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THE EXTREME POINTS OF A CLASS OF FUNCTIONS
WITH POSITIVE REAL PART

N. SAMARIS

Let Pi be the class of holomorphic functions on the unit disc ?7 = { z : | z | < l } for
which /(0) = 1 and R e / > 0. Let also Pn be the corresponding class on the unit
disc Un. The inequality |ajt| ^ 2 is known for the Taylor coefficients in the class
Pi. In this paper, it is generalised for the class Pn . If p = (pi, pa, ..., pn), with
pi, pa, • • •, pn nonegative integers whose greatest common divisor is equal to 1,
we describe the form of the functions / € Pn under the restriction \ap\ = 2 . Under
the same restriction, we give conditions for a function to be an extreme point of
the class Pn .

1. INTRODUCTION

Let U be the open unit disc in the complex plane C. If n is any natural number,
Pn represents the class of all holomorphic functions in Un, which have positive real
part and assume the value 1 at the origin 6 = (0, 0, 0, . . . , 0) . These functions can be
expanded in Taylor series of the form

where: k = (h, k2, ..., kn) £ N?, No = { 0 , 1 , 2 , . . . } , zk = zkl z*J ...z*», ag = 1

and R e / > 0.

In the case of n = 1, the Caratheodory-Toeplitz determinants describe the

behaviour of the Taylor coefficients of class Px. An immediate conclusion is the

Caratheodory relation |o»| < 2, fc = 1, 2, . . . and that if 01 = 2e'*>, then ak = 2eikv>

and f(z) = (l + e l v z ) ( l — ettpz) . Moreover the functions of the above type consti-

tute the extreme elements of the class P\ (see [3]).

References [1, 2] deal with the problem of locating the extreme elements of the

class P2 and some of them were located.

In Section 2, by Theorem 2.3 of the present study, we achieve a generalisation

of Caratheodory's conclusion for any class Pn in the case of ap — 2et(p, where p —

(Pi. P2, • • •, Pn) =̂ 9 and p\, p2, ..., pn are numbers prime to each other.
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The above are related to Theorem 3.
For the deduction of the results in Section 2 some simple relations from classical

harmonic analysis will be used.
In Section 3, we will investigate the problem of locating the extreme points of any

class Pn, by means of Theorem 2.3, and it will become possible to find some of them.

2. SOME PROPERTIES OF CLASS Pn

LEMMA 2 . 1 . If K(x) = K(xi, xi, •••xn) is a Lefaesgue integrable function in
Rn, such that ReK ^ 0, and K(t) = /Kn e-"*K(x)dx is the Fourier transform of
K(x), then the relation

K(t) + K(-t)\ ^2ReK(0)

holds for all i £ K n .

The proof is straight-forward by the definition of the Fourier transform.

LEMMA 2 . 2 . If K(x) is a function as in Lemma 2.1, such that the function K
has compact support and K ^ 0, then for every f(z) = £) apz

p 6 Pn the inequaltiy

: 2 Re X) *PK{-p) holds for every s e Kn.

PROOF: If z = re" = ( r i e " i , r 2e" J , . . . , r n e«») and Fr(x) = K(x)f(reix) =

', apr
p.expx \K(x) then the function FT(x) satisfies the conditions of Lemma 2.1.

We apply this Lemma, take the limit as r —> (1, 1, . . . , 1) and the requested result is
obtained.

THEOREM 2 . 3 . If f(z) = X) akz
k e Pn, then:

(a) |o4|<2,fc€Ny
(b) If a certain index p = (pi, pi, . . . pn) with pi, P2, ..., pn numbers prime

to each other, satisfies the relation ap = 2ellp then:
(i) a\p = 2elAv, for every natural number A.

(ii) If 0 s£ A; ^ p, k / p, k± 0 then ak = ap.ke
ilfi and ak+Xp =

ake
 v, for every natural number A.

(Hi) If for some index k none of the relations k ^ p, k ^ p is valid
lAen a* = ak+\p = 0, for every natural number A.

n

PROOF: (a) If we set K(x) = [J (sin2 6kxk)/x\, we obtain
Jfc=i

K(i) = l /7rnnsup(0, 26k - \tk\). By setting Si = S2 = • • • = 6n = 1/2 and applying
Lemma 2.2 we have the requested result.

https://doi.org/10.1017/S0004972700029695 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029695


[3] Extreme points of a class of function 255

(b) Let A be a rotation transform of K n , such that Ap = ( |p | , 0, 0 . . . , 0). Since
the inverse matrix of A is equal to its transpose, we have the relation f. (.A"1 a;) =
(At)x. If we set P(x) = K(Ax) and x' = Ax we obtain:

P(t) = f K(Ax)eixtdx = / Kix'y'i^'ldx' = K{At) or

1 n

i - 1 * ) = R ( t ) = — n SUP(°> 2** -1** i)

Since the matrix A 1 leaves lengths and angles invariant, the rectangular region
n

S = Y[ (~25jt, 28k) is transformed into A~1(5') which has the same dimensions as S.
k=i

If we set #i = \p\, then for suitably small 82, 83, ...8n no integer indices are
contained in A~1(S) other than 9, p, —p. This is further supported by the fact that
the numbers pi, P2, • • • > Pn are prime to each other, so that the line segment (—2p, 2p)
contains no integer indices other than 6, p, —p. In the above mentioned case we have:

= (2n-1/wn)8182...8n = P(-P)

and P(k) = 0 for all the rest of the indices. Now applying Lemma 2.2 we obtain the
relation:

\ak-p + ak+p + 2ajt + ap-k\ ^ 2Re(2 + ap) for every k e NJ

(it is understood that a, = 0 when s }£ 9).

If part (b) holds for the case ap = — 2 it holds generally. Indeed, if we consider
the function g(z) = f(r]i.zi, Z2, . . . , zn) where ap — 2r\ and rj — —'H^f'1{\v\ = 1), we
observe that the Taylor coefficient of order p of the function g is equal to —2.

Applying now (b) in this case, we obtain the required result for the function / .

The hypothesis ap = —2 yields the relations:

o-k-p + ak+p + 2ajfc + H-k—p = 0 (0)

Ojb + ak+2p + O-k+p = 0 (1)

+ ak+(\+2)P + ak+(,x+i)P = 0 (A + 1 )

Subtracting successively the above relations we have:

w = (a.k+2P - o-k) — - ( a * + 3 p - a j f c + p ) = + ( a * + 4 / > - ak+2p) = •••
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and consequently:

o* + Aw, o-k+p + Aw =

Since \a,\ ^ 2 for every index s we infer that w = 0, so that returning to equations
(0) and (1) in the case of fc ^ p , k ^ 0, A://? we obtain that ojt = —aP-fc; furthermore,
if A; J£ p , k ^ p , ot = 0 and for any A; ^ 0 it is true that ak+Xp = (~1) ak• D

3. E X T R E M E ELEMENTS OF CLASS Pn

Let 5 C N£ such that 6 £ S. HS represents the set of the holomorphic functions
on Un which assume the form:

By PS we denote the set Pn D 5 5 . Let 5P C JVJ1 for which the following conditions
hold:

(a ) p = (pi, p2, ..., pn) € No with p1} p2, • • •, pn numbers prime to each
other;

(/?) n ^ p and n ^ p for every n £ Sp;
(7) * e S p ;
(£) when n ^ p and n ^ 0 then exactly one of the indices n, p — n belongs

to Sp.

If / G HNQ" , which satisfies the propositions (i), (ii), (iii) of Theorem 2.3 for <p = 0,
then, obviously,

[ z ) + * " P ( | ) ] (1 - *")'* ^d p 6 iTSp.

The inverse is also obvious.

If £lp(ip) = { 53 anZn E Pn '• a-p = 2ex<fi} then on the above basis we are able to

define the class QSP by means of the relation

If £ A represents the set of the extreme points of the convex set A, it is evident that

(i) np(o) n EPn = {[p(z) + zf(i/t)](i - z")-1.- P e EQSP};

(ii) np{<p) n s p n - {/(«•>«!, «a, • • •, *»): / € n,(o) n
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The following theorem provides a useful necessary and sufficient condition for a function
to belong to QSP.

T H E O R E M 3 . 1 . If p e HSP, p* — (p2, pa, •••, pn) a n d p~ = pi + p2 H \-pn

the following are equivalent:

( i ) p£QSp;

(i i) R e p ( z - * \ z-"*z%, . . . , z-o'z^j > 0 for e v e r y z = (z2, z3) ...,zn) e

P R O O F : (i) -» (ii).

If /(*) = \p(z) +z^p(lfz)](l-z"y1, p e HSP and s = (s2, a», ..., sn)
{dU)"'1 then

f(zi,
Jb=O

where {ejb}t=J are the solutions of the equation

zf1 .s%* ...s%* = 1 and At(a)

Indeed, it is obvious that

f(z!, sizi, ...,snzn) = ^ A i ( s ) ( e t + 21)(e* - s i ) " 1 + C[s)

where \k(s) = lim f(zlt s2zi, ..., anzi).(ek - «i)(e* + ̂ l)"1

= p'1 Rep(ek, 32ek, •••, 3nek).

7i
Because ^) ^"~1Rep(ejfc, a2ek, . . . , snek) = 1 we have that C(s) = 0. If / G

t=o
oo

and f(zu a2zi, ..., 8nzx) - 1 + Y, ^n(s)z",

^-n(s)=2 E M*)2TB = -r*r • • • -s-/

when n — 1, 2, ..., p — 1 and /3~(s) = 2a£3Sj3 .. .sfi1 so that A ~ = 0, where

= 0.
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Since Re / > 0 and the above Caratheodory-Toeplitz determinant A— is zero we
have that

xk(s) =p~1Rep(eie, 82ek, . . . , snek) ^ 0, k = 0, 1, . . . , p - 1.

If we set a2 = z%, a3 = z\, . . . ,sn = zp, £0 = Zjnz~pa ...z~p" = z-»* where

z G (dU)1*'1 we obtain the result,

(ii) -» (i).

Let f{z) = \p(z) + z"p(l/z)](l - z")-1 and p £ HSp.
If we prove that Xk(s) ^ 0, fc = 0, 1, ...,p — 1, we, essentially, have the desired

conclusion, since we can apply the maximum principle for harmonic functions, for each

variable separately, thus obtaining that / 6 Qp(0).

We consider the system

-(P202 + • • • + pn0n) =

P~0\ - {P202 + P383 + •••+ pn0n) = 2fc7rp-1 - 2TTO;A, A = 2, 3 . . . n

and k, u>i, w2, ..., wn integers.
n

The above system has a unique solution if k = £) px<^\ • Since pi, p2, ... pn are
A = l

numbers prime to each other, the above can be obtained by choosing suitable w>.

Now, if we set s2 = z%, a3 — z%, . . . , an = z?, e0 = z^nz^Pi ... z£n = z~p*, then
vo{a) ^ 0 since p £ QSP. If we replace each variable z\ by z\et0x, where 0\ are the
solutions of the previous system, we have Rep(ui, u2, . • •, u n ) ^ 0 where

C > = e0e
2"fc?"1 = ek and

with k = 1, 2, . . . p - 1 and m = 2, 3, . . . , n. D

REMARKS 3.2.

1. If a = (Pl,p2, ...,pn, 0 ,0 , . . . . O j e N J 1 and p = (^n, p2 ) . . . , pn), then 0^(0) =

n.(o).
2. If p £ NJ with pi = 1 and 5 P = {n G NJ, fl ^ n ^ p, n ^ p, nj = 0 } , 5(p*) =

{Jt € NJ" 1 , Jfc < /J*} then it is obvious that HSP is identical to HS(p*). Moreover,

if (w2, w3, . . . , wn) G (SI / )"" 1 it is easy to find a z = (22, ^ j , . . . , zn) G (dU)n~

such that w> = z~p*z£, A = 2, 3, . . . , n . Hence, for every p £ C?5P the relation

Rep(e0, w2, w3, . . . , wn) ^ 0 holds. Since ni = 0, it is Rep(wi, u2, ..., wn) > 0

for every (u>i, u2, . . . , wn) G (9Z7)n. Applying the maximum principle theorem for

harmonic functions we obtain that PS(p*) = PSP = QSp.
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By means of this equality we conclude that the determination of the extreme el-
ements of class fip(O) (~l EPn reduces to locating those of the class of polynomials
EPS(p').

Especially in the case p = (n, 1) the problem reduces to locating the extreme
elements of the class of polynomials of degree at most n, which belong to the class Pi.
3. In the case of two variables the problem of locating the extreme elements of the class
fip(O) D EPi is always reduced to finding the extreme elements of a class of polynomials
with one variable. Indeed, if

Sf,- {nSNo : nip2 - n2pi < 0, n < p) U {6} and

Si — {n2pi -Tnp2 : (nin2) 6 Sp}

we observe that the map z(n in 2 ) = n2pi — JI1P2 is one-to-one from the set Sp onto
Si, since the numbers pi, p2 are prime to each other.

\ip{z)= Y, a n z n and define £(p) = £ anzn j '> 1~n i / > 2 then the transformation

C is an isomorphism of the space HSP onto the space
By means of Theorem 3.1 we obtain C[QSP] = PSi; hence

0,(0) n EP2 = {[£-1(Pl)(z) + z"£-1(Pl)(l/z)](l - z")-1 : P l e EPSi}.

4. APPLICATIONS

(a) If s = (BI, S2, . . . , sn) e (dU)n and a = (xj, z2, . . . , x2n) = (pi,Pi,P2, Pi,

. . . , pn, pn) £ (dU) n , we denote by Ak(s) the sum of products which are formed by
considering all the permutations of the components of the vector s taken A; at a time.

Moreover we define Ao(a) = 1.
If 5 n = {0, 1, 2, ..., n}, then it is known that the class EPSn is formed by the

elements of the class PSn which obey the relationship

Rep(z) = K(-l)n(ais2 . . . JB)-Iz"n(z - stf ... (z - sn)
2

for all z 6 (dU)n. The number K > 0 is exactly determined through the relationship
p(0) = 1 connected with s € (dU)n. On the basis of the above considerations we
conclude the following relationship:

n

EPSn = {l + 2 ( - l ) " A - 1 («) ^ An.k(s)zk :sGUn} (see [4]).
t=i

If we take into consideration Theorem 3.1, the above relationship solves the problem of
locating the elements of class Qp(0)nEP2, where p = (n, 1) or p = (1, n). Moreover, it
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solves the problem of finding the elements of class Q.f,(ip)C\EP2 . These elements have the
form p(eivzi, z2) , where p(zit z2) G Clp(0)r\EP2. The elements of the class Cl(ip)nEP2

coincide with the elements of the class Qk(<fi) l~l EP\, where k — (n, 1, 0, 0 . . . 0) G NQ .

For p = (1, 1) we have

Slp(0) D EP2 = {(1 + szx + sz2 + Z!Z2)(1 - z^ZiY1 : \a\ = 1}.

The above result is a generalisation of the result [2, 3.3, p.280] (that is, the function of
the form (1 + sz\ + lz2 + Ziz2)(l — ziz2)~

x, |s| — 1, belongs to the class EP2).

(b) In the case p = (1, 1, 1), by means of Theorem 3.1, the problem is reduced
to locating the elements of class EPSP where

Sp = {(0, 0), (1, 0), (0, 1), (1, 1)}.

If a polynomial belongs to the class EPSP then there is a (u>oy>o) G [0, 27r]2 such that

Re{l + aeiu° + Pei<po + 7e
i('uo+'fio)} = 0.

Without loss of generality we assume that (w0) fo) = (0, 0). Now, since there is a
minimum at this position, we obtain the following relationships:

1 + a + /3 + 7 = iA, a + 7 = B - 1, 0 + 7 = I \ (A, B, V) G Ks.

The relationship Re{l + az\ + ftz2 + -yziz2} > 0 for all (zi, z2) G U2 by means
of the maximum principle for harmonic functions, is equivalent to the relationship
|o + 7eiv>| < 1 + Re/3eiv>, <p G [0, 2TT), SO /32 = B2 + A2 ^ 1. After some algebraic
manipulations we obtain

Ai cos tp + A2 sin <p + A3 sin2 (p — A2 cos <p sin <p — Ai ^ 0

where Ai = 2( r 2 + A2 + T + B), A2 = -2AB, A3 = A2 - B2.

Now, by setting a; = tan(y?/2) ( -00 < x < 00) we take A 2 - 2 A ! A 3 - 4 A ^ ^ 0, Ai ^ 0
which are equivalent to Aj < IB2. Next, if H = {{A, B, T) G R3 : T2 +A2 +T + TB ^

0, A2 + B2 < 1} we prove that

Re{l + (iA - 1 - r ) z ! + (iA - B)z2 + (T + B - t^)z iz2} > 0

for all (A, B,T)€H and (zu z2) G U2.

Now using a direct reversal process we can prove the converse of the previous result.

Obviously for the extreme elements which have the above form, the following holds:
f(A, B, T) = T2 + A2 + T + TB = O. If (A, B, T) G H with f(A, B, T) = 0 and
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' = («ii «2, «s) ¥= (0. 0. 0) the polynomial T(A) = f(A + \sltB + \s2, T + \s3) has

t h e f o r m X[X(s\ + s \ + sxs2) +k], k e R .

By the fact that T(A) assumes nonpositive values which are all to the right (or all

to the left) of zero we obtain the converse result. Finally, the set EPSP is composed

of polynomials of the form

p(z) = 1 + (»J4 - 1 - rje*"*! + (tA - B)ei<fiz2 + (T + B - iA)ei(-w+v)z1z2

where («, <p) e [0, 2TT)2 , (A, B, T) e Rs, T2 + A2 + T + TB = 0, A2 + B2 < 1.
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