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Abstract

In this article a general framework for studying analytic representations of a real Lie
group G is introduced. Fundamental topological properties of the representations are
analyzed. A notion of temperedness for analytic representations is introduced, which
indicates the existence of an action of a certain natural algebra A(G) of analytic
functions of rapid decay. For reductive groups every Harish-Chandra module V is shown
to admit a unique tempered analytic globalization, which is generated by V and A(G)
and which embeds as the space of analytic vectors in all Banach globalizations of V .

1. Introduction

While analytic vectors are basic objects in the representation theory of real Lie groups, a coherent
framework to study general analytic representations has been lacking so far. It is the aim of this
article to introduce categories of tempered and non-tempered such representations and to analyze
their fundamental properties. For a representation (π, E) of a Lie group G on a locally convex
space E to be analytic, we are going to require that every vector in E be analytic and that the
topology on the space of analytic vectors coincides with the topology of E. No completeness
assumptions on E are imposed, so that the quotient of an analytic representation by a closed
invariant subspace is again analytic.

Recall that a vector v ∈ E is called analytic provided that the orbit map γv : x 7→ π(x)v
extends to a holomorphic E-valued function in a neighborhood of G within the complexification
GC. The space Eω of analytic vectors carries a natural inductive limit topology Eω = limn→∞ En,

En = {v ∈ E | γv extends to a holomorphic map GVn→ E},

indexed by a neighborhood basis {Vn}n∈N of the identity in GC. The induced representation
(π, Eω) turns out to be continuous and indeed satisfies Eω = (Eω)ω in the sense of topological
vector spaces. Every analytic representation is obtained in this way. Due to the inductive limit
structure of Eω, interesting examples tend to involve complicated and possibly incomplete
topologies. For instance, infinite-dimensional Fréchet spaces do not carry any irreducible analytic
representations of a reductive group. Still, in spite of examples by Grothendieck and others which
show how incomplete spaces may naturally occur, important special cases are better behaved,
like for instance the analytic vectors associated to a Banach representation, the algebra A(G)
below, or the analytic globalization of a Harish-Chandra module.
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Moderately growing analytic representations allow for an additional action by an algebra of
superexponentially decaying functions. To be specific, consider a Banach representation (π, E).
Fix a left-invariant Riemannian metric on G and let d be the associated distance function. The
continuous functions on G decaying faster than e−nd(·,1) for all n ∈ N form a convolution algebra
R(G), which is a G-module under the left regular representation. If we denote the space of
analytic vectors of R(G) by A(G), the map

Π :A(G)→ End(Eω), Π(f)v =
∫
G
f(x)π(x)v dx, (1.1)

gives rise to a continuous algebra action on Eω. More general representations will be called
A(G)-tempered, or of moderate growth, provided that the integral in (1.1) converges and defines
a continuous action of A(G).

Let us now specify to the case where G is a real reductive group, and let us recall that to each
admissible G-representation E of finite length one can associate the Harish-Chandra module EK
of its K-finite vectors. Conversely, a globalization of a given Harish-Chandra module V is an
admissible representation of G with V = EK . The main result for this case is now as follows.

Theorem 1.1. Let G be a real reductive group. Then every Harish-Chandra module V for G
admits a unique A(G)-tempered analytic globalization V min. Moreover, V min has the property
V min = Π(A(G))V.

It follows that Eω ' V min for every A(G)-tempered globalization E of V (in particular, for
every Banach globalization). Let us mention the relationship to the results of [Kas08, KS94]
(announced in [Sch85]), which assert in particular that every Harish-Chandra module admits
a unique minimal globalization, which is equivalent to Eω for all Banach globalizations E. Our
approach is independent of this theory and relies on recent lower bounds for matrix coefficients,
see [BK].

The theorem features a worthwhile corollary, as follows.

Corollary 1.2. For an irreducible admissible Banach representation (π, E) of a real reductive
group G, the space of analytic vectors Eω is an algebraically simple A(G)-module.

This corollary suggests a notion of irreducible analytic tempered representations for a general
Lie group.

2. Banach representations and F-representations

All topological vector spaces E considered in this paper are assumed to be Hausdorff and locally
convex. If E is a topological vector space, then we denote by GL(E) the group of isomorphisms
of E.

Let G be a connected Lie group. By a representation of G we shall understand a continuous
action

G× E→ E, (g, v) 7→ g · v,
on some topological vector space E. Each representation gives rise to a group homomorphism

π : g→ E, g 7→ π(g), π(g)v := g · v (v ∈ E),

and it is customary to denote the representation by the symbol (π, E).
A representation (π, E) is called a Banach representation if E is a Banach space. We say that

(π, E) is an F-representation if E is a Fréchet space for which there exists a defining family of
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seminorms (pn)n∈N such that for all n ∈ N the action

G× (E, pn)→ (E, pn)

is continuous. Here, (E, pn) refers to the vector space E endowed with the locally convex structure
induced by pn.

Remark 2.1. (a) Every Banach representation is an F-representation.
(b) Let (π, E) be an F-representation. For each n ∈ N, let us denote by Ên the Banach

completion of (E, pn), i.e. the completion of the normed space E/{pn = 0}. The action of G
on (E, pn) factors to a continuous action on the normed space E/{pn = 0} and thus induces a
Banach representation of G on Ên.

(c) The left regular action of G on the Fréchet space C(G) defines a representation, but in
general not an F-representation.

Let E∞ denote the space of smooth vectors in E, that is, the vectors v ∈ E for which the
orbit map g 7→ π(g)v is smooth into E. Then E∞ ⊂ E is an invariant subspace, and it is dense
if E is complete. The orbit map provides an injection of E∞ into C∞(G, E), from which E∞

inherits a topological vector space structure. Then (π, E∞) is a representation. Furthermore,
E∞ is a Fréchet space if E is a Fréchet space, and (π, E∞) is an F-representation if (π, E) is an
F-representation. By definition, a smooth representation is a representation for which E∞ = E
as topological vector spaces.

2.1 Growth of representations
We call a function w : g→ R+ a weight if:

– w is locally bounded;

– w is sub-multiplicative, i.e. w(gh) 6 w(g)w(h) for all g, h ∈G.

To every Banach representation (π, E) we associate the function

wπ(g) := ‖π(g)‖ (g ∈G),

where ‖ · ‖ denotes the standard operator norm. It follows from the uniform boundedness
principle that wπ is locally bounded. Hence, wπ is a weight.

Sub-multiplicative functions can be dominated in a geometric way. For that, let us fix a
left-invariant Riemannian metric g on G. Associated to g we obtain the Riemannian distance
function d :G×G→ R>0. The distance function is left G-invariant and hence is recovered as
d(g, h) = d(g−1h) from the function

d(g) := d(g, 1) (g ∈G),

where 1 ∈G is the neutral element. Notice that it follows from the elementary properties of the
metric that d is compatible with the group structure in the sense that

d(g−1) = d(g) and d(gh) 6 d(g) + d(h) (2.1)

for all g, h ∈G. In particular, g 7→ ed(g) is a weight. Note also that the metric balls {g ∈G | d(g) 6
R} in G are compact [Gar60, p. 74].

If w is an arbitrary weight on G, then there exist constants c, C > 0 (depending on w) such
that [Gar60, p. 75, Lemme 3]

w(g) 6 Cecd(g) (g ∈G). (2.2)
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In particular, it follows that a Banach representation has at most exponential growth

‖π(g)‖6 Cecd(g).

By applying Remark 2.1(b), we obtain for an F-representation (π, E) with defining seminorms
(pn)n∈N that for each n there exist constants cn, Cn such that

pn(π(g)v) 6 Cne
cnd(g)pn(v) (g ∈G, v ∈ E). (2.3)

Finally, notice that it follows from (2.2) that if d1(g) = dg1(g, 1) is the function associated to
a different choice of a G-invariant metric, then d1 is compatible with d, in the sense that there
exist constants c, C > 0 such that

d1(g) 6 cd(g) + C (g ∈G)

(and vice versa with d, d1 interchanged).

Remark 2.2. Suppose that G is a real reductive group and ‖ · ‖ is a norm of G (see [Wal88,
§ 2.A.2]). Then ‖ · ‖ is a weight and hence there exist constants c1, C1 > 0 such that

log ‖g‖6 c1d(g) + C1 (g ∈G).

Conversely, by following the proof of [Wal88, Lemma 2.A.2.2], one finds constants c2, C2 > 0 such
that

d(g) 6 c2 log ‖g‖+ C2 (g ∈G).

3. Analytic representations

Let us start by setting up some notation in order to discuss the issue of analyticity in a convenient
way.

Let us denote by g the Lie algebra of G. To simplify the exposition, we will assume that
G⊂GC, where GC is a complex group with Lie algebra g⊗R C =: gC. We stress, however,
that this assumption is not necessary, since the use of GC essentially only takes place locally in
neighborhoods G.

We extend the left-invariant metric g to a left GC-invariant metric on GC and denote the
associated distance function as before by d. For every n ∈ N, we set

Vn :=
{
g ∈GC | d(g)<

1
n

}
and Un := Vn ∩G.

It is clear that the Vn, respectively Un, form a base of the neighborhood filter of 1 in GC,
respectively G. Note that Vn is symmetric, and that xy ∈ Vn for all x, y ∈ V2n.

3.1 The space of analytic vectors

Let (π, E) be a representation of G. For each v ∈ E, we denote by

γv : g→ E, x 7→ π(x)v,

the associated continuous orbit map. We call v an analytic vector if γv extends to a holomorphic
E-valued function (see Appendix A) on some open neighborhood of G in GC.

If v is analytic, then γv is a real analytic map G→ E. The converse statement, that real
analyticity of the orbit map implies the analyticity of v, holds under the assumption that E is
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sequentially complete. Hence, our definition agrees with the standard notion of analytic vectors
for Banach representations, see for example [Gar60, Goo69, Nel59].

Remark 3.1. If E is a Banach space or more generally a complete DF-space (see [MV97, ch. 25]),
then it follows from [Net64, Theorem 1] that v is an analytic vector already if the orbit map is
weakly analytic, that is, λ ◦ γv : g→ C is real analytic for all λ ∈ E′. Here, E′ denotes the dual
space of continuous linear forms.

The space of analytic vectors is denoted by Eω. A theorem of Nelson [Nel59, p. 599] asserts
that Eω is dense in E if E is a Banach space. More precisely, Nelson’s theorem asserts the
following. Let ht ∈ C∞(G) denote the heat kernel on G, where t > 0; then Π(ht)v ∈ Eω and
Π(ht)v→ v for t→ 0 for all v ∈ E. In fact, the proof of Nelson’s theorem is valid more generally
if E is sequentially complete and with suitably restricted growth of π. In particular, this is the
case for F-representations, see (2.3). The density is false in general, as easy examples such as
the left regular representation of R on Cc(R) show.

We wish to emphasize that Eω is a G-invariant vector subspace of E. This follows immediately
from the identity γπ(g)v(x) = γv(xg). We also note that Eω is a g-invariant subset of the space
E∞ of smooth vectors.

It is convenient to introduce the following notation. For every n ∈ N, we define the subspace
of Eω,

En = {v ∈ E | γv extends to a holomorphic map GVn→ E}.
Since G is totally real in GC and GVn is connected, the holomorphic extension of γv is unique if
it exists. Let us denote the extension by γv,n ∈ O(GVn, E). For each z ∈GVn, the operator

πn(z) : En→ E, πn(z)v := γv,n(z),

is linear. In particular, uniqueness implies that

πn(gz) = π(g)πn(z)

for all g ∈G, z ∈GVn. It is easily seen that if m< n, then Em ⊂ En and πm(z)v = πn(z)v for
z ∈GVn, v ∈ Em. We shall omit the subscript n from the operator πn(z) if no confusion is
possible.

A closely related space is

Ẽn = {v ∈ E | γv|Un extends holomorphically to Vn}.

Lemma 3.2. The space of analytic vectors is given by the increasing unions

Eω =
⋃
n∈N

En =
⋃
n∈N

Ẽn.

Furthermore,

En ⊂ Ẽn ⊂ E4n (3.1)

for all n ∈ N.

Proof. The inclusions ⋃
n∈N

En ⊂ Eω ⊂
⋃
n∈N

Ẽn

as well as the first inclusion in (3.1) are clear. Hence, it suffices to prove the second inclusion
in (3.1). Let v ∈ Vn and let us denote the extension of γv by f : Vn→ E. For g ∈G and z ∈ V4n,
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we define
F (gz) := π(g)f(z) ∈ E.

We need to show that the expression is well defined. Assume that gz = g′z′ with
g, g′ ∈G and z, z′ ∈ V4n. Then g−1g′ = zz′−1 ∈ V2n and hence g−1g′x ∈ Vn for all x ∈ V2n.
Since π(g)π(g−1g′x)v = π(g′)π(x)v for x ∈G, analytic continuation from U2n implies that
π(g)f(g−1g′x) = π(g′)f(x) for x ∈ V2n. In particular, with x= z′ we obtain π(g)f(z) = π(g′)f(z′),
showing that F is well defined. As F is clearly holomorphic, we conclude that v ∈ E4n. 2

Next we want to topologize Eω. For that, we notice that the holomorphic extensions provide
injections of En and Ẽn into O(GVn, E) and O(Vn, E), respectively. We topologize En and Ẽn
by means of these maps and the standard compact open topologies. It is easily seen that the
inclusion maps En→ En+1→ E and Ẽn→ Ẽn+1→ E are all continuous. Furthermore, we have
the following lemma.

Lemma 3.3. The inclusion maps in (3.1) are continuous for all n ∈ N.

Proof. Identifying En and Ẽn with the corresponding spaces of holomorphic functions, we obtain
the following neighborhood bases of 0. In En, the members are all sets

WK,Z := {f ∈ En | f(K)⊂ Z},

where K ⊂GVn is compact and Z ⊂ E is a zero neighborhood. Similarly, in Ẽn the members are

W̃K,Z := {f ∈ Ẽn | f(K)⊂ Z},

where K ⊂ Vn is compact and Z ⊂ E is a zero neighborhood. The continuity of the first inclusion
is then obvious.

With the mentioned identifications, the second inclusion is given by the map f → F described
in the previous proof. Let a neighborhood W =WK,O ⊂ E4n be given. Let K ′ ⊂ V4n be an
arbitrary compact neighborhood of 0. By compactness of K ⊂GV4n, we obtain a finite union
K ⊂

⋃
giK

′ ⊂GV4n. Let O′ =
⋂
π(gi)−1(O); then W̃ = W̃K′,O′ is an open neighborhood of 0 in

Ẽn, and f ∈ W̃ ⇒ F ∈W. 2

We endow Eω with the inductive limit topology of the ascending unions in Lemma 3.2. The
Hausdorff property follows, since E is assumed to be Hausdorff. It follows from Lemma 3.3 that
the two unions give rise to the same topology. In symbols:

Eω = lim
n→∞

En = lim
n→∞

Ẽn ⊂ E, (3.2)

with continuous inclusion into E. Since the restriction O(GVn, E)→ C∞(G, E) is continuous for
all n ∈ N, we have Eω ⊂ E∞ with continuous inclusion.

Observe that an intertwining operator T : E→ F between two representations (π, E), (ρ, F )
carries Eω continuously into Fω. In fact, if v ∈ En with the holomorphically extended orbit
map z 7→ π(z)v, then Tv ∈ Fn, since z 7→ Tπ(z)v is a holomorphic extension of the orbit map
g 7→ ρ(g)Tv = Tπ(g)v. It follows that T maps En continuously into Fn for each n.

Notice that if we define a continuous action of G on O(GVn, E) by

(g · f)(z) := π(g)f(g−1z) (g ∈G, z ∈GVn),

then the image of v 7→ πn(·)v is the subspace O(GVn, E)G of G-invariant functions, with inverse
map given by evaluation at 1. Thus, En is identified with a closed subspace of O(GVn, E). In
particular, it follows (see [Jar81, p. 365]) that En is complete/Fréchet if E has this property.
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Let us briefly recall the structure of the open neighborhoods of zero in the limit Eω. If A is a
subset of some vector space, then we write Γ(A) for the convex hull of A. Now, given for each n
an open 0-neighborhood Wn in En (or Ẽn), the set

W := Γ
(⋃
n∈N

Wn

)
(3.3)

is an open convex neighborhood of 0 in Eω. The set of neighborhoods W thus obtained forms a
filter base of the 0-neighborhoods in Eω.

Proposition 3.4. Let (π, E) be a representation of a Lie group on a topological vector space E.
Then the following assertions hold:

(i) the action G× Eω→ Eω is continuous and hence defines a representation (π, Eω) of G;

(ii) each v ∈ Eω is an analytic vector for (π, Eω) and

(Eω)ω = Eω

as topological vector spaces.

Proof. In (i) it suffices to prove continuity at (1, v) for each v ∈ Eω. We first prove the separate
continuity of g 7→ π(g)v ∈ Eω. Let v ∈ En and consider the E-valued holomorphic extension of
g 7→ π(g)v. Since multiplication in GC is holomorphic and V2n · V2n ⊂ Vn, it follows that for each
z1 ∈ V2n, the element π2n(z1)v belongs to E2n, with the holomorphic extension

z2 7→ π2n(z2)π2n(z1)v := πn(z2z1)v (z1, z2 ∈GV2n, v ∈ En) (3.4)

of the orbit map. In particular, (3.4) holds for z1 = g ∈ U2n. The element π(z2g)v ∈ E depends
continuously on g, locally uniformly with respect to z2. It follows that g 7→ π(g)v is continuous
U2n→ E2n and hence into Eω.

In order to conclude the full continuity of (i), it now suffices to establish the following.
(∗) For all compact subsets B ⊂G, the operators {π(g) | g ∈B} form an equicontinuous subset

of End(Eω).
Before proving this, we note that for every compact subset B ⊂G and every m ∈ N, there

exists n >m such that
b−1Vnb⊂ Vm (b ∈B).

This follows from the continuity of the adjoint action. Then zb ∈GVm for all z ∈GVn and hence
π(b)v ∈ En for all b ∈B, v ∈ Em with

πn(z)π(b)v = πm(zb)v. (3.5)

In order to prove (∗), we fix a compact set B ⊂G. Given m ∈N , we choose n >m as above.
We are going to prove equicontinuity B × Em→ En. An open neighborhood of 0 in En can be
assumed of the form

(K, Z) := {f ∈ En | f(K)⊂ Z},
where K ⊂GVn is compact and Z ⊂ E is a zero neighborhood. Then, with K ′ =

⋃
b∈B b

−1Kb
and Z ′ =

⋂
b∈B π(b)−1(Z), we obtain

f(K ′)⊂ Z ′⇒ π(b)f(b−1Kb)⊂ Z

for all b ∈B and all functions f :GVm→ E. If in addition f is G-invariant, then the conclusion
is f(Kb)⊂ Z and we have shown that the right translation by b maps the zero neighborhood
(K ′, Z ′) in Em into the zero neighborhood (K, Z) in En.
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The equicontinuity B × Eω→ Eω is an easy consequence given the description (3.3) of the
neighborhoods in the inductive limit. This completes the proof of (i).

For the proof of (ii), let v ∈ En. In the first part of the proof we saw that π(z1)v ∈ E2n

for each z1 ∈ V2n, with the holomorphically extended orbit map given by (3.4). It then follows
from Lemma A.1, applied to V2n ×GV2n and the map (z1, z2) 7→ π(z2z1)v, that z1 7→ π(·)π(z1)v
is holomorphic V2n→O(GV2n, E). Hence, z1 7→ π(z1)v is holomorphic into E2n and hence also
into Eω. Thus, g 7→ π(g)v extends to a holomorphic Eω-valued map on V2n and hence v ∈ (Eω)ω

by the second description in (3.2).
For the topological statement in (ii), we need to show that the identity map is continuous

Eω→ (Eω)ω. We just saw that the identity map takes

En→ (̃Eω)2n;

hence, it suffices to show continuity of this map for each n. The proof given above reduces to
the statement that the map mentioned below (A.1) is continuous. 2

Corollary 3.5. (E∞)ω = (Eω)∞ = Eω as topological vector spaces.

Proof. The continuous inclusions Eω ⊂ E∞ ⊂ E induce continuous inclusions Eω = (Eω)ω ⊂
(E∞)ω ⊂ Eω. With E replaced by Eω, the same inclusions also imply that (Eω)ω ⊂ (Eω)∞ ⊂
Eω. 2

We are interested in the functorial properties of the construction.

Lemma 3.6. Let (π, E) be a representation and let F ⊂ E be a closed invariant subspace. Then:

(i) Fω = Eω ∩ F as a topological space;

(ii) Eω/Fω ⊂ (E/F )ω continuously.

Proof. (i) Obviously, Fn ⊂ En for all n. Conversely, if v ∈ En ∩ F with holomorphically extended
orbit map z 7→ π(z)v ∈ E, then π(g)v ∈ F for all g ∈G implies that π(z)v ∈ F for all z ∈GVn.
Hence, v ∈ Fn. The topological statement follows easily.

(ii) The quotient map induces a continuous map Eω→ (E/F )ω, which in view of (i) induces
the mentioned continuous inclusion. 2

Notice also that if E1, E2 are representations, then the product representations satisfy
Eω1 × Eω2 ' (E1 × E2)ω.

3.2 Completeness
In general, completeness of E does not ensure that Eω is complete. For Banach representations
this is the case, as the following result shows.

Proposition 3.7. Let (π, E) be a representation of G on a complete DF-space. Then Eω is
complete.

Proof. Let (vi) be a Cauchy net in Eω. It is Cauchy in E and hence converges to some element
v ∈ E. Moreover, the net of orbit maps (γvi) converges pointwise on G to γv. We need to show
that γv is real analytic and, using our assumptions on E, it suffices to prove weak analyticity,
see Remark 3.1.

Let K ⊂G be any compact set. We consider the space A(K) of real analytic functions
on K. These are germs of holomorphic functions defined on open neighborhoods V of K in GC,
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and A(K) is equipped with the inductive topology. Since each O(V ) has the Montel property,
the limit is compact, so that A(K) inherits completeness from O(V ).

For every λ ∈ E′, we consider the mapping

Eω→A(K), En 3 v 7→ germ of λ ◦ γv.

It is clear that this is a continuous map. It follows that λ ◦ γvi |K converges in A(K), so that
λ ◦ γv is real analytic on K. 2

Remark 3.8. Combining the proof above with [BD01, Theorem 3] leads to a more general
result for representations on Fréchet spaces. In this case, Eω is complete whenever there is
a fundamental system of seminorms {pn}n∈N for the topology of E such that

∃n ∀m> n ∃k >m ∃C > 0 ∀v ∈ E : pm(v)2 6 Cpk(v)pn(v).

Remark 3.9. An example by Grothendieck [Gro53b, p. 95] may be adapted to give an example
of an incomplete space of analytic vectors. Consider the regular representation of G= S1 on the
(complete) space E = C(S1, CN), where CN is endowed with the product topology. The analytic
vectors for this action are sequences of functions, which extend holomorphically to a common
annulus {z ∈ C | 1− ε < |z|< 1 + ε} for some ε > 0. Being a dense subspace of (C(S1)ω)N, Eω

fails to be complete as well as sequentially complete.

3.3 Definition of analytic representation
Motivated by Proposition 3.4, we shall give the following definition.

Definition 3.10. A representation (π, E) is called analytic if E = Eω holds as topological vector
spaces.

Given a representation (π, E), Proposition 3.4 implies that (π, Eω) is an analytic
representation.

Lemma 3.11. Let (π, E) be an analytic representation and let F ⊂ E be a closed invariant
subspace. Then π induces analytic representations on both F and E/F .

Proof. This follows from Lemma 3.6. From (i) in that lemma we infer immediately that Fω = F ,
and from (ii) we then conclude that E/F = Eω/Fω→ (E/F )ω is continuous. The opposite
inclusion is trivially valid and continuous. 2

Example 3.12. We consider the Fréchet space E :=O(GC) with the right regular action of G,

π(g)f(z) = f(zg) (g ∈G, z ∈GC, f ∈ O(GC)).

It is easy to see that (π, E) defines a representation. Given v ∈ E, it follows from (A.1) that
the orbit map γv : g→ E extends to a holomorphic mapping from GC to E. The same equation
implies easily that E = Eω as topological spaces. Thus, (π, E) is analytic.

3.4 Irreducible analytic representations
It is a natural question on which type of topological vector spaces E one can model irreducible
analytic representations. The next result shows that this class is rather restrictive.

Theorem 3.13. Let (π, E) be an irreducible representation of a reductive group on a Fréchet
space E. If E = Eω as vector spaces, then E is finite dimensional.
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Proof. By passing to a covering group if necessary, we may assume that GC is simply connected.
By assumption, Eω = lim En identifies with E as vector spaces. The Grothendieck factorization
theorem implies that E = En for some n (see [Gro73, ch. 4, § 5, Theorem 1]). Hence, the operator
π(x) := πn(x) is defined on E for all x ∈ Vn. We shall holomorphically extend to all x ∈GC.

Let v ∈ E. By the monodromy theorem, it suffices to extend π(x)v along all simple smooth
curves starting at 1. Let γ : [0, 1]→GC be such a curve with γ(0) = 1. We select finitely many
open sets U1, . . . , Uk ⊂GC which cover the curve γ([0, 1]) and points

xi = γ(ti), 0 = t1 < · · ·< tk < 1,

such that 1 = x1 ∈ U1 and xi ∈ Ui ∩ Ui−1 for i > 1. By choosing the sets Ui sufficiently small (and
sufficiently many), we may assume that Ui ⊂ V2nxi for each i and also that the only non-empty
overlaps are among neighboring sets Ui and Ui−1 (to attain these properties, it may be useful
from the outset to select the sets inside a tubular neighborhood around the curve).

In particular, π(x)v is already defined for x ∈ U1 ⊂ V2n. On U2, . . . , Uk, we recursively define

π(x)v = π(z)π(xi)v, x= zxi ∈ Ui ⊂ V2nxi,

where π(xi)v is defined in the preceding step. Clearly, this depends holomorphically on x.
However, in order to obtain a proper extension of x 7→ π(x)v, we need to verify that π(x)v
is well defined on overlaps between the Ui. What we need to show is that

π(z)π(xi)v = π(zxi)v, zxi ∈ Ui ∩ Ui−1.

Let xi = yxi−1, where y ∈ V2n. By the recursive definition, we have π(xi)v = π(y)π(xi−1)v and
π(zxi)v = π(zy)π(xi−1)v. Then the desired identity follows, since π(z)π(y) = π(zy) by (3.4).

Thus, the representation extends to an irreducible holomorphic representation of GC (also
denoted by π). If U <GC is a compact real form, then the Peter–Weyl theorem implies that π|U
is irreducible and finite dimensional. 2

Remark 3.14. Non-reductive groups, on the other hand, may have irreducible analytic actions
on a Fréchet space. As an example, consider the Schrödinger representation of the Heisenberg
group Hn on the Fréchet space

E =
{
f ∈ O(Cn) | ∀N,M ∈ N : sup

x∈Rn
sup

y∈(−N,N)n
|f(x+ iy)|eM |x| <∞

}
.

It is irreducible as a restriction of the Schrödinger representation on L2(Rn), and one readily
verifies that E = Eω.

4. The algebra of analytic superdecaying functions

We define a convolution algebra of analytic functions with fast decay. The purpose is to obtain
an algebra which acts on representations of restricted growth, such as F-representations.

4.1 Superdecaying functions
Let us denote by dg the Riemannian measure on G associated to the metric g and note that dg
is a left Haar measure. It is of some relevance below that there is a constant c > 0 such that∫

G
e−cd(g) dg <∞ (4.1)

(see [Gar60, p. 75, Lemme 2]).
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We define the space of superdecaying continuous function on G by

R(G) :=
{
f ∈ C(G) | ∀N ∈ N : sup

g∈G
|f(g)|eNd(g) <∞

}
and equip it with the corresponding family of seminorms. Note that R(G) is independent of the
choice of the left-invariant metric, and that it has the following properties.

Proposition 4.1. (i) R(G) is a Fréchet space and the natural action of G×G by left–right
displacements defines an F-representation.

(ii) R(G) becomes a Fréchet algebra under convolution:

f ∗ h(x) =
∫
G
f(y)h(y−1x) dy

for f, h ∈R(G) and x ∈G.

(iii) Every F-representation (π, E) of G gives rise to a continuous algebra representation of
R(G),

R(G)× E→ E, (f, v) 7→Π(f)v,
where

Π(f)v :=
∫
G
f(g)π(g)v dg (f ∈R(G), v ∈ E)

as an E-valued integral.

Proof. Easy. Use (2.1), (2.3), and (4.1). 2

4.2 Analytic superdecaying functions
We shall start with a discussion of the analytic vectors in R(G). Henceforth, we shall view R(G)
as a G-module for the left regular representation of G. We set A(G) :=R(G)ω and equip A(G)
with the corresponding vector topology. With the notation from the preceding section, we put
An(G) :=R(G)n for each n ∈ N. Notice that An(G) is a Fréchet space for each n, since R(G)
is Fréchet. Hence, A(G) is an LF-space (inductive limit of Fréchet spaces). In the appendix, we
show that A(G) is complete and reflexive.

Proposition 4.2. (i) A(G) carries representations of G by left and right actions.

(ii) A(G) is a subalgebra of R(G) and convolution is continuous

A(G)×A(G)→A(G).

Proof. (i) The statement about the left action is immediate from Proposition 3.4(i). It is clear
that A(G) is right invariant, since every right displacement f 7→Rgf is an intertwining operator
for the left regular representation. The continuity of the right action follows from Lemma 4.3
below, see Remark 4.4.

(ii) This follows from Proposition 4.6 (to be proved below) by taking E =R(G). 2

The next lemma gives us a concrete realization of An(G).

Lemma 4.3. For all n ∈ N, restriction to G provides a topological isomorphism of{
f ∈ O(VnG) | ∀N > 0, ∀Ω⊂ Vn compact : sup

g∈G,z∈Ω
|f(zg)|eNd(g) <∞

}
onto An(G). Here, the space above is topologized by the seminorms mentioned in its definition.
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Proof. Let f ∈ An(G). Then γf : g→R(G), g 7→ f(g−1·) extends to a holomorphic map γf,n :
gVn→R(G). As point evaluationsR(G)→ C are continuous, it follows that F (z) := γf,n(z−1)(1)
defines a holomorphic extension of f to VnG. Moreover, F (zg) = γf,n(z−1)(g) for z ∈ Vn, g ∈G.
Let N > 0 and a compact set Ω⊂ Vn be given; then

sup
g∈G,z∈Ω

|F (zg)|eNd(g) = sup
z∈Ω

pN (γf,n(z−1))<∞,

where pN (h) = supg∈G |h(g)|eNd(g) is a defining seminorm ofR(G). Hence, F belongs to the space
above. Moreover, we see that f 7→ F is an isomorphism onto its image.

Conversely, let F belong to the space above and put f := F |G. Then it is clear that
f ∈R(G) (take Ω = {1}). We need to show that f ∈ An(G), i.e. that γf : g→R(G) extends
to a holomorphic map GVn→R(G). The extension is z 7→ F (z−1·), and we need to show that it
is holomorphic.

We first show that z 7→ F (z−1·) is continuous intoR(G). To see this, let z0 ∈GVn and ε, N > 0
be given. We wish to find a neighborhood D of z0 such that

pN (F (z−1·)− F (z−1
0 ·))< ε (4.2)

for all z ∈D.
Let us fix a compact neighborhood D0 of z0 in GVn. As

sup
g∈G,z∈D0

|F (z−1g)|emd(g) <∞

for all m>N , we find a compact subset K ⊂G such that

sup
g∈G\K,z∈D0

|F (z−1g)|eNd(g) < ε/2.

Shrinking D0 to some possibly smaller neighborhood D, we may request that

sup
g∈K,z∈D

|F (z−1g)− F (z−1
0 g)|eNd(g) < ε.

The required estimate (4.2) follows.
As continuity has been verified, holomorphicity follows provided that z 7→ λ(F (z−1·)) is

holomorphic for λ ranging in a subset whose linear span is weakly dense in R(G)′ (see [Gro53a,
p. 39, Remarque 1]). A convenient such subset is {δg | g ∈G}, and the proof is complete. 2

Remark 4.4. Let q(f) := supg∈G,z∈Ω |f(zg)|eNd(g) be a seminorm on An(G) as above. Then (2.1)
implies that

q(Rxf) 6 eNd(x)q(f) (f ∈ An(G)),

for x ∈G, so An(G) is an F-representation for the right action.

4.3 Analytic vectors of F -representations
Let (π, E) be an F-representation of G and let v ∈ E. The map f 7→Π(f)v is intertwining from
R(G) (with left action) to E. Hence, Π(f)v ∈ En for f ∈ An(G) and Π(f)v ∈ Eω for f ∈ A(G).
With the preceding characterization of An(G), we have

π(z)Π(f)v =
∫
G
f(z−1g)π(g)v dg (4.3)

for f ∈ An(G), z ∈GVn.
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Remark 4.5. In particular,

Π(A(G))Eω ⊂ Eω

for F-representations. In fact, one can show (see [GKL]) that

Π(A(G))Eω = Eω.

It is easily seen that the action of A(G) on Eω is an algebra action. We shall now see that it
is continuous.

Proposition 4.6. Let (π, E) be an F-representation. The bilinear map (f, v) 7→Π(f)v is
continuous

An(G)× E→ En

for every n ∈ N. Likewise, it is continuous

A(G)× E→ Eω.

Notice that since Eω injects continuously in E, the last statement implies continuity of both

A(G)× E→ E and A(G)× Eω→ Eω.

Proof. Let n ∈ N be fixed and let W ⊂ En be an open neighborhood of 0. We may assume that

W =WK,p := {v ∈ En | p(π(K)v)< 1},

with K ⊂GVn compact and p a continuous seminorm on E such that

p(π(g)v) 6 Cecd(g)p(v) (g ∈G, v ∈ E)

for some constants c, C (see (2.3)).
Choose N > 0 so that (cf. (4.1))

C1 :=
∫
G
e(c−N)d(g) dg <∞

and let

O :=
{
f ∈ O(VnG)

∣∣∣∣ sup
z∈K,g∈G

|f(z−1g)|eNd(g) < ε

}
⊂An(G)

(with ε to be specified below). According to Lemma 4.3, O is open.
For f ∈O and z ∈K, we obtain by (4.3)

p(π(z)Π(f)v) 6
∫
G
|f(z−1g)|p(π(g)v) dg 6 εCC1p(v).

With ε < 1/(CC1), we conclude that Π(f)v ∈W if f ∈O and p(v)< 1.
This proves the first statement. By taking inductive limits, we infer continuity of lim(An(G)×

E)→ Eω. For the continuity of A(G)× E→ Eω, it now suffices to verify that lim(An(G)× E)
and A(G)× E = (limAn(G))× E are isomorphic. The map

lim(An(G)× E)→ (limAn(G))× E

is clearly bijective and continuous. The left-hand side is LF, and the right-hand side is a product
of ultra-bornological spaces and hence itself ultra-bornological. It follows that the open mapping
theorem can be applied (see [MV97, Theorem 24.30 and Remarks 24.15 and 24.36]). 2

For later use, we note that A(G) contains a Dirac sequence.
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Lemma 4.7. The heat kernel ht belongs to A(G) for each t > 0. Let E be an F-representation.
Then Π(ht)v→ v in E for all v ∈ E.

Proof. The convergence in E is Nelson’s theorem (see § 3). The heat kernel belongs to A(G) for
all t > 0 by [GKL, Theorem 4.2].

Remark 4.8. It follows from the proof of [GKL, Theorem 4.2] that there exists a common m
such that ht ∈ Am(G) for all t > 0.

4.4 A(G)-tempered representations
As we have seen that there is a continuous algebra action of A(G) on the analytic vectors of
F-representations, we shall make this property part of a definition.

Definition 4.9. A representation (π, E) is called A(G)-tempered if for all f ∈ A(G) and v ∈ E
the vector-valued integral

Π(f)v =
∫
G
f(g)π(g)v dg

converges absolutely in E, and (f, v) 7→Π(f)v defines a continuous algebra action

A(G)× E→ E.

The absolute convergence of the vector-valued integral is assumed with respect to all
continuous seminorms on E.

Example 4.10. (a) For every F-representation (π, E), both (π, E) itself and (π, Eω) are A(G)-
tempered according to Proposition 4.6. In particular, this holds for all Banach representations
and also for E =R(G) with the left action (so that Eω =A(G)).

(b) If (π, E) is an A(G)-tempered representation and F ⊂ E is a closed G-invariant subspace,
then the induced representations on F and E/F are A(G)-tempered.

5. Analytic globalizations of Harish-Chandra modules

In this section we will assume that G is a real reductive group. Let us fix a maximal compact
subgroup K <G. We say that a complex vector space V is a (g, K)-module if V is endowed with
a Lie algebra action of g and a locally finite group action of K which are compatible in the sense
that the derived and restricted actions of k agree and, in addition,

k · (X · v) = (Ad(k)X) · (k · v) (k ∈K, X ∈ g, v ∈ V ).

We call a (g, K)-module admissible if for any irreducible representation (σ, W ) of K the
multiplicity space HomK(W, V ) is finite dimensional. Finally, an admissible (g, K)-module is
called a Harish-Chandra module if V is finitely generated as a U(g)-module. Here, as usual, U(g)
denotes the universal enveloping algebra of g.

By a globalization of a Harish-Chandra module V we understand a representation (π, E) of
G such that the space of K-finite vectors

EK := {v ∈ E | dim spanC{π(K)v}<∞}

is (g, K)-isomorphic to V and dense in E. Density of EK is automatic whenever E is quasi-
complete, see [Har66, Lemma 4]. Each element v ∈ E allows an expansion in K-types v =∑

τ∈K̂ vτ , where vτ = dim τπ(χτ )v ∈ EK . Here, the integral over K that defines π(χτ )v may
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take place in the completion of E, but vτ belongs to EK by density and finite dimensionality of
K-type spaces.

A Banach (F-, analytic, A(G)-tempered) globalization is a globalization by a Banach (F-,
analytic, A(G)-tempered) representation. Note that according to Harish-Chandra [Har53],
EK ⊂ Eω if E is a Banach globalization. In general, the orbit map of a vector v ∈ EK is weakly
analytic (see Remark 3.1).

According to the subrepresentation theorem of Casselman (see [Wal88, Theorem 3.8.3]), V
admits a Banach globalization E. The space Eω is then an analytic A(G)-tempered globalization.

If V is a Harish-Chandra module, we denote by Ṽ the Harish-Chandra module dual to V ,
i.e. the space of K-finite linear forms on V (see [Wal88, p. 115]). We note that if E is a
globalization of V , then Ṽ embeds into E′ and identifies with the subspace of K-finite continuous
linear forms (see [Cas89, Proposition 2.2]). Furthermore, Ṽ separates on E. Since the matrix
coefficients x 7→ ξ(π(x)v) for v ∈ V, ξ ∈ Ṽ are real analytic functions on G, they are determined
by their germs at 1. It follows that these functions on G are independent of the globalization
(see [Cas89, p. 396]).

5.1 Minimal analytic globalizations
Let V be a Harish-Chandra module and v = {v1, . . . , vk} be a set of U(g)-generators. We shall
fix an arbitrary A-tempered globalization (π, E) and regard V as a subspace in E.

On the product space A(G)k =A(G)× · · · × A(G) with diagonal G-action, we consider the
G-equivariant map

Φv :A(G)k→ E, f = (f1, . . . , fk) 7→
k∑
j=1

Π(fj)vj ,

and write Iv for its kernel. This map is evidently continuous and thus Iv is a closed G-invariant
subspace of A(G)k. We note that f ∈ Iv if and only if

∑
j

∫
fj(g)ξ(π(g)vj) dg = 0 for all ξ ∈ Ṽ .

It follows that Iv is independent of the choice of globalization. Furthermore, the dependence on
generators is easily described: if v′ is another set of generators, say k′ in number, then there
exists a k × k′ matrix u of elements from U(g) such that f ∈ Iv if and only if Ruf ∈ Iv′ .

Since Iv is closed and G-invariant, the quotient

V min :=A(G)k/Iv

carries a representation of G, which we denote by (π, V min). It is independent of the choice of
the globalization (π, E) and (up to equivalence) of the set v of generators.

Lemma 5.1. Let V be a Harish-Chandra module. Then the following assertions hold.

(i) V min is an analytic A(G)-tempered globalization of V .

(ii) V min = Π(A(G))V , that is, V min is spanned by the vectors of the form Π(f)v.

(iii) If (λ, F ) is any A-tempered globalization of V , then the identity mapping V → F lifts to
a G-equivariant continuous injection V min→ Fω.

Proof. (i) It follows from the definition that V min is analytic (see Lemma 3.6) and A(G)-
tempered (see Example 4.10(b)). It remains to be seen that (V min)K is (g, K)-isomorphic to V .
By definition, Φv induces a continuous G-equivariant injection V min→ E. In particular, (V min)K
is isomorphic to a (g, K)-submodule of V = EK . Moreover, as A(G) contains a Dirac sequence
by Lemma 4.7, and as we may assume E to be a Banach space, each generator vj belongs
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H. Gimperlein, B. Krötz and H. Schlichtkrull

to the E-closure of the image of V min. By admissibility and finite dimensionality of K-types,
vj belongs to (V min)K for each j. Thus, (V min)K ' V and (i) follows. Assertions (ii) and (iii) are
clear. 2

Because of property (iii), we shall refer to V min as the minimal A(G)-tempered globalization
of V . We record the following functorial properties of the construction.

Lemma 5.2. Let V, W be Harish-Chandra modules.

(i) Every (g, K)-homomorphism T :W → V lifts to a unique intertwining operator Tmin :
Wmin→ V min with restriction T on W = (Wmin)K and with closed image.

(ii) Assume that W ⊂ V is a submodule. Then:

(a) Wmin is equivalent with a subrepresentation of V min on a closed invariant subspace;
(b) (V/W )min is equivalent with the quotient representation V min/Wmin.

Proof. (i) Let T̃ : Ṽ → W̃ denote the dual map of T and observe that

T̃ ξ(π(g)w) = ξ(π(g)Tw)

for all w ∈W, ξ ∈ Ṽ and g ∈G. Indeed, these are analytic functions of g whose power series at
1 agree because T is a g-homomorphism. It follows that if we choose generators w1, . . . , wl for
W and v1, . . . , vk for V such that vj = Twj for j = 1, . . . , l, then the inclusion map f 7→ (f , 0)
of A(G)l into A(G)k takes Iw into Iv. Hence, this inclusion map induces a map

Tmin :A(G)l/Iw→A(G)k/Iv

which is continuous, intertwining, and has closed image. Moreover, this map restricts to T on W ,
since it maps each generator wj to vj = Twj .

(ii) is obtained from (i) with T equal to (a) the inclusion map W → V or (b) the quotient
map V → V/W . 2

Our next concern will be to realize the analytic globalizations inside Banach modules.

Proposition 5.3. Let (π, E) be an analytic A(G)-tempered globalization of a Harish-Chandra
module V . Then there exist a Banach representation (σ, F ) of G and a continuous G-equivariant
injection (π, E)→ (σ, F ).

Proof. We fix generators ξ = {ξ1, . . . , ξl} of the dual Harish-Chandra module Ṽ ⊂ E′ and put
U := {v ∈ E |max16j6l |ξj(v)|< 1}. Then U is an open neighborhood of 0 in E.

Fix m ∈ N such that Am(G) contains a Dirac sequence (see Remark 4.8). As Am(G)× E→ E
is continuous, we find an open neighborhood O of 0 in Am(G) and an open neighborhood W of 0
in E such that Π(O)W ⊂ U . We may assume that O is of the type O = {f ∈ Am(G) | q(f)< 1},
where

q(f) = sup
g∈G
z∈Ω

|f(zg)|eNd(g)

for some N ∈ N and Ω⊂ Vm compact. Define the normed space X := (Am(G), q). It follows from
Remark 4.4 that the right regular action of G is a representation by bounded operators on X. Let
F := (X∗)l be the topological dual of X l and σ the corresponding dual diagonal action of G. Note
that F is a Banach space, being the dual of a normed space, so that σ is a Banach representation.
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We claim that the map

φ : e→ F, v 7→
(

f = (f1, . . . , fl) 7→
l∑

j=1

ξj(Π(fj)v)
)

is G-equivariant, continuous, and injective. Equivariance is clear, and in order to establish
continuity we fix a closed convex neighborhood Õ of 0 in F . We may assume that Õ is a polar of
the form Õ = [Bl]o, where B is a bounded set B ⊂X. Because B is bounded, there exists λ > 0
such that B ⊂ λO. Choosing W̃ := (1/λ)W , we have φ(W̃ )⊂ Õ, as

φ(W̃ )(Bl) ⊂ 1
l
φ(W )(Ol)⊂ 1

l

l∑
j=1

ξj(Π(O)W )

⊂ 1
l

l∑
j=1

ξj(U)⊂ {z ∈ C | |z|6 1}.

It remains to be shown that φ is injective. Suppose that φ(v) = 0. Then φ(vτ ) = 0 for each
element vτ in the K-finite expansion of v, so that we may assume that v is K-finite. Then for
all f ∈ Am(G) and η ∈ Ṽ one would have η(Π(f)v) = 0. Since K-finite matrix coefficients are
independent of globalizations, we conclude by Lemma 4.7 that η(v) = 0 and hence v = 0. 2

5.2 The minimal analytic globalization of a spherical principal series representation

Let G= KAN be an Iwasawa decomposition of G and denote by M the centralizer of A in K,
i.e. M = ZK(A). Then P = MAN is a minimal parabolic subgroup. Let us denote by a, n the Lie
algebras of A and N and define ρ ∈ a∗ by ρ(X) = 1

2tr(adX|n), X ∈ a. For λ ∈ a∗C and a ∈A, we
set aλ := eλ(log a).

The smooth spherical principal series with parameter λ ∈ a∗C is defined by

V∞λ := {f ∈ C∞(G) | ∀man ∈ P ∀g ∈G : f(man g) = aρ+λf(g)}.

The action of G on V∞λ is by right displacements in the arguments, and in this way we obtain a
smooth F-representation (πλ, V∞λ ) of G. We denote the Harish-Chandra module of V∞λ by Vλ.

It is useful to observe that the restriction mapping to K,

ResK : v∞λ → C∞(M\K),

is an K-equivariant isomorphism of Fréchet spaces, and henceforth we will identify V∞λ with
C∞(M\K). The space Vλ of K-finite vectors in V∞λ is then identified as a K-module with the
space C(M\K)K of K-finite functions on M\K.

Likewise, the Hilbert space Hλ := L2(M\K) is provided with the representation πλ. The
space of smooth vectors for this representation is H∞λ = V∞λ = C∞(M\K), and the space of
analytic vectors is the space Hωλ = V ω

λ := Cω(M\K) of analytic functions on M\K with its usual
topology.

Theorem 5.4. For every λ ∈ a∗C, one has

Πλ(A(G))Vλ = Cω(M\K).

In particular, V min
λ ' V ω

λ = Cω(M\K) as analytic representations.
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The proof of this theorem is similar to the corresponding result in the smooth case (see [BK,
§ 4]). Note that from Lemma 5.1, we have

Πλ(A(G))Vλ = V min
λ ⊂ V ω

λ

with continuous inclusion. As the space V min
λ admits a web (see [MV97, 24.8 and 24.28])

and Cω(M\K) is ultra-bornological (see [MV97, 24.16]), we can apply the open mapping
theorem [MV97, 24.30] to obtain an identity of topological spaces from the set-theoretical
identity. It thus suffices to prove that for each v ∈ V ω

λ , there exist ξ ∈ Vλ and F ∈ A(G) such
that Π(F )ξ = v.

We need some technical preparations. Let us denote by g = k + p the Cartan decomposition
of g, and write θ for the corresponding Cartan involution. Let (·, ·) be a non-degenerate invariant
bilinear form on g which is positive definite on p and negative definite on k. Then 〈·, ·〉=−(θ·, ·)
defines an inner product on g, which we use to identify g and g∗. We write | · | for the norms
induced on g and g∗.

Let X1, . . . , Xs be an orthonormal basis of k and Y1, . . . , Yl be an orthonormal basis of p.
We define elements in the universal enveloping algebra U(g) by

∆ =
s∑
j=1

X2
j +

l∑
i=1

Y 2
i , ∆K =

s∑
j=1

X2
j , and C := ∆− 2∆K .

Note that C is a Casimir element. In particular, it belongs to the center of U(g).

Let t⊂ k be a maximal torus. We fix a positive system of the root system Σ(tC, kC) and identify
the unitary dual K̂ via their highest weights with a subset of it∗. If (τ, Wτ ) is an irreducible
representation of K, then ∆K acts as the scalar multiple |τ + ρk|2 − |ρk|2. For every τ ∈ K̂, we
denote by χτ ∈ C(K) the normalized character χτ (k) = (dimWτ )−1tr τ(k). Note that C(K) acts
on A(G) by left convolution.

We denote the left regular representation of G on A(G) by L. The following proposition will
be crucial in the proof of Theorem 5.4.

Proposition 5.5. Let (cτ )τ∈K̂ be a sequence of complex numbers and (aτ )τ∈K̂ a sequence of
elements in G. Assume that

|cτ |6 Ce−ε|τ |, d(aτ ) 6 c1 log(1 + |τ |) + c2

for some C, ε, c1, c2 > 0. Let f ∈ A(G). Then

F :=
∑
τ∈K̂

cτχτ ∗ L(aτ )f ∈ A(G).

Proof. As (L,R(G)) is an F-representation, it follows from [GKL] that h ∈R(G) belongs to
A(G) if and only if there exists an M > 0 such that for all N ∈ N there exists a constant CN > 0
with

sup
g∈G

eNd(g)|∆kh(g)|6 CNM
2k(2k)! (5.1)

for all k ∈ N.

Observe that ∆ = C + 2∆K . For every h ∈R(G), one has

∆K(χτ ∗ h) = (|τ + ρk|2 − |ρk|2)χτ ∗ h. (5.2)
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Moreover, as C is central, we obtain for every g ∈G and h ∈ A(G) that

C(χτ ∗ L(g)h) = χτ ∗ L(g)(Ch). (5.3)

Let now f ∈ A(G). As f is an analytic vector for R(G) and hence also for L2(G), we find
(see [War72, Corollary 4.4.6.4]) a constant M1 > 0 such that for all N > 0 there exists a constant
CN > 0 such that

sup
g∈G

eNd(g)|Ckf(g)|6 CNM
2k
1 (2k)!. (5.4)

We first estimate ∆k(χτ ∗ L(aτ )f). For that, we employ (5.2) and (5.3) in order to obtain
that

∆k(χτ ∗ L(aτ )f) =
k∑
j=0

(
k

j

)
Cj(2∆K)k−j(χτ ∗ L(aτ )f)

=
k∑
j=0

2k−j
(
k

j

)
(|τ + ρk|2 − |ρk|2)k−j(χτ ∗ L(aτ )Cjf).

For N > 0, we thus obtain using (5.4) that

sup
g∈G

eNd(g)|∆k(χτ ∗ L(aτ )f)(g)| 6 CN22k
k∑
j=0

(1 + |τ |)2(k−j) · sup
g∈G

eNd(g)|L(aτ )Cjf(g)|

6 C ′N22keNd(aτ )
k∑
j=0

M2j
1 (1 + |τ |)2(k−j)(2j)!

6 C ′′NM
2k
2

k∑
j=0

(1 + |τ |)2(k−j)+Nc1(2j)!

for some CN , M2 > 0 independent of τ . Using these inequalities for F , we arrive at

sup
g∈G

eNd(g)|∆kF (g)|6 C ′′NM
2k
2

∑
τ∈K̂

k∑
j=0

|cτ |(1 + |τ |)2(k−j)+c1(2j)!.

From the lemma below, we obtain that∑
τ∈K̂

|cτ |(1 + |τ |)2(k−j)+c1 6 CM2k−2j(2k − 2j)!

for some constants C, M > 0 independent of k, j. Since
k∑
j=0

(2k − 2j)!(2j)! 6 22k(2k)!,

we conclude that F satisfies the estimates (5.1). 2

Lemma 5.6. Let ε > 0. There exist C, M > 0 such that∑
τ∈K̂

e−ε|τ |(1 + |τ |)n 6 CMnn!

for all n ∈ N.

1599

https://doi.org/10.1112/S0010437X11005392 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005392
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Proof. We assume for simplicity that K is semisimple. The proof is easily adapted to the general
case. The set K̂ is parameterized by a semilattice in it∗, say

K̂ = {m1τ1 + · · ·+mlτl |m1, . . . , ml ∈ N}.

We shall perform the summation over K̂ by summing over m ∈ N, and over those elements τ for
which the maximal mj is m. There are lml−1 such elements, and they all satisfy am6 |τ |6 bm
for some a, b > 0 independent of m. It follows that the sum above is dominated by∑

m∈N
lml−1e−εam(1 + bm)n.

The given estimate now follows easily. 2

Before we give the proof of Theorem 5.4, we recall some harmonic analysis for the compact
homogeneous space M\K. We denote by K∧M the M -spherical part of K̂, that is, the equivalence
classes of irreducible representations τ for which the space VM

τ of M -fixed vectors is non-zero.
Then

L2(M\K) =
⊕̂
τ∈K∧

M

Hom(VM
τ , Vτ ) (5.5)

by the Peter–Weyl theorem. We write v =
∑

τ vτ for the corresponding decomposition of a
function v on M\K and note that with the right action of k ∈K on L2(M\K) we have
[π(k)v]τ = τ(k) ◦ vτ .

Furthermore,

Cω(M\K) =
{
v =

∑
τ

vτ | ∃ε, C > 0 ∀τ : ‖vτ‖6 Ce−ε|τ |
}
,

where ‖vτ‖ denotes the operator norm of vτ .
Let τ ∈K∧M . The integral δτ (k) = dim(τ)

∫
M χτ (mk) dm of the character is bi-invariant under

M . The components of δτ in the decomposition (5.5) are all 0 except the τ -component, which is
the inclusion operator Iτ of VM

τ into Vτ .

Proof. We can now finally give the proof of Theorem 5.4. Let v =
∑

τ vτ ∈ Cω(M\K) be given,
and let ε > 0 be as above.

It follows from [BK, § 6] that there exists a K-finite function ξ ∈ Vλ and, for each τ ∈K∧M ,
elements aτ ∈A and cτ ∈ C such that

d(aτ ) 6 c1 log(1 + |τ |) + c2, |cτ |6 2(1 + |τ |)c3

for some constants c1, c2, c3 > 0 independent of τ , and such that

Rτ := δτ − cτ [πλ(aτ )ξ]τ

satisfies ‖Rτ‖6 1/2 for all τ . By integration of ξ and Rτ over M , we can arrange that they are
both M -bi-invariant.

We now choose a function f ∈ A(G) such that Π(f)ξ = ξ. It exists because Π(
∑

τ∈F χτ ∗ ht)ξ
converges to ξ for t→ 0 and some finite set F of K-types by Lemma 4.7, so that ξ belongs to the
closure of a finite-dimensional subspace of Π(A(G))ξ. According to Proposition 5.5, the function

F =
∑
τ

cτe
− 1

2
ε|τ |χτ ∗ L(aτ )f
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belongs to A(G). An easy calculation shows that

Π(F )ξ =
∑
τ

e−
1
2
ε|τ |(δτ −Rτ ).

Being of type τ and M -bi-invariant, Rτ corresponds in (5.5) to an operator Rτ ∈ End(VM
τ ).

Since ‖Rτ‖6 1
2 , the operator Iτ −Rτ ∈ End(VM

τ ) is invertible with ‖(Iτ −Rτ )−1‖6 2. Then
vτ (Iτ −Rτ )−1 ∈Hom(VM

τ , Vτ ) with ‖vτ (Iτ −Rτ )−1‖6 2Ce−ε|τ |. It follows that the function on
M\K with the expansion ∑

τ

e
1
2
ε|τ |vτ (Iτ −Rτ )−1

belongs to Cω(M\K). We denote by h(k−1) this function, so that h is a right M -invariant
function on K. Another easy calculation now shows that

Π(h)Π(F )ξ =
∑
τ

vτ = v

and hence h ∗ F ∈ A(G) is the function we seek. 2

5.3 Unique analytic globalization
The goal of this section is to prove the following version of Schmid’s minimal globalization
theorem [KS94, Theorem 2.13].

Theorem 5.7. Let V be a Harish-Chandra module. Every analytic A(G)-tempered globaliza-
tion of V is isomorphic to V min.

In particular, if (π, E) is an arbitrary F-globalization of V , then

Eω ' V min.

Proof. We first treat the case of an irreducible Harish-Chandra module V .
We first claim that V admits a Hilbert globalization H such that Hω = Π(A(G))V and hence

in particular (see Lemma 5.1(ii))

Hω ' V min.

In the case V = Vλ, we can take Hλ = L2(M\K) and the assertion follows from Theorem 5.4.
If the Harish-Chandra module is of the type V = Vλ ⊗W , where W is a finite-dimensional
G-module, then H=Hλ ⊗W is a Hilbert globalization with Hω =Hωλ ⊗W . A straightforward
generalization of [BK, Lemma 5.4] yields that

(Πλ ⊗ Σ)(A(G))V =Hω.

Finally, every irreducible Harish-Chandra module is a subquotient of some Vλ ⊗W (see for
example [LW73, Theorem 4.10]), and the claim follows by Lemma 5.2.

Let now (π, E) be an arbitrary analytic A(G)-tempered globalization of V . We aim to prove
that E ' V min. From Lemma 5.1, we know that V min injects G-equivariantly and continuously
into E = Eω and hence it suffices to establish surjectivity of the injection.

We now fix the Hilbert globalization H of the above. In view of Proposition 5.3, we can
embed (π, E) into a Banach globalization F of V . As E is analytic, we obtain a continuous
G-equivariant injection E→ Fω. In order to proceed, we recall the Casselman–Wallach theorem
(cf. [Cas89, Wal88], or [BK] for a more recent proof), which implies that F∞ is equivalent to H∞
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as an F-representation. It follows, see Corollary 3.5, that Fω 'Hω. Collecting the established
isomorphisms, we have

V min→ E ⊂ Fω 'Hω ' V min.

The surjectivity follows from the completeness of Hω (see Proposition 3.7).
Finally, we prove the case of an arbitrary Harish-Chandra module. As Harish-Chandra

modules have finite composition series, it suffices to prove the following statement: let 0→
V1→ V → V2→ 0 be an exact sequence of Harish-Chandra modules and suppose that both V1

and V2 have unique analytic A(G)-tempered globalizations. Then so does V .
Let E be an analytic A(G)-tempered globalization of V . Let E1 be the closure of V1 in

E and E2 = E/E1. Then E1 and E2 are analytic A(G)-tempered globalizations of V1 and
V2. By assumption, we get E1 = V min

1 and E2 = V min
2 and, from Lemma 5.2, we infer that

V min
2 = V min/V min

1 . Observe that in an exact sequence of topological vector spaces 0→ E1→
E→ E2→ 0 the topology on E is uniquely determined by the topology of E1 and E2 (see [DS79,
Lemma 1]). We thus conclude that E = V min. 2

We conclude by summarizing the topological properties of V min. Recall that an inductive
limit E = limn→∞ En of Fréchet spaces is called regular if every bounded set is contained and
bounded in one of the steps En.

Corollary 5.8. The minimal globalization V min is a nuclear, regular, reflexive, and complete
inductive limit of Fréchet–Montel spaces.

Proof. Theorem 5.7 and Proposition 3.7 imply that V min is complete. Furthermore, it then
follows from [Kuc04, Wen96] that V min is regular and reflexive (see also Appendix B). It is an
inductive limit of Fréchet–Montel spaces, because A(G) is an inductive limit of Fréchet–Schwarz
spaces, and Hausdorff quotients of such spaces are Fréchet–Montel. Nuclearity is inherited from
Cω(M\K), which is the strong dual of a nuclear Fréchet space, and this property is preserved
when passing to the quotient of a finite-dimensional tensor product. Finally, a Fréchet space is
nuclear if and only if its strong dual is nuclear (see [Jar81, § 21.5]). 2

Appendix A. Vector-valued holomorphy

Here, we collect some results about analytic functions with values in a locally convex Hausdorff
topological vector space E. Let Ω⊂ Cn be open.

It is a natural and common assumption that E is sequentially complete. Let us recall that
under this assumption an E-valued function f on Ω is said to be holomorphic if it satisfies one
of the following conditions, which are equivalent in this case:

(a) f is weakly holomorphic, that is, the scalar function z 7→ ζ(f(z)) is holomorphic for each
continuous linear form ζ ∈ E′;

(b) f is C-differentiable in each variable at each z ∈ Ω;

(c) f is infinitely often C-differentiable at each z ∈ Ω;

(d) f is continuous and is represented by a converging power series expansion with coefficients
in E, in a neighborhood of each z ∈ Ω.

In general, the conditions (c) and (d) are mutually equivalent and they imply (a) and (b). This
follows by regarding f as a function into the completion Ē of E (see [Glo02, Proposition 2.4]).
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We shall call a function f : Ω→ E holomorphic if (c) or (d) is satisfied or, equivalently, if it is
holomorphic into Ē with E-valued derivatives up to all orders.

Let M be an n-dimensional complex manifold. An E-valued function on M is called
holomorphic if all its coordinate expressions are holomorphic. We denote by O(M, E) the space
of E-valued holomorphic functions on M . Endowed with the compact open topology, it is a
Hausdorff topological vector space, which is complete whenever E is complete.

The following isomorphism of topological vector spaces is useful.

Lemma A.1. Let M and N be complex manifolds; then

O(M ×N, E)'O(M,O(N, E)) (A.1)

under the natural map f 7→ (x 7→ f(x, · )) from left to right.

Proof. Apart from the statement that x 7→ f(x, ·) ∈ O(N, E) is holomorphic, this is
straightforward from definitions. It is clear that f(x, ·) ∈ O(N, E). By regarding O(N, E) as
a subspace of O(N, Ē) and noting that it carries the relative topology, we reduce to the case
that E is complete, so that condition (b) applies. Assume for simplicity that M = C. What needs
to be established is then only that the complex differentiation

∂f

∂x
(x, y) = lim

h→0

1
h

[f(x+ h, y)− f(x, y)] ∈ E

is valid locally uniformly with respect to y ∈N . This follows from uniform continuity on compacta
of the derivative. 2

Appendix B. Topological properties of A(G)

While the topology of a general inductive limit of Fréchet spaces may be complicated, A(G)
inherits certain properties from the steps A(G)n.

Theorem B.1. The algebra A(G) is regular, complete, and reflexive.

A regular inductive limit of Fréchet–Montel spaces is known to be reflexive [Kuc04] and
complete [Wen96], so that we only have to show regularity. The following criterion from [Wen96,
Theorem 3.3], in terms of interpolation inequalities, will be convenient.

Proposition B.2. An inductive limit E = limn→∞ En of Fréchet–Montel spaces is regular if
and only if for some fundamental system {pn,ν}ν∈N of seminorms on En : ∀n ∃m> n ∃ν ∀k >
m ∀µ ∃κ ∃C ∀f ∈ En

pm,µ(f) 6 C(pk,κ(f) + pn,ν(f)). (B.1)

In the case of A(G), condition (B.1) should be thought of as a weighted geometric relative of
Hadamard’s three-lines theorem. To verify it, we need to introduce some notions from complex
and Riemannian geometry, starting with the appropriate differential operators.

By common practice we identify the Lie algebra gC with the space of right-invariant vector
fields on GC, where X ∈ gC corresponds to the differential operator

X̃u(x) =
d

dt

∣∣∣∣
t=0

u(exp(−tX)x) (x ∈GC, u ∈ C∞(GC)).
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If we denote the complex structure on the Lie algebra gC by J , the Cauchy–Riemann operators
∂Z and ∂Z associated to Z ∈ gC are given by ∂Z := Z̃ + iJ̃Z and ∂Z := Z̃ − iJ̃Z, respectively.

In this section it will be convenient to replace the left G-invariant metric g on G used in § 2.1
by a right-invariant one, which we shall denote by the same symbol. Note that the corresponding
distance functions d on G are equivalent (see (2.2)). The function

K(exp(JX)g) := 1
2 |X|

2 := 1
2g1(X, X)

endows a sufficiently small complex neighborhood V G of G with a right G-invariant Kähler
structure. To see this, choose an orthonormal basis {Xj}lj=1 of g with respect to the metric. A
straightforward computation results in

∂Xi∂XjK(1) = g1(Xi, Xj),

so that the complex Hessian (Z1, Z2) 7→ ∂Z1∂Z2K(1) defines a positive-definite Hermitian form
on gC. By continuity and invariance, positivity extends to give a Kähler metric on a small
neighborhood V G.

The complex Laplacian

∆C =
l∑

j=1

∂Xj∂Xj =
l∑

j=1

X̃j
2

+ J̃Xj
2

agrees with the Kähler Laplacian up to first-order terms and maps real-valued functions to
real-valued functions. Therefore, the following weak maximum principle holds.

Lemma B.3. If u ∈ C2(V G) is real valued with a local maximum in z ∈ V G, then

∆Cu(z) 6 0.

As ∆C is a trace of the complex Hessian, we may rely on well-known results about
plurisubharmonic functions to conclude.

Lemma B.4. For u ∈ O(V G), ∆Cu= 0 and ∆C log |u|> 0.

So, while it may be less obvious how to control applications of ∆C to the Riemannian distance
function d on G, ∆C annihilates the holomorphically regularized distance function d̃ := e−∆gd
from [GKL]. This is going to be useful in the proof of Theorem B.1, and the following lemma,
which is shown as in [GKL, Lemma 4.3], collects the key properties of d̃.

Lemma B.5. (a) The function d̃ extends to a function in O(UG) for some neighborhood U of
1 ∈GC.

(b) For all U ′ b U , supzg∈U ′G |d̃(zg)− d(g)|<∞ and X̃j d̃ as well as J̃Xj d̃ are bounded on
U ′G for all j.

Before finally coming to the proof of Theorem B.1, we introduce an equivalent representation
of A(G) based on geometrically more convenient neighborhoods. If we define for n ∈ N, ν ∈ N0

the neighborhoods

Ṽn :=
{

exp(JX) ∈GC | |X|<
1
n

}
,

Ων
n :=

{
exp(JX) ∈GC | |X|<

1
n+ (ν + 2)−1

}
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and associated subspaces of A(G),

Ã(G)n :=
{
f ∈ O(ṼnG) | ∀ν ∈ N : pn,ν(f) := sup

g∈G,z∈Ωνn

|f(zg)|eνd(g) <∞
}
,

then A(G) is again an inductive limit limn→∞ Ã(G)n of Fréchet–Montel spaces. Condition (B.1)
translates into

sup
zg∈ΩµmG

|f(zg)|eµd(g) 6 C

(
sup

zg∈ΩκkG
|f(zg)|eκd(g) + sup

zg∈ΩνnG
|f(zg)|eνd(g)

)
(B.2)

for f ∈ Ã(G)n.

To show this, let n sufficiently large, 0 6≡ f ∈ Ã(G)n, m= n+ 1, ν = 0, k >m, and µ ∈ N, and
consider

u(z) = log |f(z)|+N(z)D(z)

on ṼnG\Ṽk+1G, where we choose N(exp(JX)g) =N(exp(JX)) = ν̄(|X|−2α − (n+ 1
2)2α) and

D(z) =D0 + Re d̃(z) for some ν̄, α, D0 > 0. First note that ∆Cu > 0 if D0 and α are sufficiently
large. Indeed, by Lemma B.4, it is enough to show that ∆C(N(z)D(z))> 0. But, ∆CD = 0, so
that

∆C(N(z)D(z)) = (∆CN(z))D(z) + 2
l∑

j=1

{X̃jN(z)X̃jD(z) + J̃XjN(z)J̃XjD(z)}.

With D > 1 on ṼnG for large D0 by Lemma B.5, we only have to show that

∆CN(z)>D max
j=1,...,l

{|X̃jN(z)||J̃XjN(z)|}

on ṼnG for large n and D = 2 sup{|X̃jD|, |J̃XjD| : j = 1, . . . , l}. By G-invariance, it is sufficient
to do so in z = exp(εJX) close to ε= 0. The Baker–Campbell–Hausdorff formula implies that

exp(tJXj) exp(εJX) = exp(εJX + tJXj +O(εt2) +O(ε2t)) · exp(1
2εt[JXj , JX]),

so that

J̃XjN(exp(εJX)) =
d

dt

∣∣∣∣
t=0

N(εJX + tJXj +O(εt2) +O(ε2t))

= −2αν̄ε−1−2α g1(Xj , X)
g1(X, X)α+1

+O(ε−2α).

Similarly,

(J̃Xj)2N(exp(εJX)) = 2αν̄ε−2−2α 2(α+ 1)g1(Xj , X)2 − g1(Xj , Xj)g1(X, X)
g1(X, X)α+2

up to terms of order ε−1−2α. Summing over j establishes the assertion for large α and small ε
and hence for large n.

For κ> 0, set Sn := sup∂Ω0
nG

u and Sκk := sup∂ΩκkG
u. Because u(z) is bounded from above

and 6max{Sκk , Sn} on ∂Ωκ
kG ∪ ∂Ω0

nG, the maximum principle, Lemma B.3, assures that

u(z) 6 max{Sκk , Sn}
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in Ω0
nG\Ωκ

kG, or

|f(z)|eN(z)D(z) 6 emax{Sκk ,Sn} 6 sup
w∈∂ΩκkG

|f(w)|eN(w)D(w) + sup
w∈∂Ω0

nG

|f(w)|eN(w)D(w).

As Ṽm b Ω0
n, we may choose ν̄ such that N |

ṼmG\Ṽk+1G
> µ. Setting κ := sup

ṼkG\Ṽk+1G
N > µ, we

obtain

sup
z∈ΩµmG

|f(z)|eµD(z) 6 sup
z∈ΩκkG

|f(z)|eκD(z) + sup
z∈∂Ω0

nG

|f(z)|

6 sup
z∈ΩκkG

|f(z)|eκD(z) + sup
z∈Ω0

nG

|f(z)|.

Lemma B.5 implies that d(z)− C 6D(z) 6 d(z) + C for some C > 0, and Theorem B.1 follows.

Remark B.6. It would be interesting to better understand the topology of A(G)N/I for

a stepwise closed, A(G)-invariant subspace I. Because Ã(G)n is even Fréchet–Schwarz, the

quotients Ã(G)
N

n /(I ∩ Ã(G)
N

n ) are Fréchet–Montel and one might hope to verify condition (B.1)
as before. However, adapting the above proof requires strong assumptions on I, and general
Hausdorff quotients A(G)N/I are likely to be incomplete: for a convex domain Ω⊂ Rn, the
space of test functions D(Ω) is isomorphic to a similar weighted space of holomorphic functions
by Paley–Wiener’s theorem. However, given any non-surjective differential operator A on D′(Ω),
the quotient of D(Ω) by the image of At will be incomplete.
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