TEK

for some constants C, M > 0 independent of k, j. Since

k
D 2k — 2)1(24)! < 2% (2k),
=0
we conclude that F' satisfies the estimates (5.1). O

LEMMA 5.6. Let ¢ > 0. There exist C, M > 0 such that

> e 1+ 7))t < Ml
reK
for all n € N.
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Proof. We assume for simplicity that K is semisimple. The proof is easily adapted to the general
case. The set K is parameterized by a semilattice in it*, say

K:{mlﬁ—k---—l—mm|m1,...,ml€N}.

We shall perform the summation over K by summing over m € N, and over those elements 7 for
which the maximal m; is m. There are Im!~! such elements, and they all satisfy am < |7| < bm
for some a, b > 0 independent of m. It follows that the sum above is dominated by

Z Im'=te€ ™ (1 4 bm)™.
meN

The given estimate now follows easily. O

Before we give the proof of Theorem 5.4, we recall some harmonic analysis for the compact
homogeneous space M\ K. We denote by K}, the M-spherical part of K, that is, the equivalence
classes of irreducible representations 7 for which the space V.M of M-fixed vectors is non-zero.
Then

L*(M\K) = @ Hom (VM V;) (5.5)
TeKY,
by the Peter-Weyl theorem. We write v=7)__wv; for the corresponding decomposition of a
function v on M\K and note that with the right action of k€ K on L?>(M\K) we have
[7(k)v]; =7(k) o vr.

Furthermore,
CW(M\K) = {’U = Z Uy | 36, C >0 V7 : ||UTH < 06—67’}’

where ||v;|| denotes the operator norm of v.

Let 7 € K};. The integral 6. (k) = dim(7) [,, xr(mk) dm of the character is bi-invariant under
M. The components of 0, in the decomposition (5.5) are all 0 except the 7-component, which is
the inclusion operator I of VTM into V.

Proof. We can now finally give the proof of Theorem 5.4. Let v=7>__v, € C¥(M\K) be given,
and let € > 0 be as above.

It follows from [BK, §6] that there exists a K-finite function £ € V), and, for each 7 € K},
elements a, € A and ¢, € C such that

d(ar) <crlog(l+|7]) 42, er| <2(1 + 7))
for some constants cq, co, cg > 0 independent of 7, and such that
R, = 57’ - CT[ﬂ-)\(aT)é]T

satisfies ||R;|| < 1/2 for all 7. By integration of £ and R, over M, we can arrange that they are
both M-bi-invariant.

We now choose a function f € A(G) such that II( f)& = &. It exists because II(D . p X7 * ht)€
converges to & for t — 0 and some finite set F' of K-types by Lemma 4.7, so that & belongs to the
closure of a finite-dimensional subspace of II(A(G))¢{. According to Proposition 5.5, the function

F=Y"ce 3y, 5 Liay) f
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belongs to A(G). An easy calculation shows that
M(F)E=Y e 25, — R,).

Being of type 7 and M-bi-invariant, R, corresponds in (5.5) to an operator R, € End(V;™).
Since ||R-|| < 3, the operator I, — R, € End(V,M) is invertible with ||(I; — R;)~!|| < 2. Then
vr(I; — R;)~' € Hom(VM, V,) with ||v.(I; — R,)~Y| < 2Ce=I"l. Tt follows that the function on
M\ K with the expansion

> erlrlo (1, — Ry) !

belongs to C¥(M\K). We denote by h(k—!) this function, so that h is a right M-invariant
function on K. Another easy calculation now shows that

TWI(F)E =) v, =v

and hence h x F' € A(G) is the function we seek. O

5.3 Unique analytic globalization

The goal of this section is to prove the following version of Schmid’s minimal globalization
theorem [KS94, Theorem 2.13].

THEOREM 5.7. Let V' be a Harish-Chandra module. Every analytic A(G)-tempered globaliza-
tion of V' is isomorphic to V™,

In particular, if (w, E') is an arbitrary F-globalization of V', then
EY ~ Vmin.

Proof. We first treat the case of an irreducible Harish-Chandra module V.
We first claim that V' admits a Hilbert globalization H such that H* = II(A(G))V and hence
in particular (see Lemma 5.1(ii))
HY ~ pmin,

In the case V = V), we can take H) = L?(M\K) and the assertion follows from Theorem 5.4.
If the Harish-Chandra module is of the type V =V\ ® W, where W is a finite-dimensional
G-module, then H =H) ® W is a Hilbert globalization with H* =H{ ® W. A straightforward
generalization of [BK, Lemma 5.4] yields that

(I, £)(A(G))V = H*.
Finally, every irreducible Harish-Chandra module is a subquotient of some V) @ W (see for

example [LW73, Theorem 4.10]), and the claim follows by Lemma 5.2.

Let now (7, E) be an arbitrary analytic A(G)-tempered globalization of V. We aim to prove
that E ~ V™" From Lemma 5.1, we know that V™" injects G-equivariantly and continuously
into ¥ = E* and hence it suffices to establish surjectivity of the injection.

We now fix the Hilbert globalization H of the above. In view of Proposition 5.3, we can
embed (7, E') into a Banach globalization F' of V. As E is analytic, we obtain a continuous
G-equivariant injection ¥ — F*“. In order to proceed, we recall the Casselman—Wallach theorem
(cf. [Cas89, Wal88], or [BK] for a more recent proof), which implies that F'*° is equivalent to H>
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as an F-representation. It follows, see Corollary 3.5, that F“ ~H“. Collecting the established
isomorphisms, we have

Vmin S ECFY~HY~ Vmin.
The surjectivity follows from the completeness of H“ (see Proposition 3.7).

Finally, we prove the case of an arbitrary Harish-Chandra module. As Harish-Chandra
modules have finite composition series, it suffices to prove the following statement: let 0 —
Vi —V — V5 — 0 be an exact sequence of Harish-Chandra modules and suppose that both V4
and V5 have unique analytic A(G)-tempered globalizations. Then so does V.

Let E be an analytic A(G)-tempered globalization of V. Let E; be the closure of V; in
E and E;=F/E;. Then E; and E; are analytic A(G)-tempered globalizations of V; and
V5. By assumption, we get Ej :Vlmin and Fs :Vzmin and, from Lemma 5.2, we infer that
Vguin — ymin /ymin - Qhserve that in an exact sequence of topological vector spaces 0 — Ej —
E — E3 — 0 the topology on FE is uniquely determined by the topology of E; and Es (see [DS79,
Lemma 1]). We thus conclude that E = V/™in, O

We conclude by summarizing the topological properties of V™" Recall that an inductive
limit £ = lim,,_,~ £, of Fréchet spaces is called regular if every bounded set is contained and
bounded in one of the steps E,,.

COROLLARY 5.8. The minimal globalization V™" is a nuclear, regular, reflexive, and complete
inductive limit of Fréchet—Montel spaces.

Proof. Theorem 5.7 and Proposition 3.7 imply that V™" is complete. Furthermore, it then
follows from [Kuc04, Wen96] that V™" is regular and reflexive (see also Appendix B). It is an
inductive limit of Fréchet—Montel spaces, because A(G) is an inductive limit of Fréchet—Schwarz
spaces, and Hausdorff quotients of such spaces are Fréchet—Montel. Nuclearity is inherited from
C¥(M\K), which is the strong dual of a nuclear Fréchet space, and this property is preserved
when passing to the quotient of a finite-dimensional tensor product. Finally, a Fréchet space is
nuclear if and only if its strong dual is nuclear (see [Jar81, §21.5]). O

Appendix A. Vector-valued holomorphy

Here, we collect some results about analytic functions with values in a locally convex Hausdorff
topological vector space E. Let 2 C C" be open.

It is a natural and common assumption that F is sequentially complete. Let us recall that
under this assumption an E-valued function f on €2 is said to be holomorphic if it satisfies one
of the following conditions, which are equivalent in this case:

(a) f is weakly holomorphic, that is, the scalar function z+ ((f(z)) is holomorphic for each
continuous linear form ¢ € E’;

(b) f is C-differentiable in each variable at each z € €;

(c¢) f is infinitely often C-differentiable at each z € ;

(d) f is continuous and is represented by a converging power series expansion with coefficients
in F, in a neighborhood of each z € €.

In general, the conditions (c) and (d) are mutually equivalent and they imply (a) and (b). This
follows by regarding f as a function into the completion E of E (see [Glo02, Proposition 2.4]).
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We shall call a function f:Q — E holomorphic if (c) or (d) is satisfied or, equivalently, if it is
holomorphic into £ with E-valued derivatives up to all orders.

Let M be an n-dimensional complex manifold. An FE-valued function on M is called
holomorphic if all its coordinate expressions are holomorphic. We denote by O(M, E) the space
of E-valued holomorphic functions on M. Endowed with the compact open topology, it is a
Hausdorff topological vector space, which is complete whenever E is complete.

The following isomorphism of topological vector spaces is useful.
LEMMA A.1. Let M and N be complex manifolds; then
O(M x N,E)~O(M,O(N, E)) (A.1)
under the natural map f+ (z+— f(x, -)) from left to right.
Proof. Apart from the statement that x— f(z,:)€ O(N,FE) is holomorphic, this is
straightforward from definitions. It is clear that f(z,-) € O(N, E). By regarding O(N, E) as
a subspace of O(N, E) and noting that it carries the relative topology, we reduce to the case

that E is complete, so that condition (b) applies. Assume for simplicity that M = C. What needs
to be established is then only that the complex differentiation

0 1

O (o) =t 21t b y) — Sy € B
is valid locally uniformly with respect to y € N. This follows from uniform continuity on compacta
of the derivative. O

Appendix B. Topological properties of A(G)

While the topology of a general inductive limit of Fréchet spaces may be complicated, A(G)
inherits certain properties from the steps A(G),.

THEOREM B.1. The algebra A(G) is regular, complete, and reflexive.

A regular inductive limit of Fréchet-Montel spaces is known to be reflexive [Kuc04] and
complete [Wen96], so that we only have to show regularity. The following criterion from [Wen96,
Theorem 3.3], in terms of interpolation inequalities, will be convenient.

PropPoOSITION B.2. An inductive limit E = lim,, .~ E, of Fréchet—Montel spaces is regular if

and only if for some fundamental system {py .} en of seminorms on E, :¥n Im >n v Vk >
mVu Ik 3ICVf e E,

pm,u(f) < C(pk,f@(f) + pn,u(f))' (B'l)

In the case of A(G), condition (B.1) should be thought of as a weighted geometric relative of
Hadamard’s three-lines theorem. To verify it, we need to introduce some notions from complex
and Riemannian geometry, starting with the appropriate differential operators.

By common practice we identify the Lie algebra ge with the space of right-invariant vector
fields on G¢, where X € gq corresponds to the differential operator

Xu(z) = % tiou(exp(—tX)x) (x € Ge,ue C™®(Ge)).
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If we denote the complex structure on the Lie algebra ge by J, the Cauchy—Riemann operators
0z and 0y associated to Z € g¢ are given by 9y := Z +iJZ and Oy =7 — z'JNZ, respectively.

In this section it will be convenient to replace the left G-invariant metric g on G used in § 2.1
by a right-invariant one, which we shall denote by the same symbol. Note that the corresponding
distance functions d on G are equivalent (see (2.2)). The function

K(exp(JX)g) := 5| X[* := 381(X, X)

endows a sufficiently small complex neighborhood VG of G with a right G-invariant Kahler
structure. To see this, choose an orthonormal basis {X; }é-zl of g with respect to the metric. A
straightforward computation results in

aXiEXjK(]‘) = g1(X;, Xj)’

so that the complex Hessian (Z7, Z2) + 07,07, K (1) defines a positive-definite Hermitian form
on ge. By continuity and invariance, positivity extends to give a Kahler metric on a small
neighborhood VG.

The complex Laplacian

! !
_ ~2 2
Ac = Z axja)(j = Z Xj + JXj

j=1 J=1
agrees with the Kéhler Laplacian up to first-order terms and maps real-valued functions to
real-valued functions. Therefore, the following weak maximum principle holds.
LEMMA B.3. Ifu € C?(VG) is real valued with a local maximum in z € VG, then

Acu(z) <0.

As Ac is a trace of the complex Hessian, we may rely on well-known results about
plurisubharmonic functions to conclude.

LEMMA B.4. For ue O(VG), Acu=0 and Ac log |u| > 0.

So, while it may be less obvious how to control applications of A¢ to the Riemannian distance
function d on G, Ac¢ annihilates the holomorphically regularized distance function d:=e Bsd
from [GKL]. This is going to be useful in the proof of Theorem B.1, and the following lemma,
which is shown as in [GKL, Lemma 4.3], collects the key properties of d.

LEMMA B.5. (a) The function d extends to a function in O(UG) for some neighborhood U of
1€ Ge.

(b) For all U' € U, sup, ey |d(zg) — d(g)| < oo and j(\;ci as well as jVXjJ are bounded on
U'G for all j.

Before finally coming to the proof of Theorem B.1, we introduce an equivalent representation
of A(G) based on geometrically more convenient neighborhoods. If we define for n € N, v € Ny
the neighborhoods

V= {exp(JX) €Ge || X|< 711}’

. -
= {exp(JX) € Gel X[ < n+ (y+2)—1}
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and associated subspaces of A(G),

P

AG), 1= {1 € OWG) [ € Nipuu()i= sup 11(ag)ler® <o),

9€G,ze0y

e

then A(G) is again an inductive limit lim, .o, A(G),, of Fréchet-Montel spaces. Condition (B.1)
translates into

sup If(zg)\e“d(g)<0< sup [F(z9)]e"® & sup If(zg)!e”d(g)> (B.2)
29€Q G 2geQG 2geQW G

for f € A(G),,.

To show this, let n sufficiently large, 0 # f € A(G),,, m=n+1,v=0,k >m, and p € N, and
consider
u(z) =log | f(z)| + N(2)D(z)
on V,G\Vi11G, where we choose N (exp(JX)g)= N(exp(JX))=0u(|X|"2* - (n+ 1)?%) and
D(z) = Dy + Re d(z) for some v, o, Dy > 0. First note that Acu > 0 if Dy and « are sufficiently

large. Indeed, by Lemma B.4, it is enough to show that Ac(N(z)D(z)) > 0. But, AcD =0, so
that

l
Ac(N(2)D(2)) = (AcN(2))D(2) +2 Y {X;N(2)X;D(2) + JX;N(2)JX;D(2)}.
j=1

With D >1 on VnG for large Dy by Lemma B.5, we only have to show that
AcN(2) > D max {[X;N(2)||JX;N(2)[}
i=1,..,
on V,,G for large n and D = 2 sup{|)?/jD|, |JA/X]D| :j=1,...,1}. By G-invariance, it is sufficient
to do so in z = exp(eJX) close to € = 0. The Baker—Campbell-Hausdorff formula implies that
exp(tJX;) exp(eJX) = exp(eJX + tJX; + O(et?) + O(e*t)) - exp(3et[J X;, JX]),

so that
— d
JX;jN(exp(eJX)) = — | N(eJX +tJX;+ O(et?) + O(e%))
t=0
X, X)
— _9npe—l—2 g1 (X, —2a)
ave g1 (X, X)arT + O(e™*9)
Similarly,

_o9a 2+ 1)g1 (X, X)? — g1(Xj, X;)g1(X, X)

(JX;)?N(exp(eJ X)) = 2ae o (X K)o

up to terms of order e7172%. Summing over j establishes the assertion for large o and small ¢
and hence for large n.

For £ >0, set S, :=supgqog v and Sy := SUppqr G U- Because u(z) is bounded from above
and <max{Sy, S,} on 0Q;G U 9V G, the maximum principle, Lemma B.3, assures that

u(z) < max{Sg, Sn}
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in QOG\QFG, or

F@NEPE < ISES < sup [ £(w) NP £ sup | f(w)] NP,
wed G wed,G

LT 0 - : —
As V,, € Q,, we may choose 7 such that N|‘~/mG\‘~/k+1G > . Setting K 1= SUPG: A\ V11 G N > u, we
obtain

sup | f(2)[e"PF) < sup [f(2)|e"PP) 4+ sup [ f(2)]

zeQUnG zeQpG 2€000G
< sup |f(2))e"PE 4+ sup |f(2)].
z2eQEG z2eQ9G

Lemma B.5 implies that d(z) — C' < D(z) < d(z) + C for some C > 0, and Theorem B.1 follows.

Remark B.6. It would be interesting to better understand the topology of A(G)N/I for

a stepwise closed, A(G)-invariant subspace I. Because A(G)
quotients A(G)iv /(1IN .A(G)fj) are Fréchet—Montel and one might hope to verify condition (B.1)
as before. However, adapting the above proof requires strong assumptions on I, and general
Hausdorff quotients A(G)™ /I are likely to be incomplete: for a convex domain Q C R", the
space of test functions D(2) is isomorphic to a similar weighted space of holomorphic functions
by Paley—Wiener’s theorem. However, given any non-surjective differential operator A on D'(Q),
the quotient of D() by the image of A? will be incomplete.

, is even Fréchet-Schwarz, the
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