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Abstract

A structured-light projection system was designed for microscale objects with surface heights that ranged from tens to hundreds of microns.
The system was composed of a universal projector and microscope system that supported editing the attributes of structured-light patterns
in real-time and was capable of projecting microscale patterns. On this basis, reconstructing the metal surfaces of microscale objects based
on grid patterns of structured light was investigated, the internal and external parameters of microscope vision and projection systems were
calibrated, and an image algorithm for grid-node detection was designed. The results indicated that the proposed method successfully
reconstructed the three-dimensional (3D) surface of microscale objects, and the reconstruction results were consistent with the original sur-
faces. With 95% confidence, the reconstruction precision in the X- and Y-directions was approximately ±4.0 μm and in the Z-direction was
approximately ±7.5 μm. The designed system and the proposed method were suitable for 3D-shape measurement of microstructures in
microscopic fields and can be adapted to meet a broader range of applications, as compared to current methods.
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Introduction

Shape reconstruction methods via structured-light projection are
used in the field of microscopic measurement. The structured
light is projected onto the surface of a microscopic object by
means of a special light source. The image of the structured-light
pattern on the surface is acquired using computer vision methods.
The three-dimensional (3D) positional data of the surface are
generated by analyzing the structured-light image and developing
a positioning algorithm. A 3D-morphology measurement method
based on structured light has been applied in a variety of micro-
scopic applications, such as wafer-surface reconstruction (Mei
et al., 2016), ball-grid-array testing (Li et al., 2014; Li & Zhang,
2015), and coin-surface reconstruction (Liu et al., 2015). It is one
of the noncontact optical measurement methods. Compared with
the contact methods of microscopic measurement (e.g., scanning
electron microscopes, atomic force microscopes, etc.), this method
does not damage the sample surface and can be used to measure
the attributes of living organisms, such as cells and microorganisms
(Shao et al., 2011). Structured light techniques can be divided into
many types. The phase analysis for sinusoidal fringe has been
widely used (Liu & Su, 2014). It projects a fringe pattern of struc-
tured light with a sinusoidal distribution of light intensity onto the
surface, and the stripe image and its phase were analyzed to obtain
position data corresponding to the fringe pattern. Fringe-pattern
scanning has also been commonly used. The structured light source

is used to project a movable fringe onto the surface of the object,
and then the fringe is adjusted to scan the entire surface. In this
process, the images of the moving fringe were captured, and the
sequence of the stripe images is constructed. Based on the analysis
of this image sequence and the calculation of the triangulation
principle, the 3D shape of the surface is generated. Speckle-based
reconstruction has also been useful as a structured-light topography
measurement method (De la Torre et al., 2016). It uses a special
optical system to generate densely distributed spots and project
them onto the surface of the object. Then, the speckle images
were captured, and the surface topography data are generated by
analyzing the shape and density distribution of the speckle. The
above methods have different characteristics in reconstruction
accuracy and flexibility. Sinusoidal fringe-patterned structured
light has advantages in precision and accuracy through the hierar-
chical distribution and the phase-shifting technology of spatial
brightness. Fringe-pattern scanning has more characteristics in
flexibility and sensitivity while speckle structured light has a large
spatial density and is more prominent in detail reconstruction.

The traditional structured-light projection system typically
employs a laser light source and grating projection to generate a
structured-light pattern. Using a line laser, it can directly project
the striped structured light directly on the surface of an object.
The line width of the striped structured light can be as narrow
as tens of microns. Wang (2017) reconstructed the 3D morphol-
ogy of some small objects (such as small resistors, gravel, and
micro clamp tips) with a red line laser and binocular stereo vision
system. The fine, monochromatic laser light source can generate
high-intensity structured light. When a laser source irradiates
an optical prism or other optical elements (De la Torre et al.,
2016), speckle can be generated. The combination of a point
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light source and sinusoidal grating can produce fine sinusoidal
fringes (Windecker & Tiziani, 1995). The fringes or the object
can be adjusted to distribute the fringes across the surface of
the object, and then the 3D shape of the object surface can be
constructed by phase calculation. The point light source can be
replaced by a bright halogen lamp or a laser. The incident
beam is converted into a parallel beam through a collimating
lens and then projected onto a sinusoidal grating. The outgoing
beam passes through the microscope and projects onto the surface
of the object to form the sinusoidal fringes. The structured-light
pattern produced by laser light and sinusoidal grating cannot be
too complex as its structure is relatively simple. Once the hard-
ware is determined, the structure-light projection pattern is also
fixed and cannot be changed. The method for solving spatial
coordinates via structured light is also determined.

Universal projector devices have commonly been used in mac-
roscopic scanning based on structured light (Gai et al., 2016; Guo
et al., 2017), which employ 3D scanners to project structured-light
patterns on the surface of objects. In the related research, digital
micromirror devices (DMDs) and light-emitting diodes (LEDs)
have been used in structured-light projection systems. DMD is a
micromirror array, and the position of each micromirror can be
adjusted by a control circuit. To reduce the overall volume,
LEDs are often used for the light source. After the light beam irra-
diates the micromirror, the reflected light beam is filtered through
a projection lens. The structured-light pattern may be speckle,
thin fringes, or other patterns. Fukano & Miyawaki (2003) devel-
oped a DMD optical projection module to build a scanning sys-
tem with fluorescence imaging for the inspection of biological
samples. Zhang et al. (2010) also used a DMD optical projection
module in their research to build a phase-shifted fringe-patterned
projection system capable of achieving a scanning speed of
667 Hz. Dan et al. (2013) designed a fringe-patterned projection
system with DMD optical projection module and a low-coherence
LED light. The longitudinal scanning depth of this system was
120 μm, and the horizontal resolution reached 90 nm. Chen
et al. (2018) developed a system to project speckle patterns
using a DMD module. They used a millimeter-scale cylinder
array as a test sample to study the 3D measurement of a micro-
structure, which was nearly submicron. Most DMD projection
modules have used an LED light source. The brightness of the
structured light produced by an LED is relatively low, around
1,000 lumens, and the contrast is generally 1,000:1, which is
more suitable for measuring the surface morphology of micro-
scopic objects that have enhanced reflective intensity. However,
for surfaces with weaker reflective intensity, structured light pro-
jected by an LED is not ideal. However, halogen projectors can
overcome this issue with approximately 3,000 lumens and a con-
trast ratio of up to 10,000:1; in addition, they can generate arbi-
trary projection patterns via software. Moreover, the existing
DMD projection modules do not support freely editing projection
patterns and attributes.

The attributes of different types of microscopic objects can
vary widely, and the requirements for measurement systems
and processes were also varied. Some measurement environments
require structured light with small size, high brightness, and high
measurement accuracy, whereas other environments may need
the opposite (e.g., large size and low brightness). For more com-
prehensive functionality, a structured-light projection system
should be capable of generating various patterns according to
the measurement requirements as well as have adjustable features
(e.g., brightness, contrast, linewidth, etc.). Therefore, this study

developed an adaptable structured-light projection system based
on a conventional halogen lamp projector that would allow for
manual customization of the projection pattern, including the
color, line width, brightness, projection mode, etc. Using this sys-
tem, the shape reconstructions of microscale objects were studied,
and their surface morphology was described; then the calibration
methods for the vision and projection systems were proposed. In
addition, an algorithm for detecting the position of grid nodes in
structured-light images was created.

The remainder of this article is organized as follows: In the
section “Materials and Methods,” the materials and methods are
described; in the section “Results and Discussion,” the experiment
results and discussion were reported. In the section “Conclusion,”
the conclusions were presented.

Materials and Methods

Design of the Structured-Light Projection System

The setup of the structured-light projection system developed in
this paper is shown in Figure 1. Figure 1a presents the attributes
of the structured-light pattern and the concept of attribute edit-
ing. The attributes of the structured-light pattern were edited
using online software to adjust the pattern structure, color, geo-
metric parameters (stripe length, width, etc.), position parameters,
and motion parameters. The final design was projected onto the
surface of the microscopic object via the projection system.

Figure 1b shows the projection system for the structured-light
pattern, consisting of a universal projector, an optical system with
a tunable zoom lens, a carrier stage, a 5-axis position adjustment
system for the projector, a 4-axis position adjustment system for
the camera, an image acquisition system (including camera and
microscope B), and computers (PC1 and PC2). The structured-
light pattern was designed on PC1 and then sent to the projector
to generate the beams. The small-scale structured-light pattern was
transformed via the optical system with a tunable zoom lens (zoom
range: 0.7×–4.5×) and projected onto the surface of the object.
After the beams were reflected by the surface, it was imaged via
microscope B and its integrated camera. The 5-axis position adjust-
ment system was used to adjust the position and pose of the pro-
jector, so that the projector was coaxial with the optical system. It
consisted of three translational and two rotational degrees of free-
dom. The repetitive precision positioning of horizontal and rota-
tional degrees of freedom were 0.01 mm and 0.01°, respectively.
The 4-axis position adjustment system was used to adjust the posi-
tion and pose of the vision system, consisting of three translational
and one rotational degrees of freedom, and their repetitive preci-
sion positioning were 0.01 mm and 0.01°, respectively. By adjusting
the pitch angle of the camera, clear images of the structured-light
pattern could be obtained, and the deformation of the structured-
light pattern could also be adjusted. The stage could rise and fall
vertically, which was also used to adjust the object so that the vision
system could capture a clear image.

Figure 1c shows the technical method of surface reconstruction
based on the structured-light projection system. It was divided
into three modules: system calibration, grid-node detection, and
graphic reconstruction. The calibration module was used to cali-
brate the camera and projector, estimate their position and distor-
tion parameters, and improve the accuracy of the vision and
projection systems. The grid-node detection module was used to
obtain the coordinates of the grid nodes in the images, and
these coordinates were then used as the parameters to calculate
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the world coordinates of the space nodes. The graphic reconstruc-
tion module was used to generate 3D representations of the sur-
face on the computer.

The editing module for the structured-light pattern in
Figure 1a expanded and refined the measurement range. We
tested various surfaces of microscopic objects, and their reflection
intensity of structured light were quite varied. By editing the attri-
butes of the structured-light pattern, for example, the intensity,
geometric size, color, pattern structure, and so on, it could be
quickly adjusted according to the attributes of each object’s sur-
face. This significantly improved the success rate for different sur-
face measurements. In addition, the system in Figure 1b used a
universal projector, which was low cost and very convenient,
and would adapt to more complex measuring instruments.

Reconstruction Method for Surface

In this paper, the 3D surfaces of short objects with diffuse reflec-
tions as a result of their metal surfaces were reconstructed. These
objects were similar to microstructures with metal surfaces or
metal structures with small dimensions in microelectromechani-
cal systems (MEMS), such as 3D patterns on the surface of
coins, gold-finger connectors, and metal-surface microstructures.
They generally have small dimensions, especially in height.
Structured light is critical to presenting height distribution. The
height (or Z-direction) scale of microstructures may range from
tens to hundreds of microns. However, the horizontal (X- or
Y-direction) scales may be up to millimeters, as long as they are
within the field of view of the microscope lens. The reflective abil-
ities of these object surfaces vary widely and are based on their
materials and attributes.

Figure 2 shows the flowchart of surface reconstruction of a
microscale object. Firstly, the system was calibrated to determine

the internal and external parameters of the vision and projection
systems. The internal parameters of the vision system primarily
included focal length, pixel size, and image distortion whereas
the external parameters primarily included the translation and
attitude angle between the camera coordinate system and the
world coordinate system. The internal parameters of the projec-
tion system also include focal length, pixel size, and image distor-
tion, whereas the external parameters were primarily rotation and
translation between the coordinate systems. The system calibra-
tion process is shown in Figure 2a, which included establishing
the mapping model between object and image points, obtaining
the image and spatial coordinates of control points, analyzing
image distortion, etc. The image and spatial coordinates of control
points were provided by the plane calibration sample with a
checkerboard pattern. In the sample, the lengths of cells were
known, and their corner points were used as the control points
for calibration. The coordinates of the control points were
regarded as the world coordinates, and the image coordinates of
the control points were generated by image preprocessing and
corner-image-coordinate detection. The calibration of the projec-
tion system was different from that of the vision system. In the
process of calibrating the projection system, it was necessary to
project the grid pattern on a plane calibration sample. The
nodes in the structured-light pattern were used as control points.
The world coordinates of these nodes were provided by the cali-
brated vision system through calculation. The coordinates of the
nodes in the structured-light pattern were known before projec-
tion. The mapping relationship between the projection surface
and the world coordinate system were determined by using the
spatial coordinates of the nodes and the coordinates in the projec-
tion pattern. The calibration of projection system also needed to
establish a mapping model between object and image points as
well as to correct the distortion on the projection plane.

Fig. 1. Setup of the structured-light projection and measurement system. (a) Characteristics of projected structured light; (b) system setup; and (c) workflow of
surface reconstruction.
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Figure 2b shows the process of surface reconstruction that pri-
marily includes the following steps:

Step 1: The object was placed on the stage, the grid and structured-
light pattern were projected onto the target surface, and the
image was captured.

Step 2: The image was preprocessed, the image coordinates of the
nodes in the grid were extracted, and the nodes in the image
were aligned with the nodes in the projected grid pattern.

Step 3: The image coordinates of the node were input into the cal-
ibrated vision system, and then the world coordinates of the
nodes were calculated, and the surface of the object was recon-
structed based on the world coordinates of the nodes.

System Calibration
Calibration for the vision system. The measured objects in this
paper were microscale objects. The horizontal scale range was typ-
ically from hundreds of microns to a few millimeters, and the ver-
tical scale range was usually from tens to hundreds of microns.
Therefore, the vision system (shown in Fig. 1) needed a magnifi-
cation function. The microscope and camera were used together
to build a microscope vision system with zoom capability, and
the maximum magnification was 4.5×. A microscope vision sys-
tem could perform the imaging processes required in this study
from small to large. The size of the object (in the object space)
was small, and the size of the image (in the image space) was

large. In vision systems used for macroscale imaging, pinhole
models are generally used to describe the mathematical mapping
relationship between object and image points. We also used this
model to construct the mapping relationship between object
and image points in our microscope vision system.

Figure 3a describes the imaging and calibration principles of a
pinhole model for a microscope vision system. Four coordinate
systems were used to describe the relationships between object
and image points, and they included a world coordinate system
O-XYZ, a camera coordinate system Oc-XcYcZc, an image plane
coordinate system o-xy, and image coordinate system q-uv. The
first two are 3D coordinate systems, and the last two are 2D coor-
dinate systems. In the process of calibration, the world coordinate
system O-XYZ was usually placed in the plane calibration sample.
The plane of the calibration sample was assigned as the plane
O-XY, the Z-axis was perpendicular to the sample plane, and
the origin O was located at a specific position on the sample
plane. The origin Oc of the camera coordinate system
Oc-XcYcZc was set at the optical center of microscope B, the
plane Oc-XcYc was parallel to the image plane, and the Z-axis
was perpendicular to the image plane and on the optical axis of
microscope B. The origin o of the image plane coordinate system
o-xy was located on the optical axis of microscope B, where |oOc|
= fc, fc was the focal length in the image side. The plane xy was
located on the imaging plane of microscope B, and the X- and
Y-axes were parallel to the Xc- and Yc-axes, respectively. The

Fig. 2. The workflow of system calibration and surface reconstruction. (a) The workflow of system calibration and (b) the workflow of surface reconstruction.
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distance in the image plane coordinate system was measured in
length units. The image coordinate system q-uv was placed in
the image, and the origin q was located in the upper left corner
of the image. The distance in the coordinate system q-uv was
measured in pixel units, and the u- and v-axes were parallel to
the x- and y-axes, respectively.

The coordinates of the origin (o) in the coordinate system q-uv
were represented by o(u0,v0), where u0 and v0 were measured in
pixels. In addition, in the coordinate system q-uv, the length of
a single pixel in x- and y-directions were expressed by dx and
dy, respectively. A point P (X, Y, Z ) in the coordinate system
O-XYZ emitted light beams that passed through the optical center
Oc of microscope B; point P was imaged in the image coordinate
system q-uv. If the image distortion was not considered, the image
point was p(u,v). As can be seen from Figure 3a, once the values
of dx, dy, u0, v0, and fc were determined, the internal structure of
the vision system was also determined, and these parameters were
considered the internal parameters. Relative rotation and transla-
tion relationships were identified between the coordinate systems
O-XYZ and Oc-XcYc. In Figure 3a, the rotation matrix and trans-
lation vector transformed from O-XYZ to Oc-XcYcZc are expressed
by Rc and Tc, respectively, and the former is a 3 × 3 matrix, the
latter is a 3 × 1 vector. Once Rc and Tc were determined, the rel-
ative position and attitude parameters of the vision system could
be determined, and these parameters were considered the external
parameters. According to the existing pinhole model, the map-
ping relationship between object point P(X,Y,Z ) and image
point p(u,v) is as follows:

Zu ·
u
v
1

⎡
⎣

⎤
⎦ =

fx 0 u0 0
0 fy v0 0
0 0 1 0

⎡
⎣

⎤
⎦ · Rc Tc

0 1

[ ]
·

X
Y
Z
1

⎡
⎢⎢⎣

⎤
⎥⎥⎦, (1)

where fx = fc/dx, fy = fc/dy, fx, and fy represent the scale factors
between the coordinate systems o-xy and q-uv, and Zu is a scale
factor in the camera coordinate system Oc-XcYcZc.

Equation (1) is an ideal pinhole model without accounting for
the image distortion, but image distortion is inevitable and will
cause the real image point p1(u1,v1) to deviate from the position

of the ideal image point p(u,v). The ideal image point position
had to be obtained by correcting the image distortion, and then
it could be calculated by equation (1). Figure 3b shows an
image of the red-fringe pattern captured by the vision system in
Figure 1. In the case of no image distortion, the shape of the
red fringe would be a straight line, but as can be seen from
Figure 3b, the red fringe was bent, which indicated that there
was distortion in the image. In this paper, radial and tangential
distortions were considered. The correction formulas for these
two kinds of distortion are as follows (De Villiers et al., 2008):

u = u1(1+ k1r21 + k2r41)+ 2c1u1v1 + c2(r21 + 2u21),
v = v1(1+ k1r21 + k2r41)+ 2c2u1v1 + c1(r21 + 2v21),

{
(2)

where k1 and k2 are radial distortion coefficients, c1 and c2 are tan-
gential distortion coefficients, and r21 = u21 + v21. The calibration
for the vision system is the process of estimating the above param-
eters. The Levenberg–Marquardt (LM) algorithm was used to
optimize the objective function with all parameters (Hu et al.,
2020a):

min
∑n
i=1

∑m
j=1

‖ ua,ij − uc,ij( fx , fy , u0, v0, Rc, Tc, k1, k2, c1, c2) ‖2
{ }

,

(3)

where n is the number of images, m is the number of corner
points in the calibration sample, ua,ij represents the real image
coordinate vector of the j-th corner point in the i-th image, and
uc,ij represents the image coordinate vector of the j-th corner
point, as calculated by equations (1) and (2).

In the process of calibrating the vision system, a calibration
sample with a checkerboard pattern of 13 lines × 12 columns
was used to provide the world and image coordinates of control
points. The size of calibration sample was 3.9 mm × 6 mm, the
standard width of checkerboard cell was 0.3 mm, and the area
of calibration sample accounted for about 60% of the field of
view. The calibration process was divided into the following steps:

Step 1: The images of the calibration sample were captured at dif-
ferent positions in the field of view. The calibration sample was

Fig. 3. Schematic diagram of vision system calibration. (a) Imaging description of vision system and (b) distortion of structured-light stripe in image.
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placed on the stage (as shown in Fig. 1), and then, the stage
was adjusted to change the position of the calibration sample.
A total of n positions were selected for placement, and n
images were captured in the calibration process, where n was
set to 15.

Step 2: The image coordinates of the corner point in the checker-
board were extracted. The images were preprocessed by a
Gaussian filter, and the corner points in the images were
detected by a region-growth method, and their image coordi-
nates were obtained. These corner points were used as control
points for calibration, and the number of control points was
n × 12 × 11. The image coordinates of these control points con-
stitute a set of {ua,ij} as true values of image coordinates.

Step 3: The world coordinates corresponding to the corner points in
the images were obtained. The world coordinates of the corner
points on the calibration sample were used as known quantities,
and the data for calibration were generated by Steps 2 and 3.

Step 4: The world and image coordinates of the control points
were used as the data for calibration, and the calibration of
the vision system was calculated using equations (1)−(3), and
the internal and external parameters were obtained.

Calibration for the projection system. In Figure 1b, the geometric
size of the measured object was in microscale. A simple micro-
scope was installed in front of the projector. Using the
inverse-imaging principle of the microscope, the large projection
pattern was transformed into a small pattern. Figure 4 depicts the
calibration principle of the projection system. The projection sys-
tem was regarded as a reverse-microscope vision system. The
structured-light pattern was projected onto the sample surface

through the projection system composed of projector, cage objec-
tive, and microscope A. Four coordinate systems were also used to
describe the relationship between the object point and its image
point in the structured-light pattern. These four coordinate sys-
tems included a world coordinate system O-XYZ, projector coor-
dinate system Op-XpYpZp, projection plane coordinate system
a-bc, and projection image coordinate system w-st. The origin
(Op) of the projector coordinate system Op-XpYpZp was located
at the optical center of the projector lens, the plane Op-XpYp

was parallel to the DMD plane of the projector, and the Zp-axis
was perpendicular to the DMD plane. The origin (a) of the pro-
jection plane coordinate system a-bc was located in the center of
the DMD of the projector. The distance in the coordinate system
was measured in length units. The b- and c-axes were parallel to
the Xp- and Yp-axes, respectively, where |aOp| = fp, and fp were
the image focal length of the microscope A. The origin (w) of
the projection image coordinate system w-st was located in the
upper left corner of the projection image of the structured-light
pattern. The distance in this coordinate system was measured in
pixel units, and the s- and t-axes were parallel to the b- and
c-axes, respectively.

The coordinates of the origin (a) in the coordinate system w-st
were represented by a(s0, t0), where s0 and t0 were measured in
pixel units. In addition, in the coordinate system w-st, the length
of a single pixel in s and t was expressed by ds and dt, respectively.
A point P(X,Y,Z ) in the coordinate system O-XYZ emits light
beams. The beams pass through the optical center Op of micro-
scope A, and was imaged in the image coordinate system w-st.
If the image distortion was not considered, the image point was
d(s,t). As can be seen from Figure 4a, once the values of ds,dt,

Fig. 4. Schematic diagram of the projection system of structured light.
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s0,t0, and fp were determined, the internal structure of the projec-
tion system was also determined. Relative rotation and translation
relationships were identified between the coordinate systems
O-XYZ and Op-XpYp. In Figure 4a, the rotation matrix and trans-
lation vector transformed from O-XYZ to Op-XpYp were described
by Rp and Tp, respectively, and the former was 3 × 3 matrix while
the latter was 3 × 1 vector. Once Rp and Tp were determined, the
relative position and attitude parameters of the projection system
could be determined. According to the existing pinhole model,
the mapping relationship between object point P(X,Y,Z ) and
image point d(s,t) is as follows:

Zv ·
s
t
1

⎡
⎣

⎤
⎦ =

fb 0 s0 0
0 fc t0 0
0 0 1 0

⎡
⎣

⎤
⎦ · Rp Tp

0 1

[ ]
·

X
Y
Z
1

⎡
⎢⎢⎣

⎤
⎥⎥⎦, (4)

where fb = fp/ds, fc = fp/dt, fb and fc represent the scale factors
between the coordinate systems a-bc and w-st, and Zv is the
scale factor in the coordinate system Op-XpYpZp.

Since the projector system was regarded as a reverse-
microscope vision system, similar to the image distortion process-
ing in “Detection of Grid Nodes”, the distortion generated by the
projection optical system should also be considered. In Figure 4a,
the real image point d1(s1,t1) deviated from the position of the
ideal image point d(s,t). The position of ideal image point
could be obtained by correcting the image distortion. In this
paper, radial and tangential distortions were considered as
follows:

s = s1(1+ k3r22 + k4r42)+ 2c3s1t1 + c4(r22 + 2s21),
t = t1(1+ k3r22 + k4r42)+ 2c4s1t1 + c3(r22 + 2t21),

{
(5)

where k3 and k4 are radial distortion coefficients, c3 and c4 are tan-
gential distortion coefficients, and r22 = s21 + t21 . Similarly, after the
internal and external parameters were obtained according to the
constraint conditions, they were taken as the initial values, and
the maximum likelihood estimation method was used to optimize
the parameters. LM optimization algorithm was used to optimize
the objective function including all parameters:

min
∑n
i=1

∑m
j=1

‖sa,ij − sc,ij( fb, fc, s0, t0, Rp, Tp, k3, k4, c3, c4)‖2
{ }

,

(6)

where n is the number of images of the grid structured-light pat-
tern, m is the number of node points, sa,ij represents the image
coordinate vector of the j-th node point in the i-th image, and
sc,ij represents the image coordinate vector of the j-th node
point calculated by equations (4) and (5).

The calibration of projection system was divided into the
following steps:

Step 1: Designing the projection image of the grid pattern of struc-
tured light in PC1, as shown in Figure 1. In the projection
image, the image coordinates of the projection nodes in the
grid pattern were known as the coordinates s and t.

Step 2: Projecting the image of the structured-light pattern
through the projection system onto the surface of a flat calibra-
tion object (e.g., a calibration sample).

Step 3: Capturing the image of the structured-light pattern using
the vision system. The image of the structured light was cap-
tured by PC2, as shown in Figure 1. The image coordinates
of the node points (i.e., control nodes) were acquired using
the image detection algorithm in the section “Detection of
grid nodes.”

Step 4: The microscope vision system was calibrated so that, by
importing the image coordinates of the control nodes, their
corresponding coordinates in the world coordinate system
O-XYZ could be calculated.

Step 5: The world coordinates of the control nodes and the image
coordinates of the projection node were used as the data for cal-
ibration. After combining them with equations (4)–(6), they
were used to calibrate the projection system and determine
its internal and external parameters.

To ensure the accuracy of the calibration of the projection
system, the position of the pattern in the projection image (the
position of the structured light changes as it was projected
onto the object space) was adjusted by the editing software. The
structured-light pattern in the object space was distributed as
evenly as possible in the field of view. A total of n projection posi-
tions were set, and n images of the structured-light pattern were
acquired while these images were used for calibration, with n
taken as 15.

Coordinate calculation. After the vision and projection systems
had been calibrated, they were used to reconstruct the world
coordinates of the points in object space. As shown in Figure 4,
point d1(s1,t1) in the projection image coordinate system was pro-
jected to the location of point P(X,Y,Z) in object space. The
reflected light beam passed through the vision system and was
imaged in the image coordinate system with image point p1(u1,
v1). In the process of reconstructing the coordinates of point
P(X,Y,Z), the coordinates of points d1(s1,t1) and p1(u1,v1) were
determined. Solving the system of equations by combining equa-
tions (1) and (4), the coordinates of point P(X,Y,Z) at d1(s1,t1) and
p1(u1,v1) can be calculated from the coordinates of d1(s1,t1) and
p1(u1,v1).

X
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1

⎡
⎢⎢⎢⎣

⎤
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fx 0 u0 0
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⎡
⎢⎣

⎤
⎥⎦ · Rc Tc

0 1

[ ]⎧⎪⎨
⎪⎩

−
fb 0 s0 0

0 fc t0 0

0 0 1 0

⎡
⎢⎣

⎤
⎥⎦ · Rp Tp
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[ ]⎫⎪⎬
⎪⎭

−1
Zuu1 − Zvs1
Zuv1 − Zvt1
Zu − Zv

⎡
⎢⎣

⎤
⎥⎦.
(7)

Detection of Grid Nodes
In the reconstruction process depicted in Figure 2b, the image of
the structured-light pattern was captured, and the image coordi-
nates (u1,v1) of the grid node were obtained by the image algo-
rithm. The world coordinates of the nodes were calculated after
substitution with the image coordinates (s1,t1) of the projected
node in equation (7). This section describes the algorithm for
detecting the grid nodes in the image.

Microscopic images of structured light were captured by the
microscope vision system. Due to the magnification of the
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microscope, the image properties such as sharpness and contrast
of the image were significantly lower than those obtained by a
single-camera vision system. In the section “Results and
Discussion,” images of various types of structured light were
captured using the microscope vision system, all of which had
the above characteristics. As can be seen from the microscopic
images taken in the section “Results and Discussion,” the grid
lines were weakly visible, and their edges were not as sharp as
the edges of the stripes in the macroscopic images. In addition,
local areas in the image were easily affected by strong reflections
and were more likely to cause bright spots. To account for
the unique characteristics of microscopic images, the image-
coordinate-extraction algorithm of grid nodes was designed, and
its flow is shown in Figure 5. It contains the steps of image pre-
processing, skeleton extraction of grid pattern, and detection of
skeleton intersection points. The process of the algorithm was
as follows:

Step 1: The image of structured light was preprocessed by
Gaussian filtering algorithm. It adopted a 24-bit true-color bit-
map format. Firstly, the average grayscale values of the three-
color channels of the image were calculated and compared,
and the grayscale image corresponding to the color channel
with the highest average grayscale value was used to detect
the nodes. Then, Otsu’s method was used to calculate the
binarization and closing operation of the single-color-channel
image to generate the binarization image (image 1). The flow
of this step is shown in Figure 5a.

Step 2: The skeletons of the grid lines were extracted based on
image 1. A new image, image 2, was generated by first remov-
ing the burrs from image 1, then removing the isolated pixel
points and filling the enclosed empty pixel points in turn.
Then, image 2 was processed to refine the skeletons and obtain
the grid lines with the line width of 1 pixel; then image 3 was
generated. The subtraction operation was performed several
times between image 3 and image 2. If the grayscale value of
all pixels of image 3 was not 0, Step 2 was performed again,
and then Step 3 would be performed if all were 0. The genera-
tion process of image 3 is shown in Figure 5b.

Step 3: The four templates M1–M4 were used to filter image 3,
respectively, which were as follows:

M1 =
0 0 0

0 2 −1

0 −1 0

⎡
⎢⎣

⎤
⎥⎦, M2 =

0 0 0

−1 2 0

0 −1 0

⎡
⎢⎣

⎤
⎥⎦,

M3 =
0 −1 0

0 2 −1

0 0 0

⎡
⎢⎣

⎤
⎥⎦, M4 =

0 −1 0

−1 2 0

0 0 0

⎡
⎢⎣

⎤
⎥⎦.

Image 3 was filtered to produce four new images. The corre-
sponding pixels of these four new images were multiplied to con-
stitute another image, which was then extracted from image 3 to
obtain the image of the grid node. Finally, image 4 was generated
by connecting the neighboring nodes through the expansion
method. The flow of this step is shown in Figure 5c.

In Step 3, the width of the grid lines in image 3 was 1 pixel.
The intersecting structure of the grid lines for grid skeletons
could be classified into four types that are depicted in
Figure 6a, with Г1, Г2, Г3, and Г4 representing the four types of
intersecting grid lines. Г1 was a cruciform structure; Г2 and Г3
were staggered cruciform structures with misalignment in both
horizontal and vertical directions. The difference between them
was the presence or absence of overlap (Г2 was a nonoverlapping
structure; Г3 was an overlapping structure). Г4 was a partially
interlaced cross-type structure with misalignment only in the hor-
izontal or vertical direction. Image 3 was filtered using templates
M1, M2, M3, and M4 in turn to obtain four filtered images. The
cruciform intersection structures in these images were trans-
formed into the types shown in Figures 6b–6e. These four filtered
images were multiplied, and a new image was synthesized. In the
synthesized image, the intersecting structure of the grid lines was
transformed into the type shown in Figure 6f. The synthesized
image was compared to the original image 3 to obtain the
nodes at the intersection of the grid lines. In the subtracted
image, the structure of the intersection region is shown in
Figure 6g. In Figure 6a, the cruciform of Г2 and Г4 was misaligned

Fig. 5. Grid-extraction algorithm for the structured-light image. (a) The workflow of skeleton extraction of grid. (b) The workflow of extracting the 1-pixel-width grid
lines. (c) The accurate intersection coordinates obtained through the optimization of the grid structure.
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by a magnitude of 1–3 pixels. If the misalignment was large, it was
possible that the pixels in the two regions of the intersection of Г2
and Г4 in Figure 6g would separate after the image operations
described above. If the gravity center of the area block was used
as the node of the grid line under such conditions, the position
of the node may be misaligned. To resolve this problem, the cor-
responding binary image in Figure 6g was inflated. The pixels of
the adjacent nodes were connected to obtain the results, as shown
in Figure 6h. The gravity center of the connected region in
Figure 6h was calculated so that the sub-pixel-level image coordi-
nates of the nodes could be accurately obtained. The coordinates
(u1,v1) of the nodes in equation (7) could be obtained using the
above algorithm.

For the grid nodes in the projected image, their parameters were
determined by software, so that the geometry of the pattern and the
position of the nodes were identified. The structured-light image
was directly filtered using the templates M1–M4 to obtain an
image containing only the grid nodes, with each node in the
image being one pixel point. The images in Figure 7a were processed
using the algorithm described above, resulting in image 1, image 3,
and image 4, as shown in Figures 7b–7d. The projection pattern was
processed using the same method. The results of the detection of
the grid lines and their nodes are shown in Figures 7e and 7f.

Results and Discussion

In this section, the precision of the image coordinate extraction
for grid nodes, the error in the calibration, and the surface recon-
struction were analyzed by experiments. The experiments were
carried out using the system shown in Figure 1. The model of

the projector was BenQ-MP625P with a maximum resolution of
1,024 × 768 pixels, and it had a high-pressure mercury-vapor
lamp with a luminance of 2,700 lumens. The resolution of the
camera was 4,000 × 3,000 pixels, and the size of a pixel in the sen-
sor was 1.85 μm× 1.85 μm. The zoom range of microscope lens
was 0.7×–4.5×, the variation range of the corresponding working
distance was 89–96 mm, the range of view size was 6.0–1.0 mm,
and the field of view (FOV) of the system was 3.9°–0.6°.

Experiments on the Image Coordinate Extraction of Grid Node

Observation of Structured-Light Projection
In this section, the projection performance was verified by observ-
ing the projection quality of structured-light patterns under dif-
ferently colored lighting conditions. Three types of samples
were used in this experiment: a flat frosted aluminum alloy
surface, a Chinese coin, and a gold-finger connector. The grid
patterns of red, green, and blue structured light were projected
onto these samples, respectively. The images of the structured-
light patterns were captured by the vision system, as shown in
Figure 1b. Figure 8a shows the image of the flat frosted aluminum
alloy sample. The red structured-light pattern was projected onto
the surface of this sample, and the image of the red pattern is
shown in Figure 8b. Figure 8c shows the results of the node detec-
tion for this type of sample. Figure 8d shows the image of gold-
finger connector. A blue structured-light pattern was projected
onto the surface, and the image of the blue pattern is shown in
Figure 8e. Figure 8f shows the detection results of the nodes in
the local image. Figure 8g shows the image of the Chinese coin.
A green structured-light pattern was projected onto the surface,

Fig. 6. Improvement of node-extraction algorithm by skeleton filtering. (a) Four intersecting structures of grid lines. (b–e) The intersecting structures of grid lines
obtained by filtering using templates M1–M4. (f) The intersecting structures of grid lines obtained by filtering using templates multiplying calculation. (g) Node
regions obtained by subtraction calculation between (f) and (a). (h) Node regions obtained by dilation.
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Fig. 7. Process and results of grid-intersection extraction. (a) Captured grid image; (b) image 1; (c) image 3; (d) image 4; (e) projected grid image; and (f) the grid
intersection points of the projection calculated by the above algorithm.

Fig. 8. Results of node extraction. (a) Plane-calibration sample of frosted aluminum; (b) an image of the red grid structured light covering the surface of the cal-
ibration sample; (c) extracted node positions (green star marks) in the red grid image; (d) gold-finger connector sample on local memory sticks (copper surface
spaced with epoxy resin); (e) an image of the blue grid structured light covering the surface of gold-finger connector; (f) extracted node positions (red star marks) in
the blue grid image; (g) a character on the surface of a Chinese coin (brass); (h) an image of the green grid structured light covering the surface of the character;
and (i) extracted node positions (blue star marks) in the green grid image.
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and the image of the green pattern is shown in Figure 8h.
Figure 8i shows the detection results of the nodes in the local
images of this type of sample.

As can be seen in Figures 8b, 8e, and 8h, the structured-light
images were clear, but the width of the grid lines varied due to
the different reflection coefficients of the different object surfaces.
The width of the cells of the grid was approximately 0.23 mm, and
the line width of the grid lines was approximately 0.02 mm. The
above illustrated the ability to project a grid-like structured light
for microscale objects using the system shown in Figure 1,
which could generate structured light with different properties,
depending on the object to be measured.

In Figure 8b, the red grid lines projected on the frosted alumi-
num alloy plane were, for the most part, distributed uniformly,
and the width of the cells was relatively uniform, and no strong
reflections or distortions were found. As shown in Figure 8c,
the image coordinates of the grid nodes obtained were stable
and uniformly arranged. In Figure 8h, the coin’s reflectance was
higher at certain locations on the surface due to the large arced
bulge on the local surface and the high reflectance of the metal.
The grayscale level of the grid points at these locations fluctuated
considerably, which may have had an influence on the image
coordinate extraction of the nodes. As shown in Figure 8i, there
were small offsets and fluctuations in the positions of the
nodes. To resolve this problem, the algorithm in the section
“Detection of grid nodes” was improved. The pattern was pro-
jected to a background without any disruptions using the
structured-light-projection software shown in Figure 1a. With
this improved method, only background pixels existed in the pro-
jection pattern, with no grid lines or nodes. The grayscale values
of the background pixels were set to g1, g2, and g3; their values
were smaller. The grayscale values of the red-, green-, and blue-
color channels of the background pixels were set to g1 = 40, g2
= 40, and g3 = 40. Then, the images of the structured-light pattern

were processed according to the following steps to optimize the
node-detection algorithm

Step 1: The background pattern was projected onto the surface of
the object and its image was captured. The image of the back-
ground pattern was represented by S1.

Step 2: The grid pattern of structured light was projected onto the
surface of the object and its image was captured. The image of
the structured-light pattern was represented by S2.

Step 3: The images S1 and S2 were converted to grayscale images,
and the grayscale images were represented by S11 and S21,
respectively.

Step 4: The difference between S21 and S11 was calculated, and
the extracted image S was obtained, where S = S21−S11.

Step 5: The skeletons of the grid pattern were extracted from the
image S.

Figure 9 shows the results of the grid-skeleton extraction
before and after the algorithm improvement. Figures 9a and 9b
show the background image and the grid-pattern image, and
Figure 9c shows the grayscale image from Figure 9b. Figure 9d
shows the extracted image S obtained according to the improved
algorithm. Figures 9e and 9f show the results of the grid-skeleton
detection on the images in Figures 9c and 9d. As can be seen from
Figure 9e, the mesh skeletons have localized misalignment,
whereas the mesh skeletons in Figure 9d were more regularly
arranged; therefore, the improved algorithm was effective.

Analysis of the Image Coordinate Extraction of Grid Node
A flat calibration sample of frosted aluminum alloy was chosen as
the sample for the structured-light projection. The grid patterns
of red, green, and blue structured light were projected onto the
surface of the sample. The geometrical parameters of the
structured-light pattern are shown in Figure 10a, with a line

Fig. 9. Treatments for highly reflective surfaces. (a) Image of the sample surface without structured-light pattern with background color (g1,g2,g3) = (40,40,40);
(b) image of the sample surface with structured-light pattern; (c) G-channel of b image; (d) G-channel of the image after a and b images have been differenced;
(e) skeleton of the grid extracted by c image; and (f) skeleton of the grid extracted by d image.
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width of w = 1 pixel and a line spacing of ds = dt = 22 pixels in the
s- and t-axis directions. After the pattern was projected into object
space, the measured line width of the grid lines in the projected
structured-light pattern was 0.02 mm, and the spacing was
0.24 mm. Figures 10b–10d present the red, green, and blue
structured-light pattern images captured by the vision system.
The image coordinates of the grid nodes were extracted using
the algorithm described in the section “Detection of grid
nodes,” and the following statistics were calculated based on the
image coordinates: (1) The mean, minimum, maximum, and
standard deviation of the distance du between adjacent nodes
along the u-direction and (2) the mean, minimum, maximum,
and standard deviation of the distance dv between adjacent
nodes along the v-direction. The above parameters were used to
evaluate the relative volatility of the grid-node position in the cap-
tured image, and the relative-volatility index reflected the accuracy
of the grid-node coordinate extraction, to a certain extent.

The calculation results of the spacing parameters du and dv for
each node in the red, green, and blue structured-light images are
shown in Figures 11a and 11b. The values of du were distributed
in the range of 26–31 pixels with a fluctuation interval of ±2.5
pixels, and the values of dv were distributed in the range of 24–
30 pixels with a fluctuation interval of ±3.0 pixels. The values
shown in Figure 11 were counted, and the results are shown in
Table 1. As can be seen from Table 1, the mean values of du
and dv in the red, green, and blue structured-light images were
28.5 and 26.7 pixels, respectively, with a standard deviation of
less than 1 pixel. In addition, the statistical results showed that
the average values of du and dv of the nodes in the red structured-
light image were the largest, the average values of du and dv in the
blue structured-light image were the smallest, and the average val-
ues of du and dv in the green structured-light image were in the
middle, which indicated that the refractive indices of the samples
for different colors of structured light were different, a result of

the displacement offset of the nodes at the corresponding posi-
tions in different color images.

Analysis of the System Calibration Precision

In this section, the precision of the system calibration was ana-
lyzed by experiment. The reprojection error was frequently used
for analyzing the error of the calibration for the vision and projec-
tion systems. The true values of the image and world coordinates
of the test points were assumed to be (xa,ya) and (Xa,Ya,Za),
respectively. The world coordinates of the test points were input
into the calibrated system, and the image coordinates (xm,ym) of
the test points were calculated as measured values. The reprojec-
tion error of the test points were defined in the following way.

e =
��������������������������
(xm − xa)

2 + (ym − ya)
2

√
. (8)

To describe the distribution of the reprojection error more
conveniently, the polar coordinate system was used in this
study. In the polar coordinate system, e is used as the polar diam-
eter, and the polar angle θ is given by the following formula:

tanu = (ym − ya)/(xm − xa). (9)

In the experiment, the vision and the projection systems were
calibrated individually, using the acquisition scheme for control
points described in the section “System calibration.” The results
of the internal and external parameters obtained by calibration
are listed in Table 2.

Figure 12a shows the results of the corner-point reprojection
in one of the calibration sample images. Figure 12b shows the
results for the node reprojection in one of the grid-pattern images.
It can be seen from Figures 12a and 12b that the true and

Fig. 10. Principle of experiments to evaluate the accuracy of grid-node extraction. (a) Parameters of the projected grid; (b) statistical parameters in the red grid
image; (c) statistical parameters in the green grid image; and (d) statistical parameters in the blue grid image.
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reprojection positions of the test points matched. The real posi-
tions of the test points coincided with their reprojection positions.

The reprojection error was calculated according to equation
(8), and the polar angle was calculated according to equation
(9). Fifteen images with a total of 1,980 corner points were
used, and the distribution of the reprojection error for these cor-
ner points is shown in Figure 12c. Figure 12c shows that the val-
ues of the reprojection error for the calibrated vision system were

less than 0.5 pixels. Similarly, the reprojection error for the cali-
bration projection system was calculated. Fifteen images with a
total of 2,700 nodes were used, and the distribution of the repro-
jection error for these nodes is shown in Figure 12d. Figure 12d
shows that the values of the reprojection error for the calibrated
projection system were less than 0.8 pixels. The mean value, min-
imum value, maximum value, and standard deviation of the two
types of reprojection errors related to Figures 12c and 12d were

Fig. 11. The calculation results of du and dv correspond to (a) and (b), respectively.

Table 1. Statistical Results of du and dv.

Color of structured light d Average (pixel) Maximum (pixel) Minimum (pixel) Std (pixel)

Red du 28.62 30.39 27.45 0.81

dv 26.93 28.17 25.83 0.81

Green du 28.51 30.79 27.30 0.95

dv 26.81 28.11 25.65 0.87

Blue du 28.22 29.22 27.11 0.61

dv 26.58 27.95 25.50 0.81

Std, Standard deviation.

Table 2. Parameters Obtained by System Calibration.

Vision system Projection system

fx 15542.8191 fb 6122.4545

fy 14095.7078 fc 6874.2547

u0 (Pixel) −285.7676 s0 (Pixel) 463.6223

v0 (Pixel) 415.1280 t0 (Pixel) 81.7439

k1 2.6208 k3 4.5319

k2 −18.7627 k4 13.7191

c1 0.00014052 c3 −0.5136

c2 −0.1887 c4 0.0289

Rc −0.0181 0.9990 −0.0272
0.9973 0.0215 −0.0601
−0.0604 −0.0265 −0.9976

⎛
⎝

⎞
⎠ Rp

0.0432 −0.9987 0.0046
−0.9934 −0.0433 −0.1059
0.1067 −0.0032 −0.9942

⎛
⎝

⎞
⎠

Tc (mm) −0.0182 0.9974 −0.0604
( )T Tp (mm) −0.4260 1.8576 23.0119

( )T

164 Yuezong Wang et al.

https://doi.org/10.1017/S1431927621013829 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927621013829


calculated. The results are listed in Table 3. As can be seen in
Table 3, the reprojection error of the projection system was higher
than that of the vision system, and its volatility was greater as well,
which was related to the calibration process of the projection sys-
tem. Because a calibrated vision system was utilized to provide the
world coordinates of the control points required when calibrating
the projection system, and the calibration error of the vision sys-
tem had been inherited by the calibrated projection system. This
resulted in a larger reprojection error for the post-calibration pro-
jection system, but the relative reprojection error was less than 1%
for both types of calibration.

Reconstruction Experiments

Analysis of Reconstruction Precision
The calibrated vision and projection systems were used to recon-
struct stepped surfaces, and the reconstruction precision was

analyzed by the reconstruction error of the test points in the
stepped surfaces. The flat calibration sample made of frosted alu-
minum alloy was used as a sample. The structure of the calibra-
tion sample is shown in Figure 13a. The dimension of the
calibration sample was 2.6 mm × 2.4 mm, occupying approxi-
mately 30% area of the field of view and containing a total of
13 × 12 checkerboard cells with a standard cell width of d =
0.2 mm. The calibration sample was placed on the stage in
Figure 1b, and the stage could be moved along the Z-axis. By
adjusting the position of the sample on the Z-axis, multiple planes
were generated to simulate the step surfaces. The calibration sam-
ple remained at the preset Z-axis positions while the structured
light was being projected onto its surface. The three positions
were denoted by Z1, Z2, and Z3, where ΔZ1 = Z2 – Z1 = 0.2 mm
and ΔZ2 = Z3 – Z2 = 0.3 mm. The principle of the experiment is
shown in Figure 13b. In the experiment, the grid patterns of
red, green, and blue structured light were projected onto the

Fig. 12. Reprojection error. (a) Results of corner detection for checkerboard-type calibration sample where the red mark (“+”) represents the detected corners by
algorithm, and the green mark (“o”) represents the calculated position by reprojection calculation. (b) The structured-light pattern obtained by reprojection cal-
culation where the green mark (“o”) represents the calculated node position. (c) Distribution of reprojection error in 15 images of checkerboard-type calibration
sample. (d) Distribution of reprojection error in 15 structured-light patterns.

Table 3. Statistical Results of Reprojection Error.

System Average (pixel) Maximum (pixel) Minimum (×10−3 pixel) Std (pixel)

Vision system 0.26 1.04 2.75 0.40

Projection system 0.79 3.25 7.45 1.45
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surface of the calibration sample at each Z-axis position, and their
images were captured. The world coordinates of the grid nodes
were calculated, and the surfaces of the calibration sample were
then reconstructed. The reconstruction precision was evaluated
by comparing the true values of the world coordinates of the
nodes with their measured values.

The reconstruction error was described using three error indi-
ces (eX, eY, and eZ) in the X-, Y-, and Z-directions. The width d of
the checkerboard cell was taken as the true value; the calculated
distance (Δx and Δy) of the checkerboard cell was taken as the
measured values. The values of Δx and Δy are depicted in
Figure 13a. When eZ was calculated, ΔZ1 and ΔZ2 were taken as
the true values, and the Z-axis spacing (Δz1 and Δz2) of the test

points, as calculated by reconstruction, were taken as the mea-
sured values. The values for eX, eY, and eZ are given by the follow-
ing equations.

eX = Dx − d,
eY = Dy − d,
eZ = Dz1(or Dz2)− DZ1(or DZ2).

⎧⎨
⎩ (10)

Figure 14 shows the reconstructed surfaces of the calibration
sample at the Z-axis positions Z1, Z2, and Z3. Figures 14a–14c
show the reconstructed results for the red, green, and blue struc-
tured light, respectively. As can be seen from these figures, the

Fig. 13. The principle of accuracy assessment experiments for reconstruction. (a) Reconstruction-accuracy evaluation in the XY-direction and
(b) reconstruction-accuracy evaluation in the Z-direction.

Fig. 14. Results of surface reconstruction of plane sample. (a) Reconstruction results based on the red grid structured light; (b) reconstruction results based on the
green grid structured light; and (c) reconstruction results based on the blue grid structured light.

166 Yuezong Wang et al.

https://doi.org/10.1017/S1431927621013829 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927621013829


reconstructed surfaces were all approximately flat, and the spacing
between the planes was evident.

The reconstruction errors (i.e., eX, eY, and eZ) were counted for
Figure 14, and their distribution is shown in Figure 15. Figures
15a–15c show the statistical results for eX obtained from Figures
14a–14c. The maximum fluctuation range of eX was obtained
from these figures at approximately ±5.0 μm. Figures 15d–15f
show the statistical results for eY. The maximum fluctuation
range of eY was approximately ±5.0 μm. Figures 15g–15i show
the statistical results for eZ. The maximum fluctuation range of
eZ was approximately ±7.5 μm.

The error in Figure 15 was evaluated, and the statistical results
are shown in Table 4. As can be seen in Table 4, the maximum
fluctuation intervals for eX and eY were (−2.38 μm, 4.92 μm)
and (−1.25 μm, 5.41 μm), respectively, and were approximately
±5.0 μm. In addition, the fluctuation of the reconstruction error
related to the blue structured light was relatively small, and the
RMSE (Root Mean Square Error) was less than 2 μm. The fluctu-
ation of the reconstruction error related to the red structured light
was relatively large, and the RMSE was 2.67 μm. The reconstruc-
tion error in the Z-direction was larger than that in the X- and Y-
directions, and the maximum fluctuation range was (−10.69 μm,
9.34 μm). Within the 95% confidence interval, the fluctuation
interval of eZ was (−7.67 μm, 5.63 μm) and was approximately

±7.5 μm. In comparison, the fluctuation range of the error in
the Z-direction for the red structured light was the smallest, and
the RMSE was 3.42 μm.

The above experimental results indicated that the reconstruc-
tion precision in the Z-direction was lower than that in the X-
and Y-directions. The system proposed in this paper adopted
the triangulation method in the reconstruction principle. As can
be seen in Figure 1d, the height changes of the object surface in
the Z-direction were projected into the 2D-image space and trans-
formed into distance in the image plane. If the direction distance
corresponding to one pixel was δZ, then the corresponding dis-
tance in the X- and Y-directions was δXY, and δZ was usually
greater than δXY; that is, the distance resolution of the system in
the Z-direction was less than that in either the X- or
Y-directions. Due to the differences between vertical and horizon-
tal resolutions, the fluctuation of the reconstructed coordinates in
the Z-direction was usually greater than in the XY-direction. The
error of the reconstructed coordinates in the Z-direction was usu-
ally greater than in either the X- or Y-direction.

Surface Reconstruction
Two types of samples, a gold-finger connector and a Chinese coin,
were selected for the experiments relating to surface reconstruc-
tion, and the reconstruction quality was analyzed. Green and

Fig. 15. Distribution of reconstruction error. The distribution of eX obtained by the red, green, and blue structured-light reconstruction is shown in (a–c), respec-
tively. The distribution of eY obtained by the red, green, and blue structured-light reconstruction is shown in (a–c), respectively. The distribution of eZ obtained by
the red, green, and blue structured-light reconstruction is shown in (a–c), respectively.
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blue structured-light patterns were projected onto the surfaces of
these samples, respectively.

The local surface of the gold-finger connector, as shown in
Figure 8d was used, as the experimental sample. The green struc-
tured light was projected onto the local region marked by a red
box, which contained a highly reflective copper surface and a
resin surface with lower reflectivity. The dimensions were approx-
imately 4.8 mm × 2.7 mm, and the depth of the step between the

copper surface and the resin surface was approximately 0.03 mm.
The image of the pattern is shown in Figure 16a. The image coor-
dinates of the grid nodes were extracted, and the world coordinates
of the grid nodes were reconstructed based on the parameters shown
in Table 2. The reconstructed surface is shown in Figure 16b, and
Figure 16c shows its color-depth map. As can be seen in Figures
16b and 16c, the step structure of the local region of the gold-finger
connector sample was clearly visible.

Table 4. Statistical Results of eX, eY, and eZ in Figure 15.

Color of structured light Error Average (μm) Maximum (μm) Minimum (μm) RMSE (μm) Std (μm) 95% CI (μm)

Red eX 0.99 4.91 −2.38 2.22 1.31 (−1.33, 3.45)

eY 2.08 5.41 −0.91 2.67 1.18 (0.14, 4.07)

eZ −0.09 6.91 −7.86 3.42 3.24 (−5.97, 5.63)

Green eX 0.75 4.12 −2.28 2.14 1.26 (−1.66, 3.01)

eY 1.85 5.36 −1.25 2.61 1.20 (−0.22, 3.91)

eZ −1.11 7.57 −9.61 3.54 3.54 (−7.27, 5.13)

Blue eX 0.85 3.95 −2.13 1.80 1.13 (−1.11, 2.75)

eY 1.48 4.33 −1.16 1.97 1.13 (−0.66, 3.36)

eZ −1.81 7.43 −9.83 4.04 3.61 (−7.67, 4.53)

RMSE, Root-mean-squared error; 95% CI, 95% confidence interval.

Fig. 16. Results of surface reconstruction of gold-finger connector. (a) Image of green grid structured-light pattern. (b) Skin-covered surface of local region of gold-
finger connector obtained via reconstruction. (c) Color-depth map of local region of gold-finger connector obtained via reconstruction.
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The local surface of the coin, as shown in Figure 8g, was used
as an experimental sample, as well. The blue structured light was
projected onto a local region marked by the red box in which a
word stamped onto the metal surface of the coin had been iso-
lated; the box had the dimensions of approximately 3.9 mm ×
3.3 mm. The height of the convex part of the word was about
0.06 mm. The surface of the coin was made of brass alloy with
a moderate reflectance index. The image of the pattern captured
by the vision system is shown in Figure 17a. The image coordi-
nates of the grid nodes were extracted, and the world coordinates
of the grid nodes were reconstructed based on the parameters
shown in Table 2. The reconstructed surface is shown in
Figure 17b, and Figure 17c shows its color-depth map. As can
be seen from Figures 17b and 17c, the contours and height distri-
bution of the word were clearly visible.

The surface of the local region of the gold-finger connector, as
shown in Figure 8d, was approximately flat and little height var-
iation. As can be seen from the reconstructed results in
Figure 16c, the height difference between the reconstructed step
and flat surfaces was minimal. In the local area of the coin, as
shown in Figure 8g, the height-change frequency of the surface
was higher. In the reconstruction result shown in Figure 17c,
the shape distortion of the local reconstruction result was larger
than that of the original structure, which was related to the
node density of the grid. When the node density was small, the
local area with sharp height changes was not covered by nodes,
and the reconstructed surface was easily distorted. To resolve
this problem, we had to increase the number of grid nodes in
the structured-light pattern to improve the node density.
However, when the node density was larger, light scattering and
interference presented another challenge, as they reduced the

contrast between the grid pattern and the background of the
image while increasing the line width of the grid lines. In this
study, we proposed a method to improve the node density by
alternately projecting structured-light patterns on the surface of
an object without changing the node density in a single-
projection image. There was a position offset between the projec-
tion patterns and the object space, and then all the reconstructed
nodes were superimposed, which improved the node density in
the reconstruction process. At the same time, it countered the
issue of image-quality degradation that had been caused by scat-
tering and interference. In the experiment, the density of the
nodes was increased 6.7 times for the gold-finger connector and
7.6 times for the coin by projecting multiple structured-light pat-
terns. The local surfaces shown in Figures 8d and 8g were recon-
structed again. The reconstruction results are shown in Figure 18.
Figures 18a and 18b show the skin-mode surface and the color-
depth map of the local surface of the gold-finger connector.
Figures 18c and 18d show the skin-mode surface and the color-
depth map of the local surface of coin. Figures 18b and 18d
show that the distortion of the reconstructed surface was
improved.

Discussion

In the field of 3D geometry measurement for microscale struc-
tures, reconstruction techniques based on fringe-patterned struc-
tured light have been studied. One of the functions of these
techniques has been to provide height morphology in the vertical
(or Z ) direction. In the relevant literature, many types of
structured-light systems and methods for microscopic geometry
measurement have been designed and proposed. For example,

Fig. 17. (a) Results of surface reconstruction of Chinese coin. (b) Skin-covered surface of the local region of coin obtained via reconstruction. (c) Color-depth map of
the local region of coin obtained via reconstruction.
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Hu et al. (2020b) had samples with a height range that was pri-
marily millimeter scale, and structured light via fringe pattern
was widely effective in this and similar studies. The combination
technique of a binocular stereovision system and a fringe-
patterned structured light had some advantages. In this kind of
technique, two telecentric microscope lenses (Hu et al., 2019) or
a stereo-light microscope (Wang, 2018) were used to develop
the measurement system, and the fringe-patterned structured
light was emitted through either the projection equipment or a
laser light source, which was used to either calibrate the system
or as the mark of projection. The height distribution of the surface
was calculated based on the stereo-matching principle and dispar-
ity. In relevant research, the measured height of the samples was
mostly in the millimeter scale, involving small resistors, capaci-
tors, small stones, clamp tips, etc. (Wang, 2018). This kind of
technique has advantages due to its simplicity of reconstruction,
but the resolution (the vertical distance corresponding to a dispar-
ity pixel) in the vertical direction as it relates to the height distri-
bution is dependent on the structure of the system. For example,
for the stereo-light microscope, the angle between the optical axes
of the two sets of suboptical systems was about 12°. When recon-
structing the shape of an object’s surface on a microscale, the lack
of precision will make it difficult to reconstruct the shape of the
surface. The combination of the triangulation principle and the
fringe-patterned structured light has been another commonly
used technique. Fringe-patterned structured light was be

generated by laser projector (Liu & Wang, 2021), DMD projection
equipment (Yin et al., 2015), etc., and the corresponding height
distribution in the fringe area was obtained based on the triangu-
lation principle. This can change the deformation of the stripe in
the image by adjusting the angle between the optical axis of the
projection system and the optical axis of the image-capturing sys-
tem, so as to adjust the distance resolution in the vertical direction
to meet the requirements for different height measurements. The
height range that can be measured using this method can range
from tens to hundreds of microns. For example, in previous stud-
ies, the reconstructed samples have included characters on coins
(Yin et al., 2015; Liu & Wang, 2021), the depth of scale lines of
a steel ruler, the diameter of hair, etc. (Liu & Wang, 2021).
These samples have heights between tens and hundreds of
microns.

When using the fringe-patterned structured-light system, the
fringe must be scanned against the surface of the object; however,
there is often relative motion between the surface and the fringe.
There must be a precise mechanism to control their relative move-
ment and then capture the fringes at different positions to gener-
ate an image sequence of the fringes and reconstruct the height
distribution. However, the fringe-patterned scanning system also
has some shortcomings. For the morphology reconstruction of
microscale objects, the accuracy of coordinate reconstruction is
very important. In this kind of system, the synchronization of
the image sequence of the fringes must be considered (Wang,

Fig. 18. Result of surface reconstruction by increasing the number of nodes. (a) Skin-covered surface of the local region of gold-finger connector obtained via
reconstruction. (b) Color-depth map of the local region of gold-finger connector obtained via reconstruction. (c) Skin-covered surface of the local region of
coin obtained via reconstruction. (d) Color-depth map of the local region of coin obtained via reconstruction.
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2018). Relative movement can easily cause measurement errors, so
precise calibration and error correction are crucial. To complete a
measurement, the image sequence of fringes must be generated
and analyzed. When the number of images in the image sequence
is large, it requires more time and resources to evaluate them. In
addition, in the existing fringe-patterned structured-light mea-
surement methods, the properties of structured light are deter-
mined in the design stage. During the measurement process,
the properties of structured light cannot be significantly altered
regardless of the practical, real-world challenges that may arise.
When the types of small-scale objects are different, their surface
properties will also be different, which may require different con-
siderations for accurate measurement.

In terms of measurement principle, the method proposed in this
paper employed the triangulation method, which adapted to the
shape reconstruction of microscale objects, provided editable attri-
butes for the structured light and patterns, and could be applied to
various measurement requirements. Compared with the existing
fringe-pattern-scanning reconstruction methods, this method has
the following advantages: (1) Structured light with a grid pattern
was used. This pattern had a larger coverage area, and the recon-
struction was completed with a small number of images, which
conserved the time and resources involved. At the same time, we
did not need to consider the image-synchronization problem com-
mon in fringe-pattern-scanning systems, so it was simpler to use.
(2) The structured-light pattern was designed in the computer,
and then, the structured-light pattern was projected through the
projector and its microlens. The properties of the structured-light
pattern could be edited according to the measurement require-
ments, which makes it more adaptable for a broader range of appli-
cations. (3) The scanning mechanism was not used, so the risk of
error caused by relative motion between the object and structured-
light patterns was avoided.

Conclusion

In this paper, a structured-light projection system was designed for
the surface reconstruction of microscale objects using ordinary pro-
jectors and microscopes. Structured-light patterns could be edited
at any time, reduce the amount of resources and time involved
in other methods, and successfully reconstructed 3D surfaces of
microscale objects. Furthermore, the surface reconstruction of
microscale objects using a grid pattern of structured light was stud-
ied, the calibration methods of the microscope vision and projec-
tion system were described, and the algorithm for detecting the
grid nodes in a structured-light image was proposed. The perfor-
mances of the calibrated systems and the reconstruction method
were analyzed through experiments. The conclusions are as follows:

(1) In microscopic environments, the properties of an object’s
surface (e.g., light reflectance, color, roughness, etc.) influence
the image quality and may also affect the analysis of the
structured-light image. Therefore, the techniques involving
single structured-light patterns with immutable properties
could not meet the measurement requirements of multiple
types of object surfaces and materials.

(2) Using the structured-light attribute-editing module, the geo-
metric information, such as the pattern, the color, and the
size of the projected structured light, and the optical informa-
tion, such as the contrast and the light intensity, could be
adjusted, which improved the adaptability of the system to
a broader range of applications.

(3) The system was found to have a reconstruction precision of
approximately ±4.0 μm in the X- and Y-directions, and
±7.5 μm in the Z-direction with a 95% confidence interval.

(4) From the results of the reconstruction, we found that the den-
sity of the projection nodes affected the results of the image
reconstruction. This problem was resolved by increasing the
number of projections of the structured-light pattern. This
method reduced the distortion of the reconstructed surface
without changing the density of the nodes in the structured-
light pattern.

The experimental results showed that the reconstruction preci-
sion of this system on the Z-axis was lower than that on the X-
and Y-axes, and more improvements can be addressed in the
future. In this study, the pinhole model was used to describe
the mapping relationship between the object and image points
for the microscope vision system. According to current research
in the field (Wang, 2017), we expect that this model, without fur-
ther refinement and testing, has the potential to produce large
reconstruction errors when used in a microscopic environment,
and the precision of the Z-axis reconstruction needs further
improvement, which may also be addressed indirectly by improv-
ing the vision model. In addition, the performance of the projec-
tion system should be further enhanced, and the imaging effect
should be optimized by improving the optical system design.
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