THE EXTREME POINTS OF A CLASS OF FUNCTIONS WITH POSITIVE REAL PART

N. SAMARIS

Let P_1 be the class of holomorphic functions on the unit disc $U = \{z : |z| < 1\}$ for which f(0) = 1 and Re f > 0. Let also P_n be the corresponding class on the unit disc U^n . The inequality $|a_k| \leq 2$ is known for the Taylor coefficients in the class P_1 . In this paper, it is generalised for the class P_n . If $\rho = (\rho_1, \rho_2, \ldots, \rho_n)$, with $\rho_1, \rho_2, \ldots, \rho_n$ nonegative integers whose greatest common divisor is equal to 1, we describe the form of the functions $f \in P_n$ under the restriction $|a_\rho| = 2$. Under the same restriction, we give conditions for a function to be an extreme point of the class P_n .

1. INTRODUCTION

Let U be the open unit disc in the complex plane C. If n is any natural number, P_n represents the class of all holomorphic functions in U^n , which have positive real part and assume the value 1 at the origin $\theta = (0, 0, 0, ..., 0)$. These functions can be expanded in Taylor series of the form

$$f(z) = \sum_{k \ge 0} a_k z^k$$

where: $k = (k_1, k_2, \ldots, k_n) \in \mathbb{N}_0^n$, $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$, $z^k = z_1^{k_1} z_2^{k_2} \ldots z_n^{k_n}$, $a_{\theta} = 1$ and $\operatorname{Re} f > 0$.

In the case of n = 1, the Carathéodory-Toeplitz determinants describe the behaviour of the Taylor coefficients of class P_1 . An immediate conclusion is the Carathéodory relation $|a_k| \leq 2$, k = 1, 2, ... and that if $a_1 = 2e^{i\varphi}$, then $a_k = 2e^{ik\varphi}$ and $f(z) = (1 + e^{i\varphi}z)(1 - e^{i\varphi}z)^{-1}$. Moreover the functions of the above type constitute the extreme elements of the class P_1 (see [3]).

References [1, 2] deal with the problem of locating the extreme elements of the class P_2 and some of them were located.

In Section 2, by Theorem 2.3 of the present study, we achieve a generalisation of Carathéodory's conclusion for any class P_n in the case of $a_{\rho} = 2e^{i\varphi}$, where $\rho = (\rho_1, \rho_2, \ldots, \rho_n) \ge \theta$ and $\rho_1, \rho_2, \ldots, \rho_n$ are numbers prime to each other.

Received 12 October 1990

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

The above are related to Theorem 3.

For the deduction of the results in Section 2 some simple relations from classical harmonic analysis will be used.

In Section 3, we will investigate the problem of locating the extreme points of any class P_n , by means of Theorem 2.3, and it will become possible to find some of them.

2. Some properties of class P_n

LEMMA 2.1. If $K(x) = K(x_1, x_2, ..., x_n)$ is a Lebesgue integrable function in \mathbb{R}^n , such that $\operatorname{Re} K \ge 0$, and $\widehat{K}(t) = \int_{\mathbb{R}^n} e^{-ixt} K(x) dx$ is the Fourier transform of K(x), then the relation

$$\left|\widehat{K}(t)+\overline{\widehat{K}}(-t)\right|\leqslant 2\operatorname{Re}\widehat{K}(0)$$

holds for all $t \in \mathbb{R}^n$.

The proof is straight-forward by the definition of the Fourier transform.

LEMMA 2.2. If K(x) is a function as in Lemma 2.1, such that the function \hat{K} has compact support and $K \ge 0$, then for every $f(z) = \sum_{\rho \ge \theta} a_{\rho} z^{\rho} \in P_n$ the inequality

$$\left|\sum_{\rho \geq \theta} a_{\rho} \widehat{K}(s-\rho) + \sum_{\rho \geq \theta} \overline{a}_{\rho} \overline{\widehat{K}}(-s-\rho)\right| \leq 2 \operatorname{Re} \sum_{\rho \geq \theta} a_{\rho} \widehat{K}(-\rho) \text{ holds for every } s \in \mathbb{R}^{n}.$$

PROOF: If $z = re^{iz} = (r_1e^{iz_1}, r_2e^{iz_2}, \dots, r_ne^{iz_n})$ and $F_r(x) = K(x)f(re^{ix}) = \left(\sum_{\alpha>\theta} a_{\rho}r^{\rho}.e^{i\rho x}\right)K(x)$ then the function $F_r(x)$ satisfies the conditions of Lemma 2.1.

We apply this Lemma, take the limit as $r \rightarrow (1, 1, ..., 1)$ and the requested result is obtained.

THEOREM 2.3. If $f(z) = \sum_{k \ge 0} a_k z^k \in P_n$, then:

- (a) $|a_k| \leq 2, k \in \mathbb{N}_0^n$
- (b) If a certain index ρ = (ρ₁, ρ₂, ..., ρ_n) with ρ₁, ρ₂, ..., ρ_n numbers prime to each other, satisfies the relation a_ρ = 2e^{iφ} then:
 - (i) $a_{\lambda\rho} = 2e^{i\lambda\varphi}$, for every natural number λ .
 - (ii) If $\theta \leq k \leq \rho$, $k \neq \rho$, $k \neq \theta$ then $a_k = \overline{a}_{\rho-k}e^{i\varphi}$ and $a_{k+\lambda\rho} = a_k e^{i\lambda\varphi}$, for every natural number λ .
 - (iii) If for some index k none of the relations $k \ge \rho$, $k \le \rho$ is valid then $a_k = a_{k+\lambda\rho} = 0$, for every natural number λ .

PROOF: (a) If we set $K(x) = \prod_{k=1}^{n} (\sin^2 \delta_k x_k) / x_k^2$, we obtain $\widehat{K}(t) = 1/\pi^n \prod \sup(0, 2\delta_k - |t_k|)$. By setting $\delta_1 = \delta_2 = \cdots = \delta_n = 1/2$ and applying Lemma 2.2 we have the requested result.

(b) Let A be a rotation transform of \mathbb{R}^n , such that $A\rho = (|\rho|, 0, 0..., 0)$. Since the inverse matrix of A is equal to its transpose, we have the relation t. $(A^{-1}x) = (At)x$. If we set P(x) = K(Ax) and x' = Ax we obtain:

$$\widehat{P}(t) = \int_{\mathbb{R}^n} K(Ax) e^{ixt} dx = \int_{\mathbb{R}^n} K(x') e^{it(A^{-1}x')} dx' = \widehat{K}(At) \text{ or}$$
$$\widehat{P}(A^{-1}t) = \widehat{K}(t) = \frac{1}{\pi^n} \prod_{k=1}^n \sup(0, 2\delta_k - |t_k|)$$

Since the matrix A^{-1} leaves lengths and angles invariant, the rectangular region $S = \prod_{k=1}^{n} (-2\delta_k, 2\delta_k)$ is transformed into $A^{-1}(S)$ which has the same dimensions as S.

If we set $\delta_1 = |\rho|$, then for suitably small $\delta_2, \delta_3, \ldots \delta_n$ no integer indices are contained in $A^{-1}(S)$ other than $\theta, \rho, -\rho$. This is further supported by the fact that the numbers $\rho_1, \rho_2, \ldots, \rho_n$ are prime to each other, so that the line segment $(-2\rho, 2\rho)$ contains no integer indices other than $\theta, \rho, -\rho$. In the above mentioned case we have:

$$\widehat{P}(\theta) = (2/\pi)^n \delta_1 \delta_2 \dots \delta_n, \ \widehat{P}(\rho) = \widehat{K}(|\rho|, 00 \dots 0)$$
$$= (2^{n-1}/\pi^n) \delta_1 \delta_2 \dots \delta_n = \widehat{P}(-\rho)$$

and $\widehat{P}(k) = 0$ for all the rest of the indices. Now applying Lemma 2.2 we obtain the relation:

$$|a_{k-\rho} + a_{k+\rho} + 2a_k + \overline{a}_{\rho-k}| \leq 2 \operatorname{Re} (2+a_{\rho})$$
 for every $k \in \mathbb{N}_0^n$

(it is understood that $a_s = 0$ when $s \not\ge \theta$).

If part (b) holds for the case $a_{\rho} = -2$ it holds generally. Indeed, if we consider the function $g(z) = f(\eta_1.z_1, z_2, ..., z_n)$ where $a_{\rho} = 2\eta$ and $\eta = -\eta_1^{-\rho_1}(|\eta| = 1)$, we observe that the Taylor coefficient of order ρ of the function g is equal to -2.

Applying now (b) in this case, we obtain the required result for the function f. The hypothesis $a_{\rho} = -2$ yields the relations:

Subtracting successively the above relations we have:

$$\omega = (a_{k+2\rho} - a_k) = -(a_{k+3\rho} - a_{k+\rho}) = +(a_{k+4\rho} - a_{k+2\rho}) = \dots$$

and consequently:

$$a_{k+2\lambda\rho} = a_k + \lambda\omega, \qquad a_{k+\rho} + \lambda\omega = a_{k+(2\lambda+1)\rho}$$

Since $|a_s| \leq 2$ for every index s we infer that $\omega = 0$, so that returning to equations (0) and (1) in the case of $k \leq \rho$, $k \neq \theta$, $k \neq \rho$ we obtain that $a_k = -\overline{a}_{\rho-k}$; furthermore, if $k \geq \rho$, $k \leq \rho$, $a_k = 0$ and for any $k \neq \theta$ it is true that $a_{k+\lambda\rho} = (-1)^{\lambda} a_k$.

3. EXTREME ELEMENTS OF CLASS P_n

Let $S \subset N_0^n$ such that $\theta \in S$. HS represents the set of the holomorphic functions on U^n which assume the form:

$$f(z) = \sum_{n \in S} a_n z^n$$
, with $a_{\theta} = 1$.

By PS we denote the set $P_n \cap HS$. Let $S_{\rho} \subset N_0^n$ for which the following conditions hold:

- (a) $\rho = (\rho_1, \rho_2, \ldots, \rho_n) \in N_0^n$ with $\rho_1, \rho_2, \ldots, \rho_n$ numbers prime to each other;
- $(\beta) \quad n \leqslant \rho \text{ and } n \neq \rho \text{ for every } n \in S_{\rho};$
- $(\gamma) \quad \theta \in S_{\rho};$
- (δ) when $n \leq \rho$ and $n \neq \theta$ then exactly one of the indices $n, \rho n$ belongs to S_{ρ} .

If $f \in HN_0^n$, which satisfies the propositions (i), (ii), (iii) of Theorem 2.3 for $\varphi = 0$, then, obviously,

$$f(z) = \left[p(z) + z^{
ho}\overline{p}\left(\frac{1}{\overline{z}}\right)
ight](1-z^{
ho})^{-1} \text{ and } p \in HS_{
ho}.$$

The inverse is also obvious.

If $\Omega_{\rho}(\varphi) = \{\sum_{n \ge \theta} a_n z^n \in P_n : a_{\rho} = 2e^{i\varphi}\}$ then on the above basis we are able to define the class QS_{ρ} by means of the relation

$$\Omega_{\rho}(0) = \left\{ \left[p(z) + z^{\rho} \overline{p}\left(\frac{1}{\overline{z}}\right) \right] (1 - z^{\rho})^{-1} \colon p \in QS_{\rho} \right\}.$$

If EA represents the set of the extreme points of the convex set A, it is evident that

(i)
$$\Omega_{\rho}(0) \cap EP_n = \{ [p(z) + z^{\rho}\overline{p}(1/\overline{z})](1-z^{\rho})^{-1} : p \in EQS_{\rho} \};$$

(ii) $\Omega_{\rho}(\varphi) \cap EP_n = \{f(e^{i\varphi}z_1, z_2, \ldots, z_n) : f \in \Omega_{\rho}(0) \cap EP_n\}.$

The following theorem provides a useful necessary and sufficient condition for a function to belong to QS_{ρ} .

THEOREM 3.1. If $p \in HS_{\rho}$, $\rho^* = (\rho_2, \rho_3, \ldots, \rho_n)$ and $\tilde{\rho} = \rho_1 + \rho_2 + \cdots + \rho_n$ the following are equivalent:

(i) $p \in QS_{\rho}$; (ii) $\operatorname{Re} p\left(z^{-\rho^{*}}, z^{-\rho^{*}}z_{2}^{\widetilde{\rho}}, \ldots, z^{-\rho^{*}}z_{n}^{\widetilde{\rho}}\right) \ge 0$ for every $z = (z_{2}, z_{3}, \ldots, z_{n}) \in (\partial U)^{n-1}$.

Proof: (i) \rightarrow (ii).

If $f(z) = [p(z) + z^{\rho}\overline{p}(1/\overline{z})](1-z^{\rho})^{-1}$, $p \in HS_{\rho}$ and $s = (s_2, s_3, ..., s_n) \in (\partial U)^{n-1}$ then

$$f(z_1, s_2 z_1, \ldots, s_n z_1) = \sum_{k=0}^{\widetilde{\rho}-1} \lambda_k(s) (\varepsilon_k + z_1) (\varepsilon_k - z_1)^{-1}$$

where $\{\varepsilon_k\}_{k=0}^{\widetilde{\rho}-1}$ are the solutions of the equation

$$z_1^{\rho_1} \cdot s_2^{\rho_2} \cdot \cdot \cdot s_n^{\rho_n} = 1 \text{ and } \lambda_k(s) = \operatorname{Re} p(\varepsilon_k, s_2 \varepsilon_k, \cdot \cdot \cdot, s_n \varepsilon_k) \widetilde{\rho}^{-1}$$

Indeed, it is obvious that

$$f(z_1, s_1 z_1, \ldots, s_n z_n) = \sum_{k=0}^{\widetilde{\rho}-1} \lambda_k(s) (\varepsilon_k + z_1) (\varepsilon_k - z_1)^{-1} + C(s)$$
$$\lambda_k(s) = \lim_{z_1 \to \varepsilon_k} f(z_1, s_2 z_1, \ldots, s_n z_1) (\varepsilon_k - z_1) (\varepsilon_k + z_1)^{-1}$$
$$= \widetilde{\rho}^{-1} \operatorname{Re} p(\varepsilon_k, s_2 \varepsilon_k, \ldots, s_n \varepsilon_k).$$

where

Because $\sum_{k=0}^{\widetilde{\rho}-1} \widetilde{\rho}^{-1} \operatorname{Re} p(\varepsilon_k, s_2 \varepsilon_k, \ldots, s_n \varepsilon_k) = 1$ we have that C(s) = 0. If $f \in \Omega_{\rho}(0)$ and $f(z_1, s_2 z_1, \ldots, s_n z_1) = 1 + \sum_{n=1}^{\infty} \beta_n(s) z_1^n$,

$$\overline{\beta}_{\widetilde{\rho}-n}(s) = 2\sum_{k=0}^{\widetilde{\rho}-1} \lambda_k(s) \overline{\varepsilon}_k^{\widetilde{\rho}-n} = s_2^{\rho_2} s_3^{\rho_3} \dots s_n^{\rho_n} \beta_n(s)$$

when $n = 1, 2, ..., \tilde{\rho} - 1$ and $\overline{\beta}_{\tilde{\rho}}(s) = 2s_2^{\rho_2}s_3^{\rho_3} \dots s_n^{\rho_n}$ so that $\Delta_{\tilde{\rho}} = 0$, where

$$\Delta_{\widetilde{\rho}} = \begin{vmatrix} 2 & \beta_1(s) & \dots & \beta_{\rho}(s) \\ \overline{\beta}_1(s) & 2 & \dots & \overline{\beta}_{\rho-1}(s) \\ \vdots & \vdots & & \vdots \\ \overline{\beta}_{\widetilde{\rho}}(s) & \overline{\beta}_{\rho-1}(s) & \dots & 2 \end{vmatrix} = 0.$$

258

Since $\operatorname{Re} f > 0$ and the above Carathéodory-Toeplitz determinant $\Delta_{\widetilde{\rho}}$ is zero we have that

$$x_k(s) = \widetilde{\rho}^{-1} \operatorname{Re} p(\varepsilon_k, s_2 \varepsilon_k, \ldots, s_n \varepsilon_k) \ge 0, \quad k = 0, 1, \ldots, \widetilde{\rho} - 1.$$

If we set $s_2 = z_2^{\widetilde{\rho}}$, $s_3 = z_3^{\widetilde{\rho}}$, ..., $s_n = z_n^{\widetilde{\rho}}$, $\varepsilon_0 = z_2^{-\rho_2} z_3^{-\rho_3} \dots z_n^{-\rho_n} = z^{-\rho^*}$ where $z \in (\partial U)^{n-1}$ we obtain the result. (ii) \rightarrow (i).

Let $f(z) = [p(z) + z^{\rho}\overline{p}(1/\overline{z})](1-z^{\rho})^{-1}$ and $p \in HS_{\rho}$.

If we prove that $x_k(s) \ge 0$, $k = 0, 1, ..., \tilde{\rho} - 1$, we, essentially, have the desired conclusion, since we can apply the maximum principle for harmonic functions, for each variable separately, thus obtaining that $f \in \Omega_{\rho}(0)$.

We consider the system

$$-(\rho_2\theta_2+\cdots+\rho_n\theta_n)=2k\pi\tilde{\rho}^{-1}-2\pi\omega_1,$$

$$\tilde{\rho}\theta_{\lambda}-(\rho_2\theta_2+\rho_3\theta_3+\cdots+\rho_n\theta_n)=2k\pi\tilde{\rho}^{-1}-2\pi\omega_{\lambda}, \quad \lambda=2,3\ldots n$$

and $k, \omega_1, \omega_2, \ldots, \omega_n$ integers.

The above system has a unique solution if $k = \sum_{\lambda=1}^{n} \rho_{\lambda} \omega_{\lambda}$. Since $\rho_1, \rho_2, \dots \rho_n$ are numbers prime to each other, the above can be obtained by choosing suitable ω_{λ} .

Now, if we set $s_2 = z_2^{\rho}$, $s_3 = z_3^{\rho}$, ..., $s_n = z_n^{\rho}$, $\varepsilon_0 = z_2^{-\rho_1} z_3^{-\rho_3} \dots \overline{z}_n^{\rho_n} = z^{-\rho^*}$, then $x_0(s) \ge 0$ since $p \in QS_{\rho}$. If we replace each variable z_{λ} by $z_{\lambda} e^{i\theta_{\lambda}}$, where θ_{λ} are the solutions of the previous system, we have $\operatorname{Re} p(u_1, u_2, \dots, u_n) \ge 0$ where

$$u_1 = \varepsilon_0 e^{-i(\rho_2 \theta_2 + \rho_3 \theta_3 + \dots + \rho_n \theta_n)} = \varepsilon_0 e^{2\pi i k \rho^{-1}} = \varepsilon_k \text{ and}$$
$$u_m = z_m^{\rho} z^{-\rho^*} e^{i\rho\theta_m - (\rho_2 \theta_2 + \rho_3 \theta_3 + \dots + \rho_n \theta_n)} = s_m \varepsilon_k$$

with $k = 1, 2, ..., \tilde{\rho} - 1$ and m = 2, 3, ..., n.

REMARKS 3.2.

1. If $a = (\rho_1, \rho_2, ..., \rho_n, 0, 0, ..., 0) \in \mathbb{N}_0^m$ and $\rho = (\rho_1, \rho_2, ..., \rho_n)$, then $\Omega_{\rho}(0) = \Omega_a(0)$.

2. If $\rho \in \mathbb{N}_0^n$ with $\rho_1 = 1$ and $S_\rho = \{n \in \mathbb{N}_0^n, \theta \leq n \leq \rho, n \neq \rho, n_1 = 0\}, S(\rho^*) = \{k \in \mathbb{N}_0^{n-1}, k \leq \rho^*\}$ then it is obvious that HS_ρ is identical to $HS(\rho^*)$. Moreover, if $(\omega_2, \omega_3, \ldots, \omega_n) \in (\partial U)^{n-1}$ it is easy to find a $z = (z_2, z_3, \ldots, z_n) \in (\partial U)^{n-1}$ such that $\omega_\lambda = z^{-\rho^*} z_\lambda^{\overline{\rho}}, \lambda = 2, 3, \ldots, n$. Hence, for every $p \in QS_\rho$ the relation $\operatorname{Re} p(\varepsilon_0, \omega_2, \omega_3, \ldots, \omega_n) \geq 0$ holds. Since $n_1 = 0$, it is $\operatorname{Re} p(\omega_1, \omega_2, \ldots, \omega_n) \geq 0$ for every $(\omega_1, \omega_2, \ldots, \omega_n) \in (\partial U)^n$. Applying the maximum principle theorem for harmonic functions we obtain that $PS(\rho^*) = PS_\rho = QS_\rho$.

By means of this equality we conclude that the determination of the extreme elements of class $\Omega_{\rho}(0) \cap EP_n$ reduces to locating those of the class of polynomials $EPS(\rho^*)$.

Especially in the case $\rho = (n, 1)$ the problem reduces to locating the extreme elements of the class of polynomials of degree at most n, which belong to the class P_1 . 3. In the case of two variables the problem of locating the extreme elements of the class $\Omega_{\rho}(0) \cap EP_2$ is always reduced to finding the extreme elements of a class of polynomials with one variable. Indeed, if

$$S_{
ho} = \{n \in N_0^2 : n_1
ho_2 - n_2
ho_1 < 0, n \leqslant
ho\} \cup \{ heta\}$$
 and
 $S_1 = \{n_2
ho_1 - n_1
ho_2 : (n_1 n_2) \in S_{
ho}\}$

we observe that the map $x(n_1n_2) = n_2\rho_1 - n_1\rho_2$ is one-to-one from the set S_ρ onto S_1 , since the numbers ρ_1 , ρ_2 are prime to each other.

If $p(z) = \sum_{n \in S_{\rho}} a_n z^n$ and define $\mathcal{L}(p) = \sum_{n \in S_{\rho}} a_n z^{n_2 \rho_1 - n_1 \rho_2}$ then the transformation

 $\mathcal L$ is an isomorphism of the space $HS_{
ho}$ onto the space HS_1 .

By means of Theorem 3.1 we obtain $\mathcal{L}[QS_{\rho}] = PS_1$; hence

$$\Omega_{\rho}(0) \cap EP_{2} = \{ [\mathcal{L}^{-1}(p_{1})(z) + z^{\rho}\mathcal{L}^{-1}(p_{1})(1/\overline{z})](1-z^{\rho})^{-1} : p_{1} \in EPS_{1} \}.$$

4. Applications

(a) If
$$s = (s_1, s_2, ..., s_n) \in (\partial U)^n$$
 and $s = (x_1, x_2, ..., x_{2n}) = (\rho_1, \rho_1, \rho_2, \rho_2, \rho_3)$

 $\ldots, \rho_n, \rho_n) \in (\partial U)^{2n}$, we denote by $A_k(s)$ the sum of products which are formed by considering all the permutations of the components of the vector s taken k at a time. Moreover we define $A_0(s) = 1$.

If $S_n = \{0, 1, 2, ..., n\}$, then it is known that the class EPS_n is formed by the elements of the class PS_n which obey the relationship

$$\operatorname{Re} p(z) = K(-1)^{n} (s_{1}s_{2} \dots s_{n})^{-1} z^{-n} (z - s_{1})^{2} \dots (z - s_{n})^{2}$$

for all $z \in (\partial U)^n$. The number K > 0 is exactly determined through the relationship p(0) = 1 connected with $s \in (\partial U)^n$. On the basis of the above considerations we conclude the following relationship:

$$EPS_n = \{1 + 2(-1)^n A_n^{-1}(s) \sum_{k=1}^n A_{n-k}(s) z^k \colon s \in U^n\} \quad (\text{see } [4]).$$

If we take into consideration Theorem 3.1, the above relationship solves the problem of locating the elements of class $\Omega_{\rho}(0) \cap EP_2$, where $\rho = (n, 1)$ or $\rho = (1, n)$. Moreover, it

solves the problem of finding the elements of class $\Omega_{\rho}(\varphi) \cap EP_2$. These elements have the form $p(e^{i\varphi}z_1, z_2)$, where $p(z_1, z_2) \in \Omega_{\rho}(0) \cap EP_2$. The elements of the class $\Omega(\varphi) \cap EP_2$ coincide with the elements of the class $\Omega_k(\varphi) \cap EP_\lambda$, where $k = (n, 1, 0, 0...0) \in N_0^{\lambda}$.

For $\rho = (1, 1)$ we have

$$\Omega_{\rho}(0) \cap EP_{2} = \{(1 + sz_{1} + \overline{s}z_{2} + z_{1}z_{2})(1 - z_{1}z_{2})^{-1} : |s| = 1\}$$

The above result is a generalisation of the result [2, 3.3, p.280] (that is, the function of the form $(1 + sz_1 + \overline{s}z_2 + z_1z_2)(1 - z_1z_2)^{-1}$, |s| = 1, belongs to the class EP_2).

(b) In the case $\rho = (1, 1, 1)$, by means of Theorem 3.1, the problem is reduced to locating the elements of class EPS_{ρ} where

$$S_{\rho} = \{(0, 0), (1, 0), (0, 1), (1, 1)\}.$$

If a polynomial belongs to the class EPS_{ρ} then there is a $(\omega_0\varphi_0)\in [0, 2\pi]^2$ such that

$$\operatorname{Re}\left\{1+\alpha e^{i\omega_0}+\beta e^{i\varphi_0}+\gamma e^{i(\omega_0+\varphi_0)}\right\}=0.$$

Without loss of generality we assume that $(\omega_0, \varphi_0) = (0, 0)$. Now, since there is a minimum at this position, we obtain the following relationships:

$$1 + \alpha + \beta + \gamma = iA, \ \alpha + \gamma = B - 1, \ \beta + \gamma = \Gamma, \ (A, B, \Gamma) \in \mathbb{R}^3.$$

The relationship $\operatorname{Re}\{1 + \alpha z_1 + \beta z_2 + \gamma z_1 z_2\} > 0$ for all $(z_1, z_2) \in U^2$ by means of the maximum principle for harmonic functions, is equivalent to the relationship $|a + \gamma e^{i\varphi}| \leq 1 + \operatorname{Re}\beta e^{i\varphi}, \varphi \in [0, 2\pi)$, so $\beta^2 = B^2 + A^2 \leq 1$. After some algebraic manipulations we obtain

where

$$\Delta_1 \cos \varphi + \Delta_2 \sin \varphi + \Delta_3 \sin^2 \varphi - \Delta_2 \cos \varphi \sin \varphi - \Delta_1 \ge 0$$

$$\Delta_1 = 2(\Gamma^2 + A^2 + \Gamma + B), \ \Delta_2 = -2AB, \ \Delta_3 = A^2 - B^2.$$

Now, by setting $x = \tan(\varphi/2)$ $(-\infty < x < \infty)$ we take $\Delta_1^2 - 2\Delta_1\Delta_3 - 4\Delta_2^2 \ge 0$, $\Delta_1 \le 0$ which are equivalent to $\Delta_1 \le 2B^2$. Next, if $H = \{(A, B, \Gamma) \in \mathbb{R}^3 : \Gamma^2 + A^2 + \Gamma + \Gamma B \le 0, A^2 + B^2 \le 1\}$ we prove that

$$\operatorname{Re}\{1+(iA-1-\Gamma)z_1+(iA-B)z_2+(\Gamma+B-iA)z_1z_2\}>0$$

for all $(A, B, \Gamma) \in H$ and $(z_1, z_2) \in U^2$.

Now using a direct reversal process we can prove the converse of the previous result.

Obviously for the extreme elements which have the above form, the following holds: $f(A, B, \Gamma) \equiv \Gamma^2 + A^2 + \Gamma + \Gamma B = 0$. If $(A, B, \Gamma) \in H$ with $f(A, B, \Gamma) = 0$ and

261

 $s = (s_1, s_2, s_3) \neq (0, 0, 0)$ the polynomial $\tau(\lambda) = f(A + \lambda s_1, B + \lambda s_2, \Gamma + \lambda s_3)$ has the form $\lambda[\lambda(s_1^2 + s_2^2 + s_1s_2) + k], k \in \mathbb{R}$.

By the fact that $\tau(\lambda)$ assumes nonpositive values which are all to the right (or all to the left) of zero we obtain the converse result. Finally, the set EPS_{ρ} is composed of polynomials of the form

$$p(z) = 1 + (iA - 1 - \Gamma)e^{i\omega}z_1 + (iA - B)e^{i\varphi}z_2 + (\Gamma + B - iA)e^{i(\omega+\varphi)}z_1z_2$$

where $(\omega, \varphi) \in [0, 2\pi)^2$, $(A, B, \Gamma) \in \mathbb{R}^3$, $\Gamma^2 + A^2 + \Gamma + \Gamma B = 0$, $A^2 + B^2 \leq 1$.

References

- F. Forelli, 'A necessary condition on the extreme points of a class of holomorphic functions', Pacific J. Math. 73 (1977), 81-86.
- F. Forelli, 'A necessary condition on the extreme points of a class of holomorphic functions II', Pacific J. Math. 92 (1981), 277-281.
- [3] F. Holland, 'The extreme points of a class of functions with positive real part', Math. Ann. 202 (1973), 85-87.
- [4] J.N. McDonald, 'Convex sets of operators on the disk algebra', Duke Math. J. 42 (1975), 787-796.

Department of Mathematics Faculty of Sciences University of Patras 26110 Patras Greece